中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (3): 198-211.DOI: 10.13304/j.nykjdb.2022.0757
• 生物制造 资源生态 • 上一篇
安柯萌1,2(), 赵立欣2, 姚宗路2, 于佳动2(
), 李再兴1, 黄亚丽1, 梁依2, 申瑞霞2
收稿日期:
2022-09-07
接受日期:
2022-10-31
出版日期:
2023-03-15
发布日期:
2023-05-22
通讯作者:
于佳动
作者简介:
安柯萌E-mail: akm3012@163.com;
基金资助:
Kemeng AN1,2(), Lixin ZHAO2, Zonglu YAO2, Jiadong YU2(
), Zaixing LI1, Yali HUANG1, Yi LIANG2, Ruixia SHEN2
Received:
2022-09-07
Accepted:
2022-10-31
Online:
2023-03-15
Published:
2023-05-22
Contact:
Jiadong YU
摘要:
秸秆是我国主要农业废弃物之一,经资源化处理可生产沼气、有机肥、饲料等,但产品附加值不高。近年来,一种基于碳链延长(chain elongation,CE)的厌氧发酵技术可生产中链脂肪酸(medium-chain fatty acids,MCFAs),显著提高了产品附加值,为秸秆综合利用提供了新思路。秸秆通过生物和热化学转化途径为CE合成MCFAs提供适宜底物,通过工艺调控实现MCFAs定向生产,目前基于生物和热化学转化过程发酵液中的己酸含量约10 和2 g·L-1·d-1,同步提取可达到57.4 g·L-1·d-1。以秸秆高效转化合成MCFAs为视角,分析了其典型转化路径及功能微生物代谢特征,总结了电子供体和电子受体调控特性、影响CE效率的重要因素和强化手段,归纳了可行性应用工艺,并对应用及提高秸秆转化产品附加值提出建议,为实现秸秆高值利用提供技术支撑。
中图分类号:
安柯萌, 赵立欣, 姚宗路, 于佳动, 李再兴, 黄亚丽, 梁依, 申瑞霞. 秸秆高值利用合成中链脂肪酸研究进展[J]. 中国农业科技导报, 2023, 25(3): 198-211.
Kemeng AN, Lixin ZHAO, Zonglu YAO, Jiadong YU, Zaixing LI, Yali HUANG, Yi LIANG, Ruixia SHEN. Research Progress of High-value Utilization of Straw to Synthesize Medium-chain Fatty Acids[J]. Journal of Agricultural Science and Technology, 2023, 25(3): 198-211.
阶段 Stage | 底物 Substrate | 主要微生物 Main microorganism | 温度Temperature/℃ | pH | 产物 Product | 参考文献 Reference |
---|---|---|---|---|---|---|
水解酸化阶段 Hydrolysis acidification stage | 玉米秸秆和牛粪Corn straw and cow dung | Bacillus,Clostridium | 50±1 | — | 乙酸和丁酸 Acetic acid and butyric acid | [ |
稻草 Rice straw | Lactobacillus plantarum, Pediococcus pentosaceus, L. buchneri | 37 | — | 乳酸和乙酸 Lactic acid and acetic acid | [ | |
小麦秸秆 Wheat straw | L. sanfranciscensis MW15,L. delbrueckii subsp. bulgaricus MI,L. delbrueckii subsp. bulgaricus DSM 20081 | 25 | 5.45~4.69 | 乳酸 Lactic acid | [ | |
玉米青贮 Maize silage | L-period, Ruminococcus, Clostridium, Synergistaceae, Firmicutes, Pelotomaculum | 37 | 4.2~5.7 | 乳酸、丙酸、正丁酸和正己酸 Lactic acid, propionic acid, n-butyrate, n-caproate | [ | |
合成气阶段 Syngas stage | CO、H2、CO2 | Clostridium ljungdahlii | 37 | 6.0 | 乙醇、乙酸 Ethanol, acetic acid | [ |
CO、H2、CO2 | Clostridium carboxidivorans | 37 | 5.2 | 乙醇、乙酸、丁醇Ethanol, acetic acid, butanol | [ |
表1 秸秆转化为MCFAs微生物工艺研究进展
Table 1 Research progress on microbial technology of straw conversion to MCFAs
阶段 Stage | 底物 Substrate | 主要微生物 Main microorganism | 温度Temperature/℃ | pH | 产物 Product | 参考文献 Reference |
---|---|---|---|---|---|---|
水解酸化阶段 Hydrolysis acidification stage | 玉米秸秆和牛粪Corn straw and cow dung | Bacillus,Clostridium | 50±1 | — | 乙酸和丁酸 Acetic acid and butyric acid | [ |
稻草 Rice straw | Lactobacillus plantarum, Pediococcus pentosaceus, L. buchneri | 37 | — | 乳酸和乙酸 Lactic acid and acetic acid | [ | |
小麦秸秆 Wheat straw | L. sanfranciscensis MW15,L. delbrueckii subsp. bulgaricus MI,L. delbrueckii subsp. bulgaricus DSM 20081 | 25 | 5.45~4.69 | 乳酸 Lactic acid | [ | |
玉米青贮 Maize silage | L-period, Ruminococcus, Clostridium, Synergistaceae, Firmicutes, Pelotomaculum | 37 | 4.2~5.7 | 乳酸、丙酸、正丁酸和正己酸 Lactic acid, propionic acid, n-butyrate, n-caproate | [ | |
合成气阶段 Syngas stage | CO、H2、CO2 | Clostridium ljungdahlii | 37 | 6.0 | 乙醇、乙酸 Ethanol, acetic acid | [ |
CO、H2、CO2 | Clostridium carboxidivorans | 37 | 5.2 | 乙醇、乙酸、丁醇Ethanol, acetic acid, butanol | [ |
阶段 Stage | 底物 Substrate | 主要微生物 Main microorganism | 温度Temperature/℃ | pH | 产物 Product | 参考文献 Reference |
---|---|---|---|---|---|---|
合成气阶段 Syngas stage | 4% H2,18% Ar, 78% CO | Clostridium aceticum | 30 | 8.5 | 乙酸 Acetic acid | [ |
H2、CO2 | L-period,Ruminococcus,Clostridium,Synergistaceae,Firmicutes,Pelotomaculum | 37 | — | 乳酸、丙酸、正丁酸Lactic acid, propionic acid, n-butyrate | [ | |
碳链延长阶段 CE stage | 乙酸和丁酸Acetic acid and butyric acid | Clostridium kluyveri | 37 | 5.5~5.8 | 己酸 Caproic acid | [ |
乳酸 Lactic acid | Ruminococcaceae bacterium CPB6 | 37 | 6.8 | 己酸 Caproic acid | [ | |
