中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (9): 106-115.DOI: 10.13304/j.nykjdb.2021.0618
• 智慧农业 农机装备 • 上一篇
卢闯1(), 胡海棠1, 覃苑1,2, 淮贺举1, 李存军1(
)
收稿日期:
2021-07-27
接受日期:
2021-11-22
出版日期:
2022-09-15
发布日期:
2022-10-11
通讯作者:
李存军
作者简介:
卢闯 E-mail: lupeichuang@163.com;
基金资助:
Chuang LU1(), Haitang HU1, Yuan QIN1,2, Heju HUAI1, Cunjun LI1(
)
Received:
2021-07-27
Accepted:
2021-11-22
Online:
2022-09-15
Published:
2022-10-11
Contact:
Cunjun LI
摘要:
为了提高大尺度农田管理的针对性,探寻低成本高效的分区方法,以黑龙江省典型黑土区30.8 hm2春玉米田为对象进行分区研究。基于吐丝期无人机多光谱影像,使用多尺度分割与模糊聚类相结合的方法进行分区,同时基于播种前的土壤养分(土壤有机质、速效氮磷钾)、土壤体积含水率、电导率、pH进行模糊聚类分区并作为对照,对分区间春玉米产量和土壤养分进行方差分析,并对分区内变异系数进行比较以评价分区效果。结果表明,基于无人机影像得到4个较优管理分区为M1、M2、M3、M4,各分区产量分别为7 597.53、8 236.35、8 686.98、9 119.93 kg·hm-2,各分区间产量差异显著,其中M1、M2、M3间土壤养分差异显著(P<0.05),分区内作物产量和土壤养分的变异系数降低;基于土壤数据确定4个分区,即S1、S2、S3、S4,春玉米产量分别为7 754.81、8 173.44、8 860.05、9 153.23 kg·hm-2,分区间土壤养分、土壤水分差异显著(P<0.05),分区内部土壤均一性提高。综合来看,2种方法的划分结果在空间分布上具有一定的相似性,同级分区的空间重合度分别为40.00%、46.51%、57.45%、59.38%,整体重合度为51.32%。当缺乏土壤数据时,无人机多光谱影像可为农田管理分区提供参考依据。
中图分类号:
卢闯, 胡海棠, 覃苑, 淮贺举, 李存军. 基于无人机多光谱影像的春玉米田管理分区研究[J]. 中国农业科技导报, 2022, 24(9): 106-115.
Chuang LU, Haitang HU, Yuan QIN, Heju HUAI, Cunjun LI. Delineating Management Zones in Spring Maize Field Based on UAV Multispectral Image[J]. Journal of Agricultural Science and Technology, 2022, 24(9): 106-115.
土壤指标 Soil properties | 样点数目 Sample points No. | 平均值Average | 最小值Min. | 最大值Max. | 变异系数CV | 偏度Skewness | 峰度Kurtosis |
---|---|---|---|---|---|---|---|
有机质Organic matter /% | 115 | 6.52 | 4.25 | 9.09 | 17.41 | 0.10 | 0.84 |
碱解氮Available nitrogen / (mg·kg-1) | 115 | 238.80 | 158.11 | 320.05 | 19.57 | -0.20 | -0.04 |
有效磷/Available phosphorus/ (mg·kg-1) | 115 | 85.60 | 39.75 | 145.90 | 32.07 | 0.22 | 0.38 |
速效钾/ Available potassium/ (mg·kg-1) | 115 | 211.00 | 149.17 | 298.44 | 19.53 | 0.83 | 0.49 |
土壤含水率Soil water content/% | 115 | 29.81 | 19.76 | 38.47 | 16.37 | 0.18 | -0.13 |
土壤电导率 Soil EC/(μs·cm-1) | 115 | 325.00 | 193.00 | 446.67 | 15.37 | -0.09 | 0.33 |
pH | 115 | 5.41 | 5.10 | 5.60 | 4.38 | -0.56 | 0.77 |
表1 土壤属性描述性统计
Table 1 Descriptive statistics of soil property
土壤指标 Soil properties | 样点数目 Sample points No. | 平均值Average | 最小值Min. | 最大值Max. | 变异系数CV | 偏度Skewness | 峰度Kurtosis |
---|---|---|---|---|---|---|---|
有机质Organic matter /% | 115 | 6.52 | 4.25 | 9.09 | 17.41 | 0.10 | 0.84 |
碱解氮Available nitrogen / (mg·kg-1) | 115 | 238.80 | 158.11 | 320.05 | 19.57 | -0.20 | -0.04 |
有效磷/Available phosphorus/ (mg·kg-1) | 115 | 85.60 | 39.75 | 145.90 | 32.07 | 0.22 | 0.38 |
