中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (11): 137-147.DOI: 10.13304/j.nykjdb.2021.0857
• 动植物健康 • 上一篇
收稿日期:
2021-10-08
接受日期:
2022-06-20
出版日期:
2022-11-15
发布日期:
2022-11-29
通讯作者:
陈晓峰
作者简介:
董玉昕 E-mail:d_1009604976@163.com基金资助:
Yuxin DONG(), Zhi ZHENG(
), Wenkang WANG, Zhiheng WANG, Xiaofeng CHEN(
)
Received:
2021-10-08
Accepted:
2022-06-20
Online:
2022-11-15
Published:
2022-11-29
Contact:
Xiaofeng CHEN
摘要:
为探究不同浓度纳米银和纳米氧化铁溶液对甜瓜抗白粉病的影响及其作用机理,于4叶1心期对甜瓜植株喷施纳米银(T1处理)、纳米氧化铁(T2处理)溶液及清水(CK),对薄皮甜瓜幼苗叶片病情指数及过氧化物酶(peroxidase,POD)、超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(hydrogen peroxidase,CAT)活性和丙二醛(malondialdehyde,MDA)含量进行测定。结果表明,与对照相比,喷施纳米银和纳米氧化铁可显著提高薄皮甜瓜抗白粉病的能力,显著降低叶片病情指数,其中,T1-4和T2-4处理(10.00 μmol·mL-1)病情指数比对照分别减少32.52%和34.96%。T1和T2处理均提高了叶片中POD和SOD活性,在病原菌接种后不同处理时间,T1和T2处理中POD活性呈现先升高后降低的趋势,最高值均出现在接种后72 h,其中,接种72 h后T1-3处理(5.00 μmol·mL-1)POD活性较对照高56.6%,T2-4处理(10.00 μmol·mL-1)比对照高61.1%。T1处理中SOD活性先升高,在72 h达到峰值后降低,T1-3处理(5.00 μmol·mL-1)接种72 h后出现最大值,为376.0 U·g-1 FW;T2处理中SOD活性呈现逐渐升高的特点,T2-4处理(10.00 μmol·mL-1)接种96 h后较对照高85.6%。与对照相比,T1和T2处理叶片CAT活性呈现不一致的变化趋势。与对照相比,T1处理MDA含量较低,整体呈现先升高后降低的趋势,T1-3处理(5.00 μmol·mL-1)48 h MDA含量较对照降低15.8%;T2处理中MDA含量除处理72 h低于对照组,其余均显著高于对照组,T2-1(1.25 μmol·mL-1)处理24 h后MDA含量较对照组升高41.5%。综上所述,纳米银和纳米氧化铁处理对甜瓜白粉病具有一定的防治效果,研究结果为纳米银和纳米氧化铁对甜瓜白粉病防治提供了理论依据。
中图分类号:
董玉昕, 郑植, 王文康, 王志恒, 陈晓峰. 纳米银和纳米氧化铁对甜瓜白粉病防治研究[J]. 中国农业科技导报, 2022, 24(11): 137-147.
Yuxin DONG, Zhi ZHENG, Wenkang WANG, Zhiheng WANG, Xiaofeng CHEN. Effect Trials of Nano-silver and Nano-iron Oxide Against Melon Powdery Mildew[J]. Journal of Agricultural Science and Technology, 2022, 24(11): 137-147.