乙酸乙酯、乙醇、CO、H2和CO2 Ethyl acetate, ethanol,CO, H2 and CO2 | Clostridium autoethanogenum, Clostridium kluyveri | 37 | 6.0 | 丁酸盐、己酸盐Butyrate, caproate | [ | |
乙酸和丁酸 Acetic acid and butyric acid | Clostridium kluyveri,Azospira oryzae,Uncultured Rhodocyclaceae,Clostridiaceae bacterium FH052,Propionibacterium acidipropionici | — | 6.0 | 己酸 Caproic acid | [ | |
CO、H2、CO2 | Clostridium ljungdahlii PETC,Clostridium kluyveri DSM555 | 37 | 6.0 | 己酸 Caproic acid | [ | |
CO、H2 | Clostridium ljungdahlii,Clostridium autoethanogenum,Clostridium kluyveri | 37 | 6.2 | 己酸 Caproic acid | [ |
表1 秸秆转化为MCFAs微生物工艺研究进展 (续表Continued)
Table 1 Research progress on microbial technology of straw conversion to MCFAs
阶段 Stage | 底物 Substrate | 主要微生物 Main microorganism | 温度Temperature/℃ | pH | 产物 Product | 参考文献 Reference |
---|---|---|---|---|---|---|
合成气阶段 Syngas stage | 4% H2,18% Ar, 78% CO | Clostridium aceticum | 30 | 8.5 | 乙酸 Acetic acid | [ |
H2、CO2 | L-period,Ruminococcus,Clostridium,Synergistaceae,Firmicutes,Pelotomaculum | 37 | — | 乳酸、丙酸、正丁酸Lactic acid, propionic acid, n-butyrate | [ | |
碳链延长阶段 CE stage | 乙酸和丁酸Acetic acid and butyric acid | Clostridium kluyveri | 37 | 5.5~5.8 | 己酸 Caproic acid | [ |
乳酸 Lactic acid | Ruminococcaceae bacterium CPB6 | 37 | 6.8 | 己酸 Caproic acid | [ | |
乙酸乙酯、乙醇、CO、H2和CO2 Ethyl acetate, ethanol,CO, H2 and CO2 | Clostridium autoethanogenum, Clostridium kluyveri | 37 | 6.0 | 丁酸盐、己酸盐Butyrate, caproate | [ | |
乙酸和丁酸 Acetic acid and butyric acid | Clostridium kluyveri,Azospira oryzae,Uncultured Rhodocyclaceae,Clostridiaceae bacterium FH052,Propionibacterium acidipropionici | — | 6.0 | 己酸 Caproic acid | [ | |
CO、H2、CO2 | Clostridium ljungdahlii PETC,Clostridium kluyveri DSM555 | 37 | 6.0 | 己酸 Caproic acid | [ | |
CO、H2 | Clostridium ljungdahlii,Clostridium autoethanogenum,Clostridium kluyveri | 37 | 6.2 | 己酸 Caproic acid | [ |
项目 Item | 原料 Raw material | 接种物 Inoculum | 温度 Temperature/℃ | pH | 电子供体 Electronic donor | 电子受体 Electron acceptor | 参考文献 Reference | |
---|---|---|---|---|---|---|---|---|
水解酸化生成 电子供体和 电子受体 Electron donor and electron acceptor generated by hydrolysis acidification | 玉米秸秆 Corn straw | 厌氧污泥 Anaerobic sludge | 45±1 | 4.9 | 乙醇0.866 4 g·L-1 Ethanol 0.866 4 g·L-1 | 乙酸8.030 4 g·L-1、丙酸0.444 0 g·L-1、丁酸1.421 1 g·L-1、戊酸0.037 4 g·L-1 Acetic acid 8.030 4 g·L-1, propionic acid 0.444 g·L-1, butyric acid 1.421 1 g·L-1, valproic acid 0.037 4 g·L-1 | [ | |
玉米秸秆 Corn straw | 米根霉Rhizopus oryzae | 37 | 7.0 | 乳酸0.081 6 g·L-1 Lactic acid 0.081 6 g·L-1 | — | [ | ||
小麦秸秆 Wheat straw | L. sanfrancisc-ensis MW15 | 25 | 5.5~4.7 | 乳酸101.8 g·kg-1原料 Lactic acid 101.8 g·kg-1 raw material | — | [ | ||
玉米秸秆 Corn straw | 猪粪 Pig manure | 35±1 | 5.4~7.0 | — | 乙酸0.68 g·L-1、 丙酸小于0.3 g·L-1 Acetic acid 0.68 g·L-1, propionic acid <0.3 g·L-1 | [ | ||
稻草 Rice straw | 猪粪 Pig manure | 35 | 7.2~7.4 | — | 乙酸12.22 g·L-1、 丙酸0.848 g·L-1、 丁酸2.206 g·L-1 Acetic acid 12.22g·L-1, propionic acid 0.848 g·L-1, butyric acid 2.206 g·L-1 | [ | ||
玉米秸秆青贮饲料Corn straw silage | 厌氧颗粒污泥Anaerobic granular sludge | 38±1 | 7.0 | — | 乙酸和丙酸为主 挥发性脂肪酸含量 达到 19.34 g·L-1 Volatile fatty acid content of acetic acid and propionic acid was 19.34 g·L-1 | [ | ||
热解气生成 电子供体和 电子受体 Electron donor and electron acceptor generated by pyrolytic gas | 60% CO,35% H2,5% CO2 | Clostridium ljungdahlii, Clostridium kluyveri | 35 | 6.0 | 乙醇 65.5 mmol C·L-1·d-1 Ethanol 65.5 mmol C·L-1·d-1 | 乙酸431 mmol C·L-1·d-1 Acetic acid 431 mmol C·L-1·d-1 | [ | |
55% CO, 20% H2, 15% Ar,10% CO2 | Clostridium ljungdahlii | 37 | — | 乙醇 11.0~12.0 g·L-1 Ethanol 11.0~12.0 g·L-1 | 乙酸 28.0 g·L-1 Acetic acid 28.0 g·L-1 | [ | ||
CO, H2 | 复合菌群Mixed flora | 35±1 | 6.0±0.2 | — | 乙酸7.4 g·L-1、丁酸1.8 g·L-1 Acetic acid 7.4 g·L-1, butyric acid 1.8 g·L-1 | [ | ||
CO, CO2, CH4,H2 | Clostridium ljungdahlii | 121 | 9.0 | 乙醇48.0 g·L-1 Ethanol 48.0 g·L-1 | 乙酸3.0 g·L-1 Acetic acid 3.0 g·L-1 | [ |
表2 生物转化和热化学转化为电子供体和电子受体的研究进展
Table 2 Advances in bioconversion and thermochemical conversion to electron donor and electron acceptor
