中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (12): 120-128.DOI: 10.13304/j.nykjdb.2022.0711
收稿日期:
2022-08-26
接受日期:
2022-09-28
出版日期:
2022-12-15
发布日期:
2023-02-06
通讯作者:
胡炜
作者简介:
孙永华 E-mail:yhsun@ihb.ac.cn;
基金资助:
Received:
2022-08-26
Accepted:
2022-09-28
Online:
2022-12-15
Published:
2023-02-06
Contact:
Wei HU
摘要:
鱼类等水产品作为蓝色食物,被公认为优质的蛋白源,在保障全球食品和营养安全中发挥重要作用。中国是全球最大的水产养殖国家,其成功经验为世界所瞩目。我国在养殖鱼类中建立了选择育种、杂交育种、多倍体育种、性控育种、转基因育种等技术,开展了鱼类基因编辑和全基因组选择育种实践,并在鱼类生殖干细胞和生殖开关等前沿育种技术方面进行了尝试。利用这些技术创制出养殖鱼类新种质,培育出具有优良性状的养殖鱼类新品系和新品种,驱动和支撑着我国水产养殖的高质量发展。系统综述了生物育种技术在鱼类优良种质创制中的开发和应用,并展望了鱼类生物育种技术的发展前景,旨在推动养殖鱼类新品系和新品种培育,支撑我国水产养殖的高质量发展。
中图分类号:
孙永华, 胡炜. 重要养殖鱼类生物育种技术研究[J]. 中国农业科技导报, 2022, 24(12): 120-128.
Yonghua SUN, Wei HU. Development of Biobreeding Techniques in Main Aquaculture Fish Species[J]. Journal of Agricultural Science and Technology, 2022, 24(12): 120-128.
1 | GOLDEN C D, KOEHN J Z, SHEPON A, et al.. Aquatic foods to nourish nations [J]. Nature, 2021, 598(7880): 315-320. |
2 | CRESSEY D. Future Fish [J]. Nature, 2009, 458(7237): 398-400. |
3 | GUI J, TANG Q, LI Z, et al.. Aquaculture in China: Success Stories and Modern Trends [M]. Wiley-Blackwell, 2018:. |
4 | NELSON J S, GRANDE T C, WILSON M V. Fishes of the World [M]. John Wiley & Sons, 2016: 1-3. |
5 | NAKAJIMA T, HUDSON M J, UCHIYAMA J, et al.. Common carp aquaculture in Neolithic China dates back 8,000 years [J]. Nat. Ecol. Evol., 2019, 3(10): 1415-1418. |
6 | 伍献文,钟麟.鲩、青、鲢、鳙的人工繁殖在我国的进展和成就[J].科学通报, 1964, 10: 900-907. |
WU X W, ZHONG L. Progress and achievements of artificial propagation of bighead carp, green carp, silver carp and bighead carp in China [J]. Chin. Sci. Bull., 1964, 10: 900-907. | |
7 | 钟麟.鲢鳙的池塘繁殖[J].科学通报, 1958, 21: 658-659. |
ZHONG L. Pond breeding of silver carp and bighead carp [J]. Chin. Sci. Bull., 1958, 21: 658-659. | |
8 | 朱宁生.青、鲩、鲢、鳙等家鱼催情试验的初步报告[J].水生生物学报, 1955(2): 60-69. |
ZHU N S. Preliminary experiments on induced ovulationof some economical cyprinids [J]. Acta Hydrobiol. Sin., 1955(2): 60-69. | |
9 | 徐康,段巍,肖军,等.鱼类遗传育种中生物学方法的应用及研究进展[J].中国科学: 生命科学, 2014, 44(12): 1272-1288. |
XU K, DUAN W, XIAO J, et al.. Development and application of biological technologies in fish genetic breeding [J]. Sci. Sin. Vitae, 2014, 44(12): 1272-1288. | |
10 | 刘少军.鱼类远缘杂交[M].北京:科学出版社, 2015:1-358. |
LIU S J. Fish Distance Hybridization [M]. Beijing: Science Press, 2015:1-358. | |
11 | 王石,汤陈宸,陶敏,等.鱼类远缘杂交育种技术的建立及应用[J].中国科学:生命科学, 2018, 48(12): 1310-1329. |
WANG S, TANG C C, TAO M, et al.. Establishment and application of distant hybridization technology in fish [J]. Sci. Sin. Vitae, 2018, 48(12): 1310-1329. | |
12 | LIU S J, LUO J, CHAI J, et al.. Genomic incompatibilities in the diploid and tetraploid offspring of the goldfish × common carp cross [J]. Proc. Natl. Acad. Sci. USA, 2016, 113(5): 1327-1332. |
13 | REN L, LI W, QIN Q, et al.. The subgenomes show asymmetric expression of alleles in hybrid lineages of Megalobrama amblycephala × Culter alburnus [J]. Genome Res., 2019, 29(11): 1805-1815. |