级别Level | 症状Symptom |
---|---|
0 | 整株无病症 No disease in the whole plant |
1 | 有少量叶片上出现白粉状病斑,病斑面积占叶面积的5%以下 There are a few leaves with white powdery spots on them, and the spots cover less than 5% of the leaf area |
3 | 叶片上有少量病斑,占叶面积的6%~25% There are a few spots on the leaves, accounting for 6% to 25% of the leaf area |
5 | 叶片上产生中等数量的白粉状病斑,占叶面积的26%~50% There are moderate number of whitish powdery spots on the leaves, accounting for 26% to 50% of the leaf area |
7 | 叶片上的白粉病病斑数量较多,占总面积的51%~75% There are more powdery mildew spots on the leaves, accounting for 51% to 75% of the leaf area |
9 | 叶片上白粉病病斑数量很多且粉层较厚,占叶面积的76%~100% The leaves have many powdery mildew spots and a thick layer of powder, accounting for 76% to 100% of the leaf area |
表 1 室内苗期抗病性鉴定病情分级标准
Table 1 Grading criteria for identifying disease resistance of seedlings indoors
级别Level | 症状Symptom |
---|---|
0 | 整株无病症 No disease in the whole plant |
1 | 有少量叶片上出现白粉状病斑,病斑面积占叶面积的5%以下 There are a few leaves with white powdery spots on them, and the spots cover less than 5% of the leaf area |
3 | 叶片上有少量病斑,占叶面积的6%~25% There are a few spots on the leaves, accounting for 6% to 25% of the leaf area |
5 | 叶片上产生中等数量的白粉状病斑,占叶面积的26%~50% There are moderate number of whitish powdery spots on the leaves, accounting for 26% to 50% of the leaf area |
7 | 叶片上的白粉病病斑数量较多,占总面积的51%~75% There are more powdery mildew spots on the leaves, accounting for 51% to 75% of the leaf area |
9 | 叶片上白粉病病斑数量很多且粉层较厚,占叶面积的76%~100% The leaves have many powdery mildew spots and a thick layer of powder, accounting for 76% to 100% of the leaf area |
处理Treatment | 病情指数Disease index | |
---|---|---|
T1 | CK | 5.32 a |
T1-1 | 4.83 b | |
T1-2 | 4.29 c | |
T1-3 | 3.65 d | |
T1-4 | 3.59 d | |
T2 | CK | 5.32 a |
T2-1 | 5.03 a | |
T2-2 | 4.41 b | |
T2-3 | 3.88 c | |
T2-4 | 3.46 d |
表2 纳米银和纳米氧化铁处理后的甜瓜叶片白粉病病情指数
Table 2 Disease index of powdery mildew on melon leaves treated with Nano-silver and Nano-iron oxide
处理Treatment | 病情指数Disease index | |
---|---|---|
T1 | CK | 5.32 a |
T1-1 | 4.83 b | |
T1-2 | 4.29 c | |
T1-3 | 3.65 d | |
T1-4 | 3.59 d | |
T2 | CK | 5.32 a |
T2-1 | 5.03 a | |
T2-2 | 4.41 b | |
T2-3 | 3.88 c | |
T2-4 | 3.46 d |
图 1 不同处理下甜瓜叶片的POD活性注:不同小写字母表示同一时间不同浓度处理间差异在P<0.05水平显著。
Fig. 1 POD activity of melon leaves under different treatmentsNote: Different lowercase letters in same time indicate significant differences between different concentration treatments at P<0.05 level.
图 2 不同处理下甜瓜叶片SOD活性的变化注:不同小写字母表示同一时间不同浓度处理间差异在P<0.05水平显著。
Fig. 2 SOD activity of melon leaves under different treatmentsNote: Different lowercase letters in same time indicate significant differences between different concentration treatments at P<0.05level.
图 3 不同处理下甜瓜叶片CAT活性注:不同小写字母表示同一时间不同浓度处理间差异在P<0.05水平显著。
Fig. 3 CAT activity of melon leaves under different treatmentsNote: Different lowercase letters in same time indicate significant differences between different concentration treatments at P<0.05 level.
图 4 不同处理下甜瓜叶片MDA含量注:不同小写字母表示同一时间不同浓度处理间差异在P<0.05水平显著。
Fig. 4 MDA content of melon leaves under different treatmentsNote: Different lowercase letters in same time indicate significant differences between different concentration treatments at P<0.05level.
1 | 刁倩楠,曹燕燕,蒋雪君,等.白粉病菌对不同甜瓜品种幼苗生理生化指标的影响[J].分子植物育种,2021,19(7):2346-2353. |