项目 Item | 原料 Raw material | 接种物 Inoculum | 温度 Temperature/℃ | pH | 电子供体 Electronic donor | 电子受体 Electron acceptor | 参考文献 Reference | |
---|---|---|---|---|---|---|---|---|
水解酸化生成 电子供体和 电子受体 Electron donor and electron acceptor generated by hydrolysis acidification | 玉米秸秆 Corn straw | 厌氧污泥 Anaerobic sludge | 45±1 | 4.9 | 乙醇0.866 4 g·L-1 Ethanol 0.866 4 g·L-1 | 乙酸8.030 4 g·L-1、丙酸0.444 0 g·L-1、丁酸1.421 1 g·L-1、戊酸0.037 4 g·L-1 Acetic acid 8.030 4 g·L-1, propionic acid 0.444 g·L-1, butyric acid 1.421 1 g·L-1, valproic acid 0.037 4 g·L-1 | [ | |
玉米秸秆 Corn straw | 米根霉Rhizopus oryzae | 37 | 7.0 | 乳酸0.081 6 g·L-1 Lactic acid 0.081 6 g·L-1 | — | [ | ||
小麦秸秆 Wheat straw | L. sanfrancisc-ensis MW15 | 25 | 5.5~4.7 | 乳酸101.8 g·kg-1原料 Lactic acid 101.8 g·kg-1 raw material | — | [ | ||
玉米秸秆 Corn straw | 猪粪 Pig manure | 35±1 | 5.4~7.0 | — | 乙酸0.68 g·L-1、 丙酸小于0.3 g·L-1 Acetic acid 0.68 g·L-1, propionic acid <0.3 g·L-1 | [ | ||
稻草 Rice straw | 猪粪 Pig manure | 35 | 7.2~7.4 | — | 乙酸12.22 g·L-1、 丙酸0.848 g·L-1、 丁酸2.206 g·L-1 Acetic acid 12.22g·L-1, propionic acid 0.848 g·L-1, butyric acid 2.206 g·L-1 | [ | ||
玉米秸秆青贮饲料Corn straw silage | 厌氧颗粒污泥Anaerobic granular sludge | 38±1 | 7.0 | — | 乙酸和丙酸为主 挥发性脂肪酸含量 达到 19.34 g·L-1 Volatile fatty acid content of acetic acid and propionic acid was 19.34 g·L-1 | [ | ||
热解气生成 电子供体和 电子受体 Electron donor and electron acceptor generated by pyrolytic gas | 60% CO,35% H2,5% CO2 | Clostridium ljungdahlii, Clostridium kluyveri | 35 | 6.0 | 乙醇 65.5 mmol C·L-1·d-1 Ethanol 65.5 mmol C·L-1·d-1 | 乙酸431 mmol C·L-1·d-1 Acetic acid 431 mmol C·L-1·d-1 | [ | |
55% CO, 20% H2, 15% Ar,10% CO2 | Clostridium ljungdahlii | 37 | — | 乙醇 11.0~12.0 g·L-1 Ethanol 11.0~12.0 g·L-1 | 乙酸 28.0 g·L-1 Acetic acid 28.0 g·L-1 | [ | ||
CO, H2 | 复合菌群Mixed flora | 35±1 | 6.0±0.2 | — | 乙酸7.4 g·L-1、丁酸1.8 g·L-1 Acetic acid 7.4 g·L-1, butyric acid 1.8 g·L-1 | [ | ||
CO, CO2, CH4,H2 | Clostridium ljungdahlii | 121 | 9.0 | 乙醇48.0 g·L-1 Ethanol 48.0 g·L-1 | 乙酸3.0 g·L-1 Acetic acid 3.0 g·L-1 | [ |
底物 Substrate | 接种物 Inoculum | 调控因素 Regulatory factor | 控制条件 Control condition | 目标产物 Target product | 参考文献Reference | |||
---|---|---|---|---|---|---|---|---|
乙酸、乙醇Acetic acid, ethanol | 厌氧污泥 Anaerobic sludge | 乙醇/乙酸摩尔比(300 mmol总碳)从1∶2上升至3∶1 Molar ratio of ethanol/acetic acid (300 mmol total carbon) increased from 1∶2 to 3∶1 | pH 6.0~7.0, (30±1)℃ | 己酸从0.498 g·L-1提升至3.033 g·L-1 Caproic acid increased from 0.498 g·L-1 to 3.033 g·L-1 | [ | |||
厌氧污泥发酵液Anaerobic sludge fermentation liquor | Clostridium kluyveri | 乙醇/SCFAs(乙酸、丙酸、丁酸、戊酸)摩尔比从1∶2上升至 2∶1 Molar ratio of ethanol/SCFAs (acetic acid, propionic acid, butyric acid, valeric acid) increased from 1∶2 to 2∶1 | pH 11, 37 ℃ | 己酸从2.04 g·L-1提高至 4.49 g·L-1Caproic acid increased from 2.04 g·L-1 to 4.49 g·L-1 | [ | |||
玉米秸秆、乙醇 Corn straw,ethanol | 厌氧消化处理厂污泥Anaerobic digestion of sludge | pH 从5.6调至7.0 Adjusted pH from 5.6 to 7.0 | 37 ℃ | 己酸从1.88 g·L-1升高 到11.8 g·L-1,提高84.1% Caproic acid increased from 1.88 g·L-1 to 11.8 g·L-1,by 84.1% | [ | |||
青贮秸秆 Corn stalk silage | 沼气厂发酵液Fermentation liquor of biogas plant | pH 4.5~5.0 | 38 ℃ | 己酸最大浓度 (8.1 ±2.0) g·L-1 Maximum concentration of caproic acid (8.1 ±2.0) g·L-1 | [ | |||
青贮秸秆 Corn stalk silage | 厌氧污泥 Anaerobic sludge | 调控初始pH在4.500~5.011,发酵15 d后保持在7.5左右 Initial pH was controlled from 4.500 to 5.011, and kept at about 7.5 after 15 d | 35 ℃ | 己酸少量 Small amount of caproic acid | [ | |||
高粱秸秆 Sorghum straw | 海洋沉积物 Marine sediments | 温度从55 ℃降至40 ℃ Regulate the temperature from 55 ℃ to 40 ℃ | — | 己酸提高至2.98 g·L-1 Caproic acid increased to 2.98 g·L-1 | [ | |||
青贮秸秆 Corn stalk silage | 猪粪 Pig manure | 0~30 d温度控制在(30±1)℃, 31~90 d调控至(50±1)℃ Temperature was controlled at (30 ± 1)℃ for 0 ~ 30 d and (50 ± 1)℃ for 31 ~ 90 d | pH 6.0 有机负荷2.5 gVS· g-1·L-1 Organic load2.5 gVS· g-1·L-1 | 己酸增加了3.3倍,最大浓度6.0 g COD·L-1;辛酸增加了 2.2 倍 Caproic acid increased by 3.3 times, and the maximum concentration was 6.0 g COD·L-1; caprylic acid increased by 2.2 times | [ | |||