速效钾/ Available potassium/ (mg·kg-1) | 115 | 211.00 | 149.17 | 298.44 | 19.53 | 0.83 | 0.49 |
土壤含水率Soil water content/% | 115 | 29.81 | 19.76 | 38.47 | 16.37 | 0.18 | -0.13 |
土壤电导率 Soil EC/(μs·cm-1) | 115 | 325.00 | 193.00 | 446.67 | 15.37 | -0.09 | 0.33 |
pH | 115 | 5.41 | 5.10 | 5.60 | 4.38 | -0.56 | 0.77 |
植被指数 Vegetation index | 叶面积指数 LAI | 地上生物量 Above-ground biomass | 株高 Plant height | SPAD |
---|---|---|---|---|
NDVI | 0.202* | 0.187* | 0.150 | 0.063 4 |
OSAVI | 0.261** | 0.213* | 0.167 | 0.115 0 |
NDREI | 0.313** | 0.297** | 0.259** | 0.143 0 |
RVI | 0.151 | 0.129 | 0.047 | 0.051 4 |
DVI | 0.348** | 0.240* | 0.257** | 0.146 0 |
SAVI | 0.295** | 0.231* | 0.218* | 0.135 0 |
RDVI | 0.298** | 0.226* | 0.204* | 0.128 0 |
表2 植被指数与春玉米生长性状的相关性
Table 2 Correlation between vegetation index and spring maize growth indicators
植被指数 Vegetation index | 叶面积指数 LAI | 地上生物量 Above-ground biomass | 株高 Plant height | SPAD |
---|---|---|---|---|
NDVI | 0.202* | 0.187* | 0.150 | 0.063 4 |
OSAVI | 0.261** | 0.213* | 0.167 | 0.115 0 |
NDREI | 0.313** | 0.297** | 0.259** | 0.143 0 |
RVI | 0.151 | 0.129 | 0.047 | 0.051 4 |
DVI | 0.348** | 0.240* | 0.257** | 0.146 0 |
SAVI | 0.295** | 0.231* | 0.218* | 0.135 0 |
RDVI | 0.298** | 0.226* | 0.204* | 0.128 0 |
主成分Principal component | 特征值Eigenvalue | 贡献率Contribution rate/% | 累积贡献率Accumulative contribution/% |
---|---|---|---|
PC1 | 2.45 | 34.95 | 34.95 |
PC2 | 1.97 | 28.12 | 63.07 |
PC3 | 1.77 | 25.22 | 88.29 |
PC4 | 0.45 | 6.49 | 94.78 |
PC5 | 0.20 | 2.91 | 97.69 |
PC6 | 0.11 | 1.56 | 99.25 |
PC7 | 0.05 | 0.75 | 100.00 |
表3 土壤属性主成分分析
Table 3 Principal Component analysis of soil variables and factor loadings
主成分Principal component | 特征值Eigenvalue | 贡献率Contribution rate/% | 累积贡献率Accumulative contribution/% |
---|---|---|---|
PC1 | 2.45 | 34.95 | 34.95 |
PC2 | 1.97 | 28.12 | 63.07 |
PC3 | 1.77 | 25.22 | 88.29 |
PC4 | 0.45 | 6.49 | 94.78 |
PC5 | 0.20 | 2.91 | 97.69 |
PC6 | 0.11 | 1.56 | 99.25 |
PC7 | 0.05 | 0.75 | 100.00 |
主成分Principal component | 有机质OM | 碱解氮AN | 有效磷AP | 速效钾AK | 土壤水分SWC | 电导率EC | pH |
---|---|---|---|---|---|---|---|
PC1 | 0.92 | 0.867 | 0.639 | 0.532 | -0.048 | -0.168 | -0.354 |
PC2 | -0.216 | -0.409 | 0.709 | 0.688 | -0.348 | -0.021 | 0.61 |
PC3 | 0.229 | -0.025 | 0.002 | 0.195 | 0.931 | 0.757 | 0.273 |
表4 主成分因子载荷
Table 4 Principal component factor loads
主成分Principal component | 有机质OM | 碱解氮AN | 有效磷AP | 速效钾AK | 土壤水分SWC | 电导率EC | pH |
---|---|---|---|---|---|---|---|