DIAO Q N, CAO Y Y, JIANG X J, et al.. Effect of powdery mildew on physiological and biochemical indexes of different melon varieties [J]. Mol. Plant Breeding, 2021, 19(7):2346-2353. | |
2 | 凌悦铭,李寐华,杨永,等.基于BSA-Seq技术的甜瓜抗霜霉病InDel标记开发[J].新疆农业科学,2021,58(12):2265-2273. |
LING Y M, LI M H, YANG Y, et al.. Development of InDel marker for resistance to downy mildew in melon based on BSA resequencing [J]. Xinjiang Agric. Sci.,2021,58(12):2265-2273. | |
3 | 肖欢,冯胜利.露地西甜瓜一年两作高效栽培技术[J].北方园艺,2020(22):161-165. |
XIAO H, FENG S L. High-efficient cultivation techniques of melon with two crops one year in open field [J]. Northern Hortic.,2020(22):161-165. | |
4 | 何晓庆,许利婷,李琥成,等.设施甜瓜白粉病综合防治技术研究[J].粮食科技与经济,2020,45(9):109-110. |
HE X Q, XU L T, LI H C, et al.. Study on integrated control technology of melon powdery mildew in greenhouse [J]. Food Sci. Technol. Econ.,2020,45(9):109-110. | |
5 | 刘长命,杨瑞平,莫言玲,等.外源Spd预处理对甜瓜白粉病抗性及其内源多胺的诱导分析[J].西北植物学报,2016,36(1):85-92. |
LIU C M, YANG R P, MO Y L, et al.. Induction of endogenous polyamine contents and powdery mildew resistance by exogenous spermidine in melon seedlings [J]. Acta Bot. Bor-Occid. Sin.,2016,36(1):85-92. | |
6 | 张伯虎,孟延,贾凯峰,等.拱棚甜瓜白粉病药剂防治试验[J].中国瓜菜,2018,31(11):40-42. |
ZHANG B H, MENG Y, JIA K F, et al.. Experimental study on controlling powdery mildew of greenhouse melon with fungicides [J]. China Cucurbits Veget.,2018,31(11):40-42. | |
7 | 卜元卿,孔源,智勇,等.化学农药对环境的污染及其防控对策建议[J].中国农业科技导报,2014,16(2):19-25. |
BU Y Q, KONG Y, ZHI Y, et al.. Environmental pollution by chemical pesticides and its prevention and control countermeasures [J]. J. Agric. Sci. Technol.,2014,16(2):19-25. | |
8 | 夏维娟,冯晓晶,胡媛,等.纳米银浆低温烧结工艺及应用可靠性[J].宇航材料工艺,2021,51(6):71-76. |
XIA W J, FENG X J, HU Y, et al.. Low temperature sintering process and application reliability of Nano-silver paste [J]. Aerospace Materials Technol.,2021,51(6):71-76. | |
9 | 郭艾英,许晓越,杨晓妮,等.纳米ZnO-Ag复合材料对小麦根腐病菌侵染下小麦幼苗生长的影响[J].麦类作物学报,2020,40(7):857-865. |
GUO A Y, XU X Y, YANG X N, et al.. Effect of ZnO-Ag nanocomposites on the seedlings growth of wheat infected by Bipolaris sorokiniana [J]. J. Triticeae Crops,2020,40(7):857-865. | |
10 | 王丽慧,谭龙,马元鑫,等.纳米氧化亚铜水悬浮液对黄瓜霜霉病的防治效果[J].北方园艺,2018(15):58-61. |
WANG L H, TAN L, MA Y X, et al.. Efficacy of nano Cu2O aqueous suspension to control cucumber downy mildew [J]. Northern Hortic.,2018(15):58-61. | |
11 | CHEN J N, SUN L, CHENG Y, et al.. Graphene oxide-silver nanocomposite: novel agricultural antifungal agent against Fusarium graminearum for crop disease prevention [J]. Acs. Appl. Mater. Interfaces,2016,36(8):24057-24070. |
12 | 黄阔,陈娟妮,丁伟,等.不同纳米材料及施用方式对烟草青枯病的影响[J].植物医生,2018,31(4):45-47. |
HUANG K, CHEN J N, DING W, et al.. Effects of different nano materials and application methods on tobacco bacterial wilt [J]. Plant Doctor,2018,31(4):45-47. | |
13 | SANDHYA M, RAJ S B, AKANKSHA S, et al.. Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat [J/OL]. PLoS One, 2014, 9(5):e97881 [2021-09-08]. . |
14 | CUI H X, YANG G C, JIANG J F, et al.. Biological effects of PAS TiO2sol on disease control and photosynthesisin cucumber ('Cucumis sativus L.) [J]. Aus. J. Crop Sci.,2013,7(1):99-103. |
15 | LU W, YAO K, WANG J, et al.. Ionic liquids-water interfacial preparation of triangular Ag nanoplates and their shape-dependent antibacterial activity [J]. J. Colloid Interface Sci.,2015,437:35-41. |
16 | ZAPATA P A, LARREA M, TAMAYO L,et al.. Polyethylene/silver-nanofiber composites: a material for antibacterial films [J]. Materials Sci Eng., 2016,69:1282-1289. |