甘蔗酒糟 Sugarcane lees | 颗粒污泥 Granular sludge | HRT从24 h降到1 h HRT reduced from 24 h to 1 h | pH 4.4~4.8 30 ℃ | 丙酸、乙酸、丁酸的最高生产率分别为3.11、1.68、 2.40 g·L-1 The highest productivity of propionic acid, acetic acid and butyric acid are 3.11, 1.68 and 2.40 g·L-1, respectively | [ | |||
醋酸盐、乙醇 Acetate, ethanol | 厌氧污泥 Anaerobic sludge | HRT从30 h(发酵0~4 d)减少到8 h(发酵37~44 d) HRT reduced from 30 h (fermentation 0~4 d) to 8 h (fermentation 37~44 d) | pH 6.5~7.2 30 ℃ | MCFAs产生速率从9.3 g·L-1·d-1升至27.3 g·L-1·d-1 Rate of MCFAs production increased from 9.3 g·L-1·d-1 to 27.3 g·L-1·d-1 | [ |
表3 生产MCFAs调控工艺研究进展
Table 3 Research progress in regulation process of MCFAs production
底物 Substrate | 接种物 Inoculum | 调控因素 Regulatory factor | 控制条件 Control condition | 目标产物 Target product | 参考文献Reference | |||
---|---|---|---|---|---|---|---|---|
乙酸、乙醇Acetic acid, ethanol | 厌氧污泥 Anaerobic sludge | 乙醇/乙酸摩尔比(300 mmol总碳)从1∶2上升至3∶1 Molar ratio of ethanol/acetic acid (300 mmol total carbon) increased from 1∶2 to 3∶1 | pH 6.0~7.0, (30±1)℃ | 己酸从0.498 g·L-1提升至3.033 g·L-1 Caproic acid increased from 0.498 g·L-1 to 3.033 g·L-1 | [ | |||
厌氧污泥发酵液Anaerobic sludge fermentation liquor | Clostridium kluyveri | 乙醇/SCFAs(乙酸、丙酸、丁酸、戊酸)摩尔比从1∶2上升至 2∶1 Molar ratio of ethanol/SCFAs (acetic acid, propionic acid, butyric acid, valeric acid) increased from 1∶2 to 2∶1 | pH 11, 37 ℃ | 己酸从2.04 g·L-1提高至 4.49 g·L-1Caproic acid increased from 2.04 g·L-1 to 4.49 g·L-1 | [ | |||
玉米秸秆、乙醇 Corn straw,ethanol | 厌氧消化处理厂污泥Anaerobic digestion of sludge | pH 从5.6调至7.0 Adjusted pH from 5.6 to 7.0 | 37 ℃ | 己酸从1.88 g·L-1升高 到11.8 g·L-1,提高84.1% Caproic acid increased from 1.88 g·L-1 to 11.8 g·L-1,by 84.1% | [ | |||
青贮秸秆 Corn stalk silage | 沼气厂发酵液Fermentation liquor of biogas plant | pH 4.5~5.0 | 38 ℃ | 己酸最大浓度 (8.1 ±2.0) g·L-1 Maximum concentration of caproic acid (8.1 ±2.0) g·L-1 | [ | |||
青贮秸秆 Corn stalk silage | 厌氧污泥 Anaerobic sludge | 调控初始pH在4.500~5.011,发酵15 d后保持在7.5左右 Initial pH was controlled from 4.500 to 5.011, and kept at about 7.5 after 15 d | 35 ℃ | 己酸少量 Small amount of caproic acid | [ | |||
高粱秸秆 Sorghum straw | 海洋沉积物 Marine sediments | 温度从55 ℃降至40 ℃ Regulate the temperature from 55 ℃ to 40 ℃ | — | 己酸提高至2.98 g·L-1 Caproic acid increased to 2.98 g·L-1 | [ | |||
青贮秸秆 Corn stalk silage | 猪粪 Pig manure | 0~30 d温度控制在(30±1)℃, 31~90 d调控至(50±1)℃ Temperature was controlled at (30 ± 1)℃ for 0 ~ 30 d and (50 ± 1)℃ for 31 ~ 90 d | pH 6.0 有机负荷2.5 gVS· g-1·L-1 Organic load2.5 gVS· g-1·L-1 | 己酸增加了3.3倍,最大浓度6.0 g COD·L-1;辛酸增加了 2.2 倍 Caproic acid increased by 3.3 times, and the maximum concentration was 6.0 g COD·L-1; caprylic acid increased by 2.2 times | [ | |||
甘蔗酒糟 Sugarcane lees | 颗粒污泥 Granular sludge | HRT从24 h降到1 h HRT reduced from 24 h to 1 h | pH 4.4~4.8 30 ℃ | 丙酸、乙酸、丁酸的最高生产率分别为3.11、1.68、 2.40 g·L-1 The highest productivity of propionic acid, acetic acid and butyric acid are 3.11, 1.68 and 2.40 g·L-1, respectively | [ | |||
醋酸盐、乙醇 Acetate, ethanol | 厌氧污泥 Anaerobic sludge | HRT从30 h(发酵0~4 d)减少到8 h(发酵37~44 d) HRT reduced from 30 h (fermentation 0~4 d) to 8 h (fermentation 37~44 d) | pH 6.5~7.2 30 ℃ | MCFAs产生速率从9.3 g·L-1·d-1升至27.3 g·L-1·d-1 Rate of MCFAs production increased from 9.3 g·L-1·d-1 to 27.3 g·L-1·d-1 | [ |
1 | 龙新.《全国农作物秸秆综合利用情况报告》发布[N]. 农民日报,2022-10-11 (002). |
2 | 于秋竹, 孙国徽. 我国农作物秸秆资源量变化的研究[J]. 现代化农业, 2018(9): 13-15. |
YU Q Z, SUN G H. Study on the change of crop straw resources in China [J]. Mod. Agric., 2018(9): 13-15. | |
3 | 艾平, 张衍林, 盛凯, 等. 稻秸厌氧发酵产沼气预处理[J]. 农业工程学报, 2010, 26(7): 266-271. |
AI P, ZHANG Y L, SHENG K, et al.. Pretreatment for biogas production by anaerobic fermentation of rice straw [J]. Trans. Chin. Soc. Agric. Eng., 2010, 26(7): 266-271. | |
4 | GHYSELS S, BUFFEL S, RABAEY K, et al.. Biochar and activated carbon enhance ethanol conversion and selectivity to caproic acid by Clostridium kluyveri [J/OL]. Bioresour. Technol., 2021, 319(6):124236 [2022-08-06]. . |