14 | 桂建芳,肖武汉,梁绍昌,等.静水压休克诱导水晶彩鲫三倍体和四倍体的细胞学机理初探[J].水生生物学报, 1995, 19(1): 49-55. |
GUI J F, XIAO W H, LIANG S C, et al.. Preliminary study on the cytological mechanism of triploidy and tetraploidy induced by hydrostatic pressure shock in transparent colored crucian carp [J]. Acta Hydrobiol. Sin., 1995, 19(1): 49-55. | |
15 | 陈松林,李文龙,季相山,等.半滑舌鳎三倍体鱼苗的人工诱导与鉴定[J].水产学报, 2011, 35(6): 925-931. |
CHEN S L, LI W L, JI X S, et al.. Induction and identification of artificial triploid fry in Cynoglossus semilaevis [J]. J. Fish China, 2011, 35(6): 925-931. | |
16 | 蒋一珪,梁绍昌,陈本德,等.异源精子在银鲫雌核发育子代中的生物学效应[J].水生生物学报, 1983, 8(1): 1-13. |
JIANG Y G, LIANG S C, CHEN B D, et al.. Biological effect of heterologous sperm on gynogenetic offspring in Carassius auratus gibelio [J]. Acta Hydrobiol. Sin., 1983, 8(1): 1-13. | |
17 | 桂建芳,周莉.多倍体银鲫克隆多样性和双重生殖方式的遗传基础和育种应用[J].中国科学: 生命科学, 2010, 40(2): 97-103. |
GUI J F, ZHOU L. Genetic basis and breeding application on clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio [J]. Sci. Sin. Vitae, 2010, 40(2): 97-103. | |
18 | WANG Y, LI X Y, XU W J, et al.. Comparative genome anatomy reveals evolutionary insights into a unique amphitriploid fish [J]. Nat. Ecol. Evol., 2022, 6:1354-1366. |
19 | 张晓娟,周莉,桂建芳.遗传育种生物技术创新与水产养殖绿色发展[J].中国科学:生命科学, 2019, 49(1): 1409-1429. |
ZHANG X J, ZHOU L, GUI J F. Biotechnological innovation in genetic breeding and sustainable green development in Chinese aquaculture [J]. Sci. Sin. Vitae, 2019, 49(1):1409-1429. | |
20 | 陈戟,胡炜,朱作言.鱼类生殖发育调控研究进展[J].科学通报, 2013, 58(2): 103-114. |
CHEN J, HU W, ZHU Z Y. Progress in studies of fish reproductive development regulation [J]. Chin. Sci. Bull., 2013, 58(2): 103-114. | |
21 | 梅洁,桂建芳.鱼类性别异形和性别决定的遗传基础及其生物技术操控[J].中国科学:生命科学, 2014, 44(12): 1198-1212. |
MEI J, GUI J F. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish [J]. Sci. Sin. Vitae, 2014, 44(12): 1198-1212. | |
22 | CHEN J, ZHU Z, HU W. Progress in research on fish sex determining genes [J/OL]. Water Biol. Security, 2022, 1(1): 100008 [2022-09-22]. . |
23 | 陶彬彬,胡炜.鱼类性别控制育种研究进展[J].中国农业科技导报,2022, 24(2): 1-10. |
TAO B B, HU W. Research progress on sex control breeding of fish [J]. J. Agric. Sci. Technol., 2022, 24(2): 1-10. | |
24 | ZHU Z Y, LI G L, HE L, et al.. Novel gene transfer into the fertilized eggs of gold fish (Carassius auratus L. 1758) [J]. J. Appl. Ichthyol., 1985, 1:31-34. |
25 | 朱作言,许克圣,谢岳峰,等.转基因鱼模型的建立[J].中国科学:B 辑,1989(2): 147-155. |
ZHU Z Y, XU K S, XIE Y F, et al.. Establishment of transgenic fish model [J]. Sci. Sin. Chim. B, 1989(2): 147-155. | |
26 | 叶鼎,朱作言,孙永华.鱼类基因组操作与定向育种[J].中国科学:生命科学, 2014, 44(12): 1253-1261. |
YE D, ZHU Z Y, SUN Y H, et al.. Fish genome manipulation and directional breeding [J]. Sci. Sin. Vitae, 2014, 44(12): 1253-1261. | |
27 | 胡炜,朱作言.美国转基因大西洋鲑产业化对我国的启示[J].中国工程科学, 2016, 18(3): 105-109. |
HU W, ZHU Z Y. Enlighenments for China from the industrialization of the transclenic Atlantic salmon in the US [J]. Strategic Study CAE, 2016, 18(3): 105-109. | |