17 | TOMINAGA C, SHITOMI K, MIYAJI H, et al.. Antibacterial photocurable acrylic resin coating using a conjugate between silver nanoclusters and alkyl quaternary ammonium [J]. ACS Appl. Nano Materials,2018,1(9):4809-4818. |
18 | ZHANG Y, PAN X, LIAO S, et al.. Quantitative proteomics reveals the mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa biofilms [J]. J. Proteome Res.,2020,19(8):3109-3122. |
19 | GUO Y R, LIU L, ZHAO H, et al.. Inhibitive mechanisms of two silicon compounds on powdery mildew of melon [J]. Agric. Sci., 2005,4(5): 362-367. |
20 | 王虎军,路军,薛华丽,等.纳米氧化锌对甜瓜主要致病菌抑菌活性研究[J].食品工业科技,2016,37(4):356-359, 364. |
WANG H J, LU J, XUE H L, et al.. The inhibitory effects of zinc oxide nanoparticles treatment on the important pathogenic fungi causing postharvest disease in muskmelon [J]. Sci. Technol. Food Ind.,2016,5(4):356-359, 364. | |
21 | 姚薇,曲明星,崔晓慧,等.木霉菌合成银纳米粒子条件的优化及其对甜瓜尖孢镰刀菌抑制作用[J].生物工程学报,2020,36(9):1859-1868. |
YAO W, QU M X, CUI X H, et al.. Optimization of synthesizing silver nanoparticles from Trichoderma strains for inhibition of Fusarium oxysporum [J]. Chin. J. Biotechnol.,2020,36(9):1859-1868. | |
22 | 李旭飞,巫晓丹,孙昊宇,等.抗生素和纳米银对大肠杆菌耐药性的联合效应[J].中国环境科学,2020,40(11):5045-5054. |
LI X F, WU X D, SUN H Y, et al.. Joint effects of antibiotics and silver nanoparticles on resistance of Escherichia coli [J]. China Environ. Sci.,2020,40(11):5045-5054. | |
23 | TYAGI P K, GUPTA S, TYAGI S, et al.. Synthesis of iron nanoparticles from spinach leaf and banana peel aqueous extracts and evaluation of antibacterial potential [J/OL]. J. Nanomaterials,2021,2021(4):4871453[2021-09-08].. |
24 | OBERLEY L W, CLAIR D, AUTOR A P, et al.. Increase in manganese superoxide dismutase activity in the mouse heart after X-irradiation [J]. Archives Biochem. Biophy.,1987,254(1):69-80. |
25 | YOSHIMURA K, MIYAO K, GABER A, et al.. Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol [J]. The Plant J.,2004,37(1):21-33. |
26 | 缪学田.大棚甜瓜、小白菜(青菜)一年四茬高效种植模式[J].中国蔬菜,2019(12):100-103. |
LIAO X T. High efficiency planting mode of melon and Chinese cabbage (green vegetables) in greenhouse for four crops one year [J]. China Veget.,2019(12):100-103. | |
27 | 张若纬,彭冬秀,武云鹏,等.甜瓜白粉病苗期抗病性鉴定方法[J].中国瓜菜,2017,30(2):25-26, 29. |
ZHANG R W, PENG D X, WU Y P, et al.. Resistance identification method of melon powdery mildew at seedling stage [J]. China Cucurbits Veget., 2017, 30(2) :25-26, 29. | |
28 | 陈晓峰,隋好林,马清华,等.霜霉病菌诱导大白菜几丁质酶和葡聚糖酶基因的表达[J].山东农业科学,2015, 47(2):96-99. |
CHEN X F, SUI H L, MA Q H, et al.. Gene expression of chitinase and glucanase in Chinese cabbage induced by Peronospora parasitica [J]. Shandong Agric. Sci.,2015, 47(2):96-99. | |
29 | 莫龙飞,孙建磊,高超,等.山东地区甜瓜白粉病生理小种的鉴定[J].中国瓜菜,2021,34(4):36-40. |
MO L F, SUN J L, GAO C, et al.. Identification of physiological races of melon powdery mildew pathogen in Shandong [J]. China Cucurbits Veget.,2021,34(4):36-40. | |
30 | 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2020:119-261. |
31 | 王禄星,王晓敏,宋建宇,等.宁夏甜瓜白粉病室内苗期抗病性鉴定方法及抗性种质资源筛选[J].中国瓜菜,2020,33(8):11-15. |
WANG L X, WANG X M, SONG J Y, et al.. Screenings of the identification method at seeding stage in indoor and the resistant germplasm resources of muskmelon to powdery mildew in Ningxia [J]. China Cucurbits Veget.,2020,33(8):11-15. | |