5 | WU Q, REN W, GUO W, et al.. Effect of substrate structure on medium chain fatty acids production and reactor microbiome [J/OL]. Environ. Res., 2021, 204(8):111947 [2022-08-06]. . |
6 | ROGHAIR M, HOOGSTAD T, STRIK D, et al.. Controlling ethanol use in chain elongation by CO2 loading rate [J]. Environ. Sci. Technol., 2018, 52 (3): 1496-1505. |
7 | GE S, USACK J G, SPIRITO C M, et al.. Long-term n-caproic acid production from yeast-fermentation beer in an anaerobic bioreactor with continuous product extraction [J]. Environ. Sci. Technol., 2015, 49(13): 8012-8021. |
8 | DESBOIS A P, SMITH V J. Antibacterial free fatty acids: activities,mechanisms of action and biotechnological potential [J]. Appl. Microbiol. Biotechnol.,2010,85 (6): 1629-1642. |
9 | 朱孔云, 党超, 张雷, 等. 秸秆混菌厌氧链延长生产中链脂肪酸: pH调控作用[J].科学通报, 2020, 65 (26): 2903-2913. |
ZHU K Y, DANG C, ZHANG L, et al.. Anaerobic chain elongation of cornstalk for MCFAs production via mixed culture: pH regulation [J]. Chin. Sci. Bull., 2020, 65(26): 2903-2913. | |
10 | LI Y, HUA D L, XU H P, et al.. Acidogenic and methanogenic properties of corn straw silage: regulation and microbial analysis of two-phase anaerobic digestion [J/OL]. Bioresour. Technol., 2020,307:123180 [2022-08-06]. . |
11 | CAO Q T, ZHANG W Q, LIAN T J, et al.. Roles of micro-aeration on enhancing volatile fatty acids and lactic acid production from agricultural wastes [J/OL]. Bioresour. Technol., 2022, 347:126656[2022-08-06]. . |
12 | STRUBER H, LUCAS R, KLEINSTElUBER S. Metabolic and microbial community dynamics during the anaerobic digestion of maize silage in a two-phase process [J]. Appl. Microbiol. Biotechnol., 2016, 100(1): 479-491. |
13 | TANNER R S, MILLER L M, YANG D. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I [J]. Int. J. Syst. Bacteriol., 1993, 43(2): 232-236. |
14 | HAN W, HE P, SHAO L, et al.. Road to full bioconversion of biowaste to biochemicals centering on chain elongation: a mini review [J]. J. Environ. Sci., 2019, 86(12): 54-68. |
15 | MAROUNEK M, FLIEGROVA K, BARTOS S. Metabolism and some characteristics of ruminal strains of Megasphaera-elsdenii [J]. Appl. Environ. Microbiol., 1989, 55 (6): 1570-1573. |
16 | ZHU X, ZHOU Y, WANG Y, et al.. Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6 [J/OL]. Biotechnol. Biofuels, 2017, 10: 102 [2022-08-06]. . |
17 | LIU B, POPP D, MVLLER N, et al.. Three novel Clostridia isolates produce n-caproate and iso-butyrate from lactate: comparative genomics of chain-elongating bacteria [J/OL]. Microorganisms, 2020, 8: 1970 [2022-08-06]. . |
18 | YU J, ZHAO Y, LIU B, et al.. Accelerated acidification by inoculation with a microbial consortia in a complex open environment [J]. Bioresour. Technol., 2016, 216:294-301. |
19 | LI J F, WU Y J, ZHAO J, et al.. Bioaugmented degradation of rice straw combining two novel microbial consortia and lactic acid bacteria for enhancing the methane production [J/OL]. Bioresour. Technol., 2022, 344: 126148 [2022-08-06]. . |
20 | DALIA C, GRAZINA J, JONAS D. Use of wheat straw biomass in production of L-lactic acid applying biocatalysis and combined lactic acid bacteria strains belonging to the genus Lactobacillus [J]. Biocatal. Agric. Biotechnol., 2018, 15: 185-191. |
21 | STRUBER H, LUCAS R, KLEINSTEUBER S. Metabolic and microbial community dynamics during the anaerobic digestion of maize silage in a two-phase process [J]. Appl. Microbiol. Biotechnol., 2016, 100(1): 479-491. |
22 | COTTER J L, CHINN M S, GRUNDEN A M. Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas [J]. Enzyme Microb. Technol., 2009, 44(5): 281-288. |
23 | JIA H S, KAMARUDDIN A H, WEI S L, et al.. Clostridium aceticum-a potential organism in catalyzing carbon monoxide to acetic acid: application of response surface methodology [J]. Enzyme Microb. Technol., 2007, 40(5):1234-1243. |