PC1 | 0.92 | 0.867 | 0.639 | 0.532 | -0.048 | -0.168 | -0.354 |
PC2 | -0.216 | -0.409 | 0.709 | 0.688 | -0.348 | -0.021 | 0.61 |
PC3 | 0.229 | -0.025 | 0.002 | 0.195 | 0.931 | 0.757 | 0.273 |
分区方法Strategy | 样点重合率Similarity/% |
---|---|
M1-S1 | 40.00 |
M2-S2 | 46.51 |
M3-S3 | 57.45 |
M4-S4 | 59.38 |
M-S | 51.32 |
表5 不同分区方法间样点重合率
Table 5 Comparison of the percentage of points classified by different strategies
分区方法Strategy | 样点重合率Similarity/% |
---|---|
M1-S1 | 40.00 |
M2-S2 | 46.51 |
M3-S3 | 57.45 |
M4-S4 | 59.38 |
M-S | 51.32 |
分区 Zone | 样点数 Sample points No | i e l d /(kg·hm-2) 产量 Y | 有机质 OM/% | N /(mg·kg-1) 碱解氮 A | P /(mg·kg-1) 速效磷 A | K /(mg·kg-1) 速效钾 A | 水分 SWC/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
均值 Mean | CV | 均值Mean | CV | 均值Mean | CV | 均值Mean | CV | 均值Mean | CV | 均值Mean | CV | ||
M1 | 14 | 7 597.53 d | 13.52 | 5.71 c | 11.87 | 196.26 c | 10.57 | 62.45 c | 26.71 | 180.28 c | 16.62 | 31.28 a | 19.68 |
M2 | 38 | 8 236.35 c | 13.66 | 6.31 b | 14.91 | 225.35 b | 18.66 | 82.16 b | 12.92 | 211.90 b | 15.09 | 30.28 a | 15.59 |
M3 | 36 | 8 686.98 b | 13.39 | 6.78 a | 11.23 | 252.05 a | 10.12 | 91.12 a | 16.68 | 225.65 a | 12.99 | 29.21 a | 14.16 |
M4 | 27 | 9 119.93 a | 15.61 | 7.03 a | 12.17 | 260.08 a | 13.05 | 93.99 a | 28.18 | 233.34 a | 15.88 | 29.48 a | 15.64 |
S1 | 28 | 7 754.81 c | 15.39 | 5.90 d | 9.84 | 207.93 d | 11.21 | 69.30 d | 16.67 | 175.92 d | 11.38 | 27.96 c | 12.45 |
S2 | 25 | 8 173.44 b | 14.84 | 6.28 c | 8.39 | 221.10 c | 13.36 | 77.93 c | 21.48 | 190.48 c | 16.52 | 33.13 a | 12.30 |
S3 | 38 | 8 860.05 a | 14.36 | 6.76 b | 6.34 | 248.21 b | 5.99 | 91.25 b | 14.66 | 213.01 b | 12.33 | 28.44 c | 10.92 |
S4 | 24 | 9 153.23 a | 13.61 | 7.26 a | 10.24 | 272.76 a | 8.41 | 102.42 a | 15.79 | 235.78 a | 14.71 | 30.81 b | 11.41 |
总计All | 115 | 8 507.1 | 16.23 | 6.55 | 17.41 | 237.98 | 19.57 | 85.34 | 32.07 | 210.60 | 19.53 | 29.81 | 16.37 |
表6 分区间春玉米产量及土壤养分和含水率差异
Table 6 Variance analysis of spring maize yield and soil properties among management zones
分区 Zone | 样点数 Sample points No | i e l d /(kg·hm-2) 产量 Y | 有机质 OM/% | N /(mg·kg-1) 碱解氮 A | P /(mg·kg-1) 速效磷 A | K /(mg·kg-1) 速效钾 A | 水分 SWC/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
均值 Mean | CV | 均值Mean | CV | 均值Mean | CV | 均值Mean | CV | 均值Mean | CV | 均值Mean | CV | ||
M1 | 14 | 7 597.53 d | 13.52 | 5.71 c | 11.87 | 196.26 c | 10.57 | 62.45 c | 26.71 | 180.28 c | 16.62 | 31.28 a | 19.68 |