28 | PANG S C, WANG H P, ZHU Z Y, et al.. Transcriptional activity and DNA methylation dynamics of the Gal4/UAS system in zebrafish [J]. Mar. Biotechnol., 2015, 17(5): 593-603. |
29 | ZHANG X, PANG S, LIU C, et al.. A novel dietary source of EPA and DHA: metabolic engineering of an important freshwater species-common carp by fat1-transgenesis [J]. Mar. Biotechnol., 2019, 21(2): 171-185. |
30 | REES H A, LIU D R. Base editing: precision chemistry on the genome and transcriptome of living cells [J]. Nat. Rev. Genet., 2018, 19(12): 770-788. |
31 | ANZALONE A V, RANDOLPH P B, DAVIS J R, et al.. Search-and-replace genome editing without double-strand breaks or donor DNA [J]. Nature, 2019, 576(7785): 149-157. |
32 | SUN Y H, ZHANG B, LUO L F, et al.. Systematic genome editing of the genes on zebrafish chromosome 1 by CRISPR/Cas9 [J]. Genome Res., 2020, 30(1): 118-126. |
33 | DONG Z J, GE J C, LI K, et al.. Heritable targeted inactivation of Myostatin gene in yellow catfish (Pelteobagrus fulvidraco) using engineered zinc finger nucleases [J/OL]. PLoS One, 2011, 6(12): e28897 [2022-09-22]. . |
34 | YANO A, GUYOMARD R, NICOL B, et al.. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss [J]. Curr. Biol., 2012, 22(15): 1423-1428. |
35 | LI M H, YANG H H, LI M R, et al.. Antagonistic roles of Dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs [J]. Endocrinology, 2013, 154(12): 4814-4825. |
36 | QIN Z K, LI Y, SU B F, et al.. Editing of the luteinizing hormone gene to sterilize channel catfish, Ictalurus punctatus, using a modified zinc finger nuclease technology with electroporation [J]. Mar. Biotechnol., 2016, 18(2): 255-263. |
37 | FENG K, LUO H R, LI Y M, et al.. High efficient gene targeting in rice field eel Monopterus albus by transcription activator-like effector nucleases [J]. Sci. Bull., 2017, 62(3): 162-164. |
38 | ZHONG Z, NIU P, WANG M, et al.. Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp [J/OL]. Sci. Rep., 2016, 6: 22953 [2022-09-22]. . |
39 | CUI Z K, LIU Y, WANG W W, et al.. Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (Cynoglossus semilaevis) [J/OL]. Sci. Rep., 2017, 7: 42213 [2022-09-22]. . |
40 | LIU Q F, QI Y H, LIANG Q L, et al.. Targeted disruption of tyrosinase causes melanin reduction in Carassius auratus cuvieri and its hybrid progeny [J]. Sci. China Life Sci., 2019, 62(9): 1194-1202. |
41 | CHEN J, WANG W, TIAN Z H, et al.. Efficient gene transfer and gene editing in sterlet (Acipenser ruthenus) [J/OL]. Front. Genet., 2018, 9:117 [2022-09-22]. . |
42 | TAO B, TAN J, CHEN L, et al.. CRISPR/Cas9 system-based myostatin-targeted disruption promotes somatic growth and adipogenesis in loach, Misgurnus anguillicaudatus [J/OL]. Aquaculture, 2021, 544: 737097 [2022-09-22]. . |
43 | NIE C H, WAN S M, CHEN Y L, et al.. Single-cell transcriptomes and runx2b -/- mutants reveal the genetic signatures of intermuscular bone formation in zebrafish [J/OL]. Natl. Sci. Rev., 2022, 9: nwac152 [2022-09-22]. . |