24 | STEINBUSCH K, ARVANIT E, HAMELERS H, et al.. Selective inhibition of methanogenesis to enhance ethanol and n-butyrate production through acetate reduction in mixed culture fermentation [J]. Bioresour. Technol., 2009, 100(13):3261-3267. |
25 | SAN-VALERO P, FERNANDEZ-NAVEIRA A, VEIGA M C, et al.. Influence of electron acceptors on hexanoic acid production by Clostridium kluyveri [J]. J. Environ. Manage., 2019, 242:515-521. |
26 | WANG H, LI X Z, WANG Y, et al.. Improvement of n-caproic acid production with Ruminococcaceae bacterium CPB6:selection of electron acceptors and carbon sources and optimization of the culture medium [J/OL]. Microb. Cell Fact., 2018, 17(1): 99 [2022-08-06]. . |
27 | DIENDER M, STAMS A J M, SOUSA D Z. Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas [J/OL]. Biotechnol. Biofuels, 2016, 9(1):82 [2022-08-06]. . |
28 | STEINBUSCH K, HAMELERCS H, PLUGGE C M, et al.. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass [J]. Energy Environ. Sci., 2010, 4(1): 216-224. |
29 | RICHTER H, MOLITOR B, DIENDER M, et al.. A narrow pH range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction [J/OL]. Front. Microbiol., 2016, 7: 1773 [2022-08-06]. . |
30 | DIENDER M, SANTOS V A P M D, SCHAAP P J, et al.. Modeling a co-culture of Clostridium autoethanogenum and Clostridium kluyveri to increase syngas conversion to medium-chain fatty-acids [J]. Comput. Struct. Biotechnol. J., 2020, 18: 3255-3266. |
31 | 康雅茹, 田光明, 何若. 小麦秸秆预处理对厌氧消化性能的影响研究[J]. 环境污染与防治, 2022, 44(1):1-7. |
KANG Y R, TIAN G M, HE R. Effect of wheat straw pretreatment on anaerobic digestion performance [J]. Environ. Pollut. Control, 2022, 44(1):1-7. | |
32 | ZHANG C W, XIA S Q, MA P S, et al.. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents [J/OL]. Bioresour. Technol., 2016, 219: 26 [2022-08-06]. . |
33 | LIU Y, FAN L, SHAO L, et al.. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum [J]. Bioresour. Technol., 2016, 218: 1140-1150. |
34 | 米铁, 唐汝江, 陈汉平, 等. 生物质气化技术及其研究进展[J]. 化工装备技术, 2005, 6(2): 50-56. |
35 | 于杰, 王成泉, 于圣涛,等. 玉米秸秆循环流化床热解气化试验[J]. 新能源进展, 2018, 6(1): 14-20. |
YU J, WANG C Q, YU S T, et al.. Experimental study on gasification of corn straw in circulating fluidized bed [J]. Adv. New Renewa. Energy, 2018, 6(1): 14-20. | |
36 | NAJAFPOUR G, YOUNESI H. Ethanol and acetate synthesis from waste gas using batch culture of Clostridium ljungdahlii [J]. Enzyme Microb. Technol., 2006, 38(1-2): 223-228. |
37 | 刘越, 袁海荣, 左晓宇, 等. 接种比对玉米秸秆水解产酸过程VFA浓度和产气量的影响[J]. 中国沼气, 2019, 37(3): 21-27. |
LIU Y, YUAN H R, ZUO X Y, et al.. Effect of inoculation ratio on VFA concentration and gas yield in hydrolytic acidification process of corn straw [J]. China Biogas, 2019, 37(3): 21-27. | |
38 | 王刚, 武丽达, 张明磊, 等. 玉米秸秆同步糖化生物炼制D-乳酸的工艺研究[J]. 吉林农业大学学报, 2016, 38(5): 562-566. |
WANG G, WU L D, ZHANG M L, et al.. Research on producing technique of D-lactic acid by simultaneous saccharification and fermentation of corn straw [J]. J. Jilin Agric. Univ., 2016, 38(5): 562-566. | |
39 | WEIMER P J, STEVENSON D M. Isolation, characterization, and quantification of Clostridium kluyveri from the bovine rumen [J]. Appl. Microbiol. Biotechnol., 2012, 94:461-466. |
40 | 杜连柱, 陈羚, 杨鹏,等. 猪粪秸秆不同物料比对固体产酸发酵效果的影响[J]. 农业工程学报, 2010, 26(7):272-276. |
DU L Z, CHEN L, YANG P, et al.. Effects of different ratios of pig manure and straw on solid acidogenic fermentation [J]. Trans. Chin. Soc. Agric. Eng., 2010, 26(7): 272-276. | |
41 | ERAKY M, JIN K, ZHANG Q G, et al.. Acidogenic biorefinery of rice straw for volatile fatty acids production via sequential two-stage fermentation: effects of pre-treatments [J/OL]. Environ. Technol. Innov., 2021, 23: 101686 [2022-08-06]. . |
42 | ZHANG F, DING J, ZHANG Y, et al.. Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor [J]. Water Res., 2013, 47(16):6122-6129. |
43 | 刘昊鹏,刘超,王雯,等. 基于厌氧微生物的碳链延长合成高价值化学品反应机理及研究进展:不同电子供体[J]. 北京化工大学学报( 自然科学版), 2020, 47(5) : 1-17. |