M2 | 38 | 8 236.35 c | 13.66 | 6.31 b | 14.91 | 225.35 b | 18.66 | 82.16 b | 12.92 | 211.90 b | 15.09 | 30.28 a | 15.59 |
M3 | 36 | 8 686.98 b | 13.39 | 6.78 a | 11.23 | 252.05 a | 10.12 | 91.12 a | 16.68 | 225.65 a | 12.99 | 29.21 a | 14.16 |
M4 | 27 | 9 119.93 a | 15.61 | 7.03 a | 12.17 | 260.08 a | 13.05 | 93.99 a | 28.18 | 233.34 a | 15.88 | 29.48 a | 15.64 |
S1 | 28 | 7 754.81 c | 15.39 | 5.90 d | 9.84 | 207.93 d | 11.21 | 69.30 d | 16.67 | 175.92 d | 11.38 | 27.96 c | 12.45 |
S2 | 25 | 8 173.44 b | 14.84 | 6.28 c | 8.39 | 221.10 c | 13.36 | 77.93 c | 21.48 | 190.48 c | 16.52 | 33.13 a | 12.30 |
S3 | 38 | 8 860.05 a | 14.36 | 6.76 b | 6.34 | 248.21 b | 5.99 | 91.25 b | 14.66 | 213.01 b | 12.33 | 28.44 c | 10.92 |
S4 | 24 | 9 153.23 a | 13.61 | 7.26 a | 10.24 | 272.76 a | 8.41 | 102.42 a | 15.79 | 235.78 a | 14.71 | 30.81 b | 11.41 |
总计All | 115 | 8 507.1 | 16.23 | 6.55 | 17.41 | 237.98 | 19.57 | 85.34 | 32.07 | 210.60 | 19.53 | 29.81 | 16.37 |
1 | CRUZ C, SILVA J T, OCHO A, et al.. Delineation of environmental units by multivariate techniques in the duero river watershed, Michoacan, Mexico [J]. Environ. Model. Assess., 2016, 22(3):1-10. |
2 | 刘刚,闫静雯,谢云,等.黑土坡耕地土壤有机质空间变异及其与土壤侵蚀的关系——以黑龙江省鹤山农场为例[J].地理科学, 2016, 36(11): 1751-1758. |
LIU G, YAN J W, XIE Y, et al.. Spatial variation of soil organic matter on black soil sloping cropland and its relationship with soil erosion: a case study of Heshan farm in Heilongjiang province [J]. Sci. Geographica Sin., 2016, 36(11): 1751-1758. | |
3 | OLDONI H, TERRA V, TIMM L C, et al.. Delineation of management zones in a peach orchard using multivariate and geostatistical analyses [J]. Soil Tillage Res., 2019, 191: 1-10. |
4 | GILI A, ALVAREZ C, BAGNATO R, et al.. Comparison of three methods for delineating management zones for site-specific crop management [J]. Comput. Electronics Agric., 2017, 139: 213-223. |
5 | 张泽,吕新,吕宁,等.基于GIS、RS的滴灌棉田土壤养分精确管理分区研究[J].农业机械学报,2014,45(7):125-132. |
ZHANG Z, LV X, LV N, et al.. Defining agricultural management zones using remote sensing and GIS techniques for drip-irrigated cotton fields [J]. Trans. Chin. Soc. Agric. Mach.., 2014, 45(7): 125-132. | |
6 | BREUNIG F M, GALVAO L S, DALAGNOL R, et al.. Delineation of management zones in agricultural fields using cover-crop biomass estimates from PlanetScope data [J/OL]. Int. J. Appl. Earth OBS, 2020, 85: 102004 [2022-05-27]. . |
7 | KUIAWSKI A C, SAFANELLI J L, BOTTEGA E, et al.. Vegetation indexes and delineation of management zones for soybean [J]. Pesqui. Agrop. Trop., 2017, 47(2): 168-177. |