32 | 刘璐, 孙蕾, 张志鹏, 等. 外源物质诱导对甜瓜枯萎病抗性和防御酶活性的影响[J]. 北方园艺, 2016(14):122-126. |
LIU L, SUN L, ZHANG Z P, et al..Induction resistance and defense enzyme activity by extraneous factors to Fusarium oxysporum f.sp.melonisin melon [J]. Northern Hortic.,2016(14):122-126. | |
33 | 王荣,刘艳丽,张民,等.纳米银对黑麦草生长特性的影响[J].农业环境科学学报, 2015, 34(4):639-645. |
WANG R, LIU Y L, ZHANG M, et al.. Effects of nano-silver on growth characteristics of perennial ryegrass [J]. J. Agro-Environ. Sci., 2015, 34(4): 639-645. | |
34 | 朱青青, 张晶, 黄亚川, 等. 棚室内甜瓜白粉病药剂筛选试验[J]. 现代农业科技, 2019(22):66,68. |
ZHU Q Q, ZHANG J, HUANG Y C, et al.. Screening test of fungicides for melon powdery mildew in greenhouse [J]. Mod. Agric. Sci. Technol., 2019(22): 66,68. | |
35 | 姚张良,冯明慧,吴嘉维,等.不同药剂对棚室内甜瓜白粉病的防治效果[J].中国植保导刊,2019.39(5):70-71, 83. |
YAO Z L, FENG M H, WU J W, et al.. Control effect of different chemicals on melon powdery mildew in greenhouse [J]. China Plant Prot.,2019,39(5):70-71, 83. | |
36 | IMADA K, SAKAI S, KAJIHARA H, et al.. Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease [J]. Plant Pathol.,2016, 65(4) : 551-560. |
37 | 李琴琴,赵英虎,高莉,等.纳米银对小麦赤霉病菌的抑制[J].生物工程学报,2017,33(4):620-629. |
LI Q Q, ZHAO Y H, GAO L, et al.. Inhibition of Fusarium graminearum by silver nanoparticles [J]. Chin. J. Biotechnol., 2017,33(4):620-629. | |
38 | MORONES J R, ELECHIGUERRA J L, CAMACHO A, et al.. The bactericidal effect of silver nanoparticles [J]. Nanotechnology,2005,16(10):2346-2353. |
39 | ALI M, KIM B, BELFIELD K D, et al.. Inhibition of Phytophthora parasitica and P. capsici by silver nanoparticles synthesized using aqueous extract of artemisia absinthium [J]. Phytopathology,2015,105(9):1183-1190. |
40 | 潘晓勇,杜岩岩,陈伟,等.载银纳米二氧化钛在抗菌塑料中的应用研究进展[J].工程塑料应用,2012,40(11):101-105. |
PAN X Y, DU Y Y, CHEN W, et al.. Applied properties of Ag/TiO2 in antibacterial plastics [J]. Eng. Plastics Appl.,2012,40(11):101-105. | |
41 | 甘林,许文耀,江茂生,等.纳米银对甘蓝黑腐病菌抑制作用的研究[J].江西农业大学学报,2010,32(3): 493-497. |
GAN L, XU W Y, JIANG M S, et al..A study on the inhibitory activities of nano-silver to Xanthomonas.campestris pv.campestris [J]. Acta Agric. Univ. Jiangxiensis, 2010,32(3):493-497. | |
42 | 杨海艳,王福超,王浩华,等.纳米银对烟草花叶病毒的抑制作用及烟草酶活性的影响[J].江苏农业科学,2012,40(2):87-89. |
YANG H Y, WANG F C, WANG H H, et al.. Inhibitory effect of nano silver on tobacco mosaic virus and tobacco enzyme activity [J]. Jiangsu Agric. Sci.,2012,40(2):87-89. | |
43 | HU C W, LI M, CUI Y B, et al..Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida [J]. Soil Biol. Biochem., 2010, 42(4):586-591. |
44 | ASLI S, NEUMANN P M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport [J]. Plant Cell Environ.,2010, 32(5):577-584. |
45 | 李俊丽,邹正康,刘倩,等.不同纳米氧化铁对小麦幼苗生理特性的影响[J].西南农业学报 2019,32(5):1004-1010. |
LI J L, ZOU Z K, LIU Q, et al.. Physiological and biochemical influence of different iron oxide nanoparticles on wheat seedings [J]. Southwest China J. Agric. Sci.,2019,32(5):1004-1010. | |
46 | 赵铭,甘秋良,李俊丽,等.纳米氧化铁对豇豆生长及其抗氧化系统的影响[J].西南农业学报,2017,30(3):547-552. |
ZHAO M, GAN Q L, LI J L, et al.. Effect of nano-iron oxide on growth of cowpea seedlings and relevant antioxidant response [J]. Southwest China J. Agric. Sci.,2017,30(3):547-552. |
[1] | 齐晓晨1§,赵库1§,叶祖鹏1,王婷2,陈波浪1*. 苦豆子绿肥对甜瓜生长及营养特性的影响[J]. 中国农业科技导报, 2018, 20(6): 104-112. |
[2] | 吕宁*,王祺*,宋娟,张一名,周洪友. 甜瓜采后病害生防菌遗传改良及其相关性状初步分析[J]. , 2011, 13(2): 25-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||