LIU H P, LIU C, WANG W, et al.. Advances in understanding the mechanism of chain elongation with anaerobic microbes for the synthesis of high value-added chemicals: the effect of different electron donors [J]. J. Beijing Univ. Chem. Technol. (Nat. Sci.), 2020, 47(5): 1-17. | |
44 | GROOTSCHOL T, STRIK D, STEINBUSCH K, et al.. Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol [J]. Appl. Energy, 2014, 116:223-229. |
45 | CHEN H, JIN S. Effect of ethanol and yeast on cellulase activity and hydrolysis of crystalline cellulose [J]. Enzyme Microb. Technol., 2006,39(7):1430-1432. |
46 | WU S L, WEI W, SUN J, et al.. Medium-chain fatty acids and long-chain alcohols production from waste activated sludge via two-stage anaerobic fermentation [J/OL]. Water Res., 2020,186(1): 116381[2022-08-06]. . |
47 | BORNSTEIN B T, BARKER H A. The energy metabolism of Clostridium kluyveri and the synthesis of fatty acids [J]. Biol. Chem., 1948,172: 659-669. |
48 | KIM B C, JEON B S, KIM S I, et al.. Caproiciproducens galactitolivorans gen. Nov. sp. nov. a bacterium capable of producing caproic acid from galactitol, isolated from a wastewater treatment plant [J]. Int. J. Syst. Evol. Microbiol., 2015, 65(12):4902-4908. |
49 | SAN-VARERP P, ABUBACKAR H N, VEIGA M C, et al.. Effect of pH, yeast extract and inorganic carbon on chain elongation for hexanoic acid production [J/OL]. Bioresour. Technol., 2020, 300: 122659 [2022-08-06]. . |
50 | KIM I S, HWANG M H, JANG N J, et al.. Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process [J]. Int. J. Hydrogen Energy, 2004, 29(11): 1133-1140. |
51 | HERRMANN G, JAYAMANI E, MAI G, et al.. Energy conservation via electron-transferring flavoprotein in anaerobic bacteria [J]. J. Bacteriol., 2008, 190(3):784-791. |
52 | HOLLISTRE E B, FORRES A K, WILKINSON H H, et al.. Mesophilic and thermophilic conditions select for unique but highly parallel microbial communities to perform carboxylate platform biomass conversion [J/OL]. PLoS ONE, 2012, 7(6):e39689[2022-08-06]. . |
53 | REN W T, WU Q L, DENG L, et al.. Simultaneous medium chain fatty acids production and process carbon emissions reduction in a continuous-flow reactor: re-understanding of carbon flow distribution [J/OL]. Environ. Res., 2022,212: 113294 [2022-08-06]. . |
54 | ZHANG Z S, NI B J, ZHANG L, et al.. Medium-chain fatty acids production from carbohydrates-rich wastewater through two-stage yeast biofilm processes without external electron donor addition: biofilm development and pH impact [J/OL]. Sci. Total Environ., 2022, 828: 154428 [2022-08-06]. . |
55 | GROOTSCHOLTEN T I M, STEINBUSCH K J J, HAMELERS H V M, et al.. Chain elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production [J]. Bioresour. Technol., 2013, 135: 440-445. |
56 | GROOTSCHOLTEN T I M, STEINBUSCH K J J, HAMELERS H V M, et al.. Improving medium chain fatty acid productivity using chain elongation by reducing the hydraulic retention time in an up flow anaerobic filter [J]. Bioresour. Technol., 2013, 136: 735-738. |
57 | LIU B, STRUBER H, SARAIVA J, et al.. Machine learning-assisted identification of bioindicators predicts medium-chain carboxylate production performance of an anaerobic mixed culture [J]. Microbiome, 2022, 10(1): 1-29. |
58 | 苑荣雪,沈雁文,朱南文. 以污泥发酵液为底物产中链脂肪酸可行性研究[J]. 环境科学与技术, 2019, 42(11): 141-146. |
YUAN R X, SHEN Y W, ZHU N W. Study on biological medium chain fatty acids (MCFAs) production from waste activated sludge fermentation liquid [J]. Environ. Sci. Technol., 2019, 42(11): 141-146. | |
59 | HEIKE S, FRANZISKA B, SABINE K, et al..Carboxylic acid production from ensiled crops in anaerobic solid:tate fermentation trace elements as pH controlling agents support microbial chain elongation with lactic acid [J]. Eng. Life Sci., 2018, 18(7):447-458. |
60 | JANKOWAKA E, CHWIALKOWSKA J, STODOLNY M, et al.. Volatile fatty acids production during mixed culture fermentation-the impact of substrate complexity and pH [J]. Chem. Eng. J., 2017,326: 901-910. |