8 | 乔浪,张智勇,陈龙胜,等.基于无人机图像的玉米冠层叶绿素含量检测与分布研究[J].农业机械学报,2019,50:182-186. |
QIAO L, ZHANG Z Y, CHEN L S, et al.. Chlorophyll content detection and distribution research of maize canopy based on UAV image [J]. Trans. Chin. Soc. Agric. Mach., 2019, 50: 182-186. | |
9 | 韩文霆,彭星硕,张立元,等.基于多时相无人机遥感植被指数的夏玉米产量估算[J].农业机械学报,2020,51(1):149-155. |
HAN W T, PENG X S, ZHANG L Y, et al.. Summer maize yield estimation based on vegetation ondex derived from multitemporal UAV remote sensing [J]. Trans. Chin. Soc. Agric. Mach., 2020,51(1):149-155. | |
10 | LEROUX C, JONES H, CLENET A, et al.. A new approach for zoning irregularly-spaced, within-field data [J]. Comput. Electron. Agric., 2017,141:196-206. |
11 | BENZ U C, HOFMANN P, WILLHAUCK, et al.. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information [J]. ISPRS-J. Photogramm. Remote Sens., 2004,58(3-4): 239-258. |
12 | 马龙飞,胡乃月,李伟,等.利用无人机多光谱数据监测玉米对不同灌溉模式的响应差异[J]. 植物营养与肥料学报,2022,28(4):743-753. |
MA L F, HU N Y, LI W, et al.. Using multispectral drone data to monitor maize's response to various irrigation modes [J]. J. Plant Nutr. Fert., 2022,28(4):743-753. | |
13 | 田庆久.植被指数研究进展[J].地球科学进展,1998,13(4):328-333. |
TIAN Q J. Advances in study on vegetation indices [J]. Adv. Earth Sci., 1998, 13(4):328-333. | |
14 | 陈春雷,武刚.面向对象的遥感影像最优分割尺度评价[J].遥感技术与应用,2011,26(1):96-102. |
CHEN C L, WU G. Evaluation of optimal segmentation scale with object-oriented method in remote sensing [J]. Remote Sen. Technol. Appl., 2011, 26(1):96-102. | |
15 | 王露,刘庆元.面向对象的高分辨率遥感影像多尺度分割参数及分类研究[J].测绘与空间地理信息,2015,38(3):167-169. |
WANG L, LIU Q Y. The methods summary of optimal segmentation scale selection in high resolution remote sensing images multiscale segmentation [J]. Geomatics Spatial Inf. Technol., 2015, 38(3): 167-169. | |
16 | GAVIOLI A, SOUZA E G, BAZZI C L, et al.. Optimization of management zone delineation by using spatial principal components [J]. Comput. Electron. Agric., 2016. 127: 302-310. |
17 | FRIDGEN J J, NEWELL R, KITCHEN, et al.. Management zone analyst (MZA): software for subfield management zone delineation [J]. Agron. J., 2004. 96(1): 100-108. |
18 | 刘建刚,赵春江,杨贵军,等.无人机遥感解析田间作物表型信息研究进展[J].农业工程学报,2016,32(24):98-106. |
LIU J G, ZHAO C J, YANG G J, et al.. Review of field based phenotyping by unmanned aerial vehicle remote sensing platforrm [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(24): 98-106. | |