44 | XU H, TONG G, YAN T, et al.. Transcriptomic analysis provides insights to reveal the bmp6 function related to the development of intermuscular bones in zebrafish [J/OL]. Front. Cell Dev. Biol., 2022, 10: 821471 [2022-09-22]. . |
45 | STAR B, NEDERBRAGT A J, JENTOFT S, et al.. The genome sequence of Atlantic cod reveals a unique immune system [J]. Nature, 2011, 477(7363): 207-210. |
46 | CHEN S L, ZHANG G J, SHAO C W, et al.. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle [J]. Nat. Genet., 2014, 46(3): 253-260. |
47 | BERTHELOT C, BRUNET F, CHALOPIN D, et al.. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates [J/OL]. Nat. Commun., 2014, 5: 3657 [2022-09-22]. . |
48 | WU C W, ZHANG D, KAN M Y, et al.. The draft genome of the large yellow croaker reveals well-developed innate immunity [J]. Nat. Commun., 2014, 5: 6227 [2022-09-22]. . |
49 | XU P, ZHANG X, WANG X, et al.. Genome sequence and genetic diversity of the common carp, Cyprinus carpio [J]. Nat. Genet., 2014, 46(11): 1212-1219. |
50 | WANG Y P, LU Y, ZHANG Y, et al.. The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation [J]. Nat. Genet., 2015, 47(8): 625-631. |
51 | SHAO C W, BAO B L, XIE Z Y, et al.. The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry [J]. Nat. Genet., 2017, 49(1): 119-124. |
52 | DU K, STOCK M, KNEITZ S, et al.. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization [J]. Nat. Ecol. Evol., 2020, 4(6): 841-852. |
53 | HOUSTON R D, BEAN T P, MACQUEEN D J, et al.. Harnessing genomics to fast-track genetic improvement in aquaculture [J]. Nat. Rev. Genet., 2020, 21(7): 389-409. |
54 | 石米娟,张婉婷,程莹寅,等.基于全基因组分析技术的鱼类育种技术原理与应用 [J]. 中国农业科技导报, 2022, 24(2): 33-41. |
SHI M J, ZHANG W T, CHENG Y Y, et al.. Fish breeding technology based on whole genome analysis and its application [J]. J. Agric. Sci. Technol., 2022, 24(2): 33-41. | |
55 | 宋海亮,胡红霞.基因组选择及其在水产动物育种中的研究进展[J].农业生物技术学报, 2022, 30(2): 379-392. |
SONG H L, HU H X. Genomic selection and its research progress in breeding of aquaculture species [J]. Chin. J. Agric. Biotechol., 2022, 30(2): 379-392. | |
56 | CIRUNA B, WEIDINGER G, KNAUT H, et al.. Production of maternal-zygotic mutant zebrafish by germ-line replacement [J]. Proc. Natl. Acad. Sci. USA, 2002, 99(23): 14919-14924. |
57 | TAKEUCHI Y, YOSHIZAKI G, TAKEUCHI T. Surrogate broodstock produces salmonids [J]. Nature, 2004, 430(7000): 629-630. |
58 | JIN Y H, ROBLEDO D, HICKEY J M, et al.. Surrogate broodstock to enhance biotechnology research and applications in aquaculture [J]. Biotechnol. Adv., 2021, 49: 107756 [2022-09-22]. . |
59 | ZHANG F H, LI X M, HE M D, et al.. Efficient generation of zebrafish maternal-zygotic mutants through transplantation of ectopically induced and Cas9/gRNA targeted primordial germ cells [J]. J. Genet. Genomics, 2020, 47(1): 37-47. |
60 | ZHANG F H, HAO Y K, LI X M, et al.. Surrogate production of genome-edited sperm from a different subfamily by spermatogonial stem cell transplantation [J]. Sci. China Life Sci., 2022, 65(5): 969-987. |