61 | HOLLISTER E B, FORREST A K, WILKINSON H H, et al.. Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production [J]. Appl. Microbiol. Biotechnol., 2010, 88(1):389-399. |
62 | ZHANG W Q, WANG S L, YIN F B, et al.. Medium-chain carboxylates production from co-fermentation of swine manure and maize silage via lactic acid: without external electron donors [J/OL]. Chem. Eng. J., 2022, 439, 135751 [2022-08-06]. . |
63 | BERNAL A P, MENEZES C A, SILVA E L. A new side-looking at the dark fermentation of sugarcane vinasse: improving the carboxylates production in mesophilic EGSB by selection of the hydraulic retention time and substrate concentration [J]. Int. J. Hydrogen Energy, 2021, 46(24):12758-12770. |
64 | AGLER M T, WRENN B A, ZINDER S H, et al.. Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform [J]. Trends. Biotechnol., 2011, 29(2):70-78. |
65 | GROOTSCHOLTEN T I M, STRIK D P B T B, STEINBUSCH K J J, et al.. Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol [J]. Appl. Energy, 2014, 116(209):223-229. |
66 | LIU Y, HE P, HAN W, et al.. Outstanding reinforcement on chain elongation through five-micrometer-sized biochar [J]. Renew. Energy, 2020, 161:230-239. |
67 | 杜刚, 刘赟, 詹梦涛, 等. 乳酸菌发酵甘蔗糖蜜产乳酸的培养条件优化[J]. 化工进展, 2018, 37(10): 4006-4012. |
DU G, LIU Y, ZHAN M T, et al. Optimization of lactic acid production from sugarcane molasses by lactic acid bacteria [J]. Chem. Ind. Eng. Progress, 2018, 37(10): 4006-4012. | |
68 | KANNENGIESSER J, SAKAGUCHI-SODER K, MRUKWIA T, et al.. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels [J]. Waste Manage. (Oxford), 2016, 47: 78-83. |
69 | 刘超, 罗刚, 王雯, 等. 微生物转化合成气制取生物燃料和化学品的研究进展[J]. 北京化工大学学报(自然科学版), 2017,44(5):2-12. |
LIU C, LUO G, WANG W, et al.. Research progress in biofuel and biochemicals production from syngas fermentation [J]. J. Beijing Univ. Chem. Technol. ( Nat. Sci.), 2017, 44(5): 2-12. | |
70 | ZHANG W Q, WANG S L, YIN F B, et al.. Produce individual medium chain carboxylic acids (MCCA) from swine manure: performance evaluation and economic analysis [J]. Waste Manage. (Oxford), 2022, 144(1):255-262. |
71 | ROGHAIR M, LIU Y C, STRIK D P B T B, et al.. Development of an effective chain elongation process from acidified food waste and ethanol into n-caproate [J/OL]. Front. Bioeng. Biotechnol., 2018, 6(50):50 [2022-08-06]. . |
[1] | 胡茜, 王艺凝, 申鹏飞, 李雅倩, 杨阳, 王艳成, 姬文秀, 董微巍. 洋虫内产β-葡萄糖苷酶内生菌发酵液转化人参皂苷产物分析及其抗肿瘤活性研究[J]. 中国农业科技导报, 2023, 25(2): 119-127. |
[2] | 孟艳, 汪微, 葸全财, 李屹, 陈来生, 杜中平, 韩睿. 沼液预处理对蔬菜秸秆厌氧消化性能的影响[J]. 中国农业科技导报, 2022, 24(9): 188-196. |
[3] | 柳丽, 杜中平, 李屹, 陈来生, 韩睿. NaOH预处理对青稞秸秆厌氧发酵特性的影响[J]. 中国农业科技导报, 2022, 24(8): 192-200. |
[4] | 马金智, 朱志平, 卢连水, 张万钦. 通风速率对异位发酵床处理肉鸭粪污的效果研究[J]. 中国农业科技导报, 2022, 24(3): 210-217. |
[5] | 焦静, 郑勇, 李尊香, 黄小红, 杜嵇华, 郑金. 厌氧发酵在线监控技术研究进展[J]. 中国农业科技导报, 2021, 23(9): 87-95. |
[6] | 夏洪泽, 黄文植, 张琳琳, 张晓涵, 崔占鸿, 刘书杰. 不同分级指数燕麦干草-苜蓿干草组合对牦牛瘤胃体外发酵的影响[J]. 中国农业科技导报, 2021, 23(7): 199-201. |
[7] | 张磊, 罗泽华, 杨明川, 李世贵, 辛玉华, 蔡斌, 刘好宝, 曾代龙, 顾金刚, 段碧华. 雪茄烟叶原料发酵微生物多样性及酶活变化研究[J]. 中国农业科技导报, 2021, 23(10): 171-180. |
[8] | 肖生苓1,荆勇1,2,冯晶2,申瑞霞2*,赵立欣2,王全亮1,张迎2. 木质生物炭对厌氧发酵产甲烷性能的影响[J]. 中国农业科技导报, 2021, 23(1): 128-135. |
[9] | 符可芯1,2,杨叶2*,曾耿狄1. 热带土壤中解淀粉芽孢杆菌HNU1的鉴定及发酵条件优化[J]. 中国农业科技导报, 2020, 22(6): 49-59. |
[10] | 杨佳佳1,刘义飞1*,刘文科1,2*. 垄沟填埋秸秆发酵物对SSC番茄根区温度、CO2释放及番茄生长的影响[J]. 中国农业科技导报, 2020, 22(12): 137-145. |
[11] | 王薇,李泳,王伟,边雪,李熙英*. Y-S-Y12发酵液和生物质热解液混配对辣椒炭疽病的防治及作用机理[J]. 中国农业科技导报, 2020, 22(10): 129-138. |
[12] | 曾朝珍,康三江*,张霁红,张芳,张海燕,袁晶. 混菌发酵体系中异常汉逊酵母生长抑制机制研究[J]. 中国农业科技导报, 2019, 21(3): 48-53. |
[13] | 冉继平1,2,闫岩2*,李岑1,毛玉涛3,肖玉4,冯婷婷5. 刺梨白粉病拮抗菌生长条件优化及其发酵液抑菌稳定性探究[J]. 中国农业科技导报, 2019, 21(11): 84-93. |
[14] | 王琪,闫培生*,周莹,高秀君,王凯,贾文文. 抑制黄曲霉毒素合成的深海环状芽孢杆菌活性物质发酵条件优化[J]. 中国农业科技导报, 2018, 20(9): 65-71. |
[15] | 冯康1,2,孟海波1,2*,周海宾1,沈玉君1,2,王黎明2. 一体化好氧发酵设备研究现状与展望[J]. 中国农业科技导报, 2018, 20(6): 63-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||