19 | CHANG D, ZHANG J, ZHU L, et al.. Delineation of management zones using an active canopy sensor for a tobacco field [J]. Comput. Electron. Agric., 2014, 109: 172-178. |
20 | LI F, MIAO Y X, FENG G H, et al.. Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices [J]. Field Crops Res., 2014, 157: 111-123. |
21 | 赵明明.基于无人机与卫星影像的农田精准管理分区研究[D].哈尔滨:东北农业大学,2019. |
ZHAO M M. Study on site-specific management zones in field using unmanned aerial vehicle and satellite images [D]. Harbin: Northeast Agricultural University, 2019. | |
22 | 任佰朝,张吉旺,董树亭,等.生育前期淹水对夏玉米冠层结构和光合特性的影响[J].中国农业科学,2017,50(11):2093-2103. |
REN B C, ZHANG J W, DONG S T, et al.. Effect of waterlogging at early period on canopy structure and photosynthetic characteristics of summer maize [J]. Sci. Agric. Sin., 2017, 50(11): 2093-2103. | |
23 | 葛翠萍,赵军,王秀峰,等.东北黑土区坡耕地地形因子对土壤水分和容重的影响[J].水土保持通报,2008,28(6):16-21. |
GE C P, ZHAO J, WANG X F, et al.. Influence of topographic factors on soil water and bulk density in a typical slope land in the black soil area of Northeast China [J]. Bull. Soil Water Conser., 2008, 28(6): 16-21. |
[1] | 陈奎元, 刘卉, 丁伟. 草甘膦对大豆田土壤养分及其功能酶活性的影响[J]. 中国农业科技导报, 2022, 24(5): 180-188. |
[2] | 何振嘉, 范王涛, 杜宜春, 王启龙. 基于土体有机重构的水肥耦合对土壤理化性质和水稻产量的影响[J]. 中国农业科技导报, 2022, 24(3): 176-185. |
[3] | 何丽娟, 蒙仲举, 党晓宏, 吕涛. 种植甘草对风沙土机械组成与养分的影响[J]. 中国农业科技导报, 2022, 24(2): 169-176. |
[4] | 张冠宏, 王新军, 徐晓龙, 闫立男, 常梦迪, 李永康, . 基于面向对象的无人机遥感影像荒漠植被分类[J]. 中国农业科技导报, 2021, 23(5): 69-77. |
[5] | 伏荣桃,陈诚,王剑,陈雪娟,卢代华*. 植保无人机对水稻病虫害防治条件与防效的研究[J]. 中国农业科技导报, 2021, 23(4): 103-109. |
[6] | 周恺1,周彤1,丁峰2,丁大伟2,武威1,姚照胜1,刘涛1,霍中洋1,孙成明1*. 基于无人机图像的小麦主要生育时期LAI估算[J]. 中国农业科技导报, 2021, 23(1): 89-97. |
[7] | 刘倩1,2,李纪潮1,左应梅1,杨天梅1,杨美权1,张金渝*. 有机覆盖三七对土壤养分及微生物多样性的影响[J]. 中国农业科技导报, 2021, 23(1): 162-175. |
[8] | 蒲全明1,杨鹏1*,邓榆川2,向承勇1,林邦民1,刘莉莎1,施松梅3,何泽民1,雍磊1. 不同施肥方式对冬春茬甘蓝根际土壤酶活性、土壤养分及品质的影响[J]. 中国农业科技导报, 2020, 22(7): 130-139. |
[9] | 秦富仓,牛晓乐,杨振奇,马鑫,任小同. 冒山小流域不同地形和土地利用下的土壤养分空间变异特征[J]. 中国农业科技导报, 2020, 22(6): 138-148. |
[10] | 刘岑薇,叶菁,李艳春,林怡,王义祥*. 生物炭对茶园酸性红壤氮素养分淋溶的影响[J]. 中国农业科技导报, 2020, 22(5): 181-186. |
[11] | 王冰洁1,潘波1,姜蕾1,林勇1*,赵帅2,莫宇星2. 植保无人机作业参数对雾滴在火龙果树冠层沉积分布的影响[J]. 中国农业科技导报, 2020, 22(10): 101-109. |
[12] | 徐朋1,徐伟诚2,罗阳帆2,赵祚喜2*. 基于无人机可见光遥感影像的耕地精准分类方法研究[J]. 中国农业科技导报, 2019, 21(6): 79-86. |
[13] | 尚天翠,刘影,赵玉. 新疆野生樱桃李林自然保护区不同海拔梯度土壤养分特征及相关性分析[J]. 中国农业科技导报, 2018, 20(8): 119-127. |
[14] | 珊丹,荣浩*,刘艳萍,邢恩德. 草原露天矿排土场微生物菌肥施用效果研究[J]. 中国农业科技导报, 2018, 20(6): 129-135. |
[15] | 徐伟诚1,陈凯1,张铭1,李正风2,张天顺1*. 基于太阳能的植保无人机续航提升方案[J]. 中国农业科技导报, 2018, 20(11): 62-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||