61 | GUI J F, ZHOU L, LI X Y. Rethinking fish biology and biotechnologies in the challenge era for burgeoning genome resources and strengthening food security [J/OL]. Water Biol. Security, 2022, 1(1): 100002 [2022-09-22]. . |
62 | 胡炜,汪亚平,朱作言.转基因鱼生态风险评价及其对策研究进展[J].中国科学: 生命科学, 2007, 37(4): 377-381. |
HU W, WANG Y P, ZHU Z Y. Progress in the evaluation of transgenic fish for possible ecological risk and its containment strategies [J]. Sci. Sin. Vitae, 2007, 37(4): 377-381. | |
63 | ZHANG Y, CHEN J, CUI X, et al.. A controllable on-off strategy for the reproductive containment of fish [J/OL]. Sci. Rep., 2015, 5: 7614 [2022-09-22]. . |
64 | FAN G Y, SONG Y, YANG L D, et al.. Initial data release and announcement of the 10,000 Fish Genomes Project (Fish10K) [J/OL]. Gigascience, 2020, 9(8): giaa080 [2022-09-22]. . |
65 | OKUTSU T, SHIKINA S, SAKAMOTO T, et al.. Successful production of functional Y eggs derived from spermatogonia transplanted into female recipients and subsequent production of YY supermales in rainbow trout, Oncorhynchus mykiss [J]. Aquaculture, 2015, 446: 298-302. |
66 | WANG Y Q, YE D, ZHANG F H, et al.. Cyp 11a2 is essential for oocyte development and spermatogonial stem cell differentiation in zebrafish [J/OL]. Endocrinology, 2022, 163(2):bqab258 [2022-09-22]. . |
67 | LI X M, ZHANG F H, WU N, et al.. A critical role of foxp3a-positive regulatory T cells in maintaining immune homeostasis in zebrafish testis development [J]. J. Genet. Genomics, 2020, 47(9): 547-561. |
[1] | 阿布都克尤木·阿不都热孜克, 古丽米拉·艾克拜尔, 徐麟, 颜国荣, 刘宁, 赵连佳, 邓超宏, 帕丽旦·艾海提, 王威. 我国农业植物新品种保护发展回顾、现状分析及发展建议[J]. 中国农业科技导报, 2022, 24(9): 1-11. |
[2] | 王帅, 宋伟, 王荣焕, 赵久然. 我国玉米生物学研究进展[J]. 中国农业科技导报, 2022, 24(7): 23-31. |
[3] | 崔遵康, 李丹阳, 徐小婷, 朱俊峰, 武拉平, 左文革. 粮食作物生物育种技术全球创新布局与竞争态势研究——基于核心专利数据挖掘的视角[J]. 中国农业科技导报, 2022, 24(5): 1-14. |
[4] | 易媛, 张会云, 刘立伟, 王静, 朱雪成, 赵娜, 冯国华. 活性腐殖酸缓释肥替代尿素对徐麦新品种产量和群体质量的影响[J]. 中国农业科技导报, 2022, 24(4): 144-153. |
[5] | 陶彬彬, 胡炜. 鱼类性别控制育种研究进展[J]. 中国农业科技导报, 2022, 24(2): 1-10. |
[6] | 常亚青|田燚|张伟杰. 我国海洋水产生物遗传育种技术进展[J]. , 2013, 15(6): 8-15. |
[7] | 王立平1,刘平1,吕波1,张新明1,周建仁2. 我国农林植物新品种保护现状与展望[J]. , 2010, 12(6): 62-67. |
[8] | 张守攻1,齐力旺1,尹刚强2. 速生高抗林木新品种高效培育技术体系与产业化[J]. , 2010, 12(3): 1-7. |
[9] | 耿晓君1,周波2. 水稻新品种异地生态鉴定试验丰产性、稳产性研究[J]. , 2009, 11(S2): 37-42. |
[10] | 易代勇,周正邦,朱文华,李向勇,王代谷. 贵引07-15等果蔗新品种(系)高产、稳产及适应性的分析评价[J]. , 2009, 11(S2): 74-77. |
[11] | 景东林. 高产、稳产小麦新品种——邢麦6号[J]. , 2009, 11(S2): 110-111. |
[12] | 杜运科,任雅琴,陈三乐,孙军仓,王忠景. 国审小麦新品种秦农142选育研究[J]. , 2009, 11(S2): 112-115. |
[13] | 柳迅生,谢居林,杨天英,覃志顺,王涛,王永华,张洪龙,丁丽. 优质高产大豆新品种安豆5号的选育与应用[J]. , 2009, 11(S2): 130-132. |
[14] | 聂智星,杭晓宁,罗佳,王苗,王云龙,吴小园,赵团结. 以农民为中心的参与式植物育种研究进展[J]. , 2008, 10(6): 48-55. |
[15] | 崔艳,郭德忠. 农业转基因植物的法律监管与保护[J]. , 2008, 10(2): 51-55. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 260
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1111
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||