中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (9): 34-42.DOI: 10.13304/j.nykjdb.2023.0237
周影(), 李京咏, 戴林秀, 敖弟彩, 李梓逸, 杨帆, 顾军伟, 徐强(
), 窦志, 高辉
收稿日期:
2023-03-28
接受日期:
2023-06-09
出版日期:
2023-09-15
发布日期:
2023-09-28
通讯作者:
徐强
作者简介:
周影 E-mail: 18262873545@163.com;
基金资助:
Ying ZHOU(), Jingyong LI, Linxiu DAI, Dicai AO, Ziyi LI, Fan YANG, Junwei GU, Qiang XU(
), Zhi DOU, Hui GAO
Received:
2023-03-28
Accepted:
2023-06-09
Online:
2023-09-15
Published:
2023-09-28
Contact:
Qiang XU
摘要:
倒伏是限制稻虾共作模式水稻优质高产的瓶颈问题。为研究外源褪黑素喷施对该模式下水稻茎秆倒伏特性的影响,以‘南粳5718’为试验材料,在稻虾共作模式下于拔节初期叶面喷施200 μmol·L-1褪黑素处理(MT),以未喷施为对照(CK),比较不同处理下水稻的形态学指标、茎秆力学指标、茎秆化学成分含量、水稻产量及木质素、纤维素生物合成关键基因的表达。结果表明,稻虾共作模式下,MT处理的水稻产量为9 261 kg·hm-2,与CK差异不显著;但MT处理的穗粒数较CK显著增加,而有效穗数和结实率较CK显著降低。与CK处理相比,MT处理水稻的株高、穗颈节高度和重心高分别显著降低13.04%、14.91%和22.93%,而第2节间抗折力和折断弯矩显著增加22.39%和22.34%,弯曲力矩和倒伏指数显著降低20.61%和35.03%;木质素、纤维素生物合成关键基因OsCoMT、OsCesA4、OsCesA7和OsCesA9表达上调。相关性分析表明,MT处理下,倒伏指数与株高、穗颈高度和折断部位至穗顶距离呈极显著正相关,与抗折力、折断弯矩和弯曲应力呈显著负相关。综上所述,稻虾共作模式下喷施褪黑素可在水稻稳产的前提下提高水稻茎秆抗倒伏能力,为稻虾共作模式下水稻抗倒栽培调控提供理论和实践指导。
中图分类号:
周影, 李京咏, 戴林秀, 敖弟彩, 李梓逸, 杨帆, 顾军伟, 徐强, 窦志, 高辉. 稻虾共作模式下喷施褪黑素对水稻产量形成和抗倒伏特性的影响[J]. 中国农业科技导报, 2023, 25(9): 34-42.
Ying ZHOU, Jingyong LI, Linxiu DAI, Dicai AO, Ziyi LI, Fan YANG, Junwei GU, Qiang XU, Zhi DOU, Hui GAO. Effect of Melatonin Spraying on Rice Yield Formation and Lodging Resistance Under Rice-Crayfish Coculture Mode[J]. Journal of Agricultural Science and Technology, 2023, 25(9): 34-42.
指标Indicates | CK | MT | t值t value |
---|---|---|---|
有效穗数Panicles number/(104·hm-2) | 329.22±7.41 | 299.29±7.41 | 4.95** |
穗粒数Spikelets per panicle | 134.34±3.06 | 147.79±3.61 | -4.92** |
结实率Seed setting rate/% | 94.57±1.00 | 92.79±0.39 | 2.87* |
千粒重1 000-grain weight/g | 30.12±0.48 | 30.83±0.21 | -2.35 |
产量Yield/(kg·hm-2) | 9 838±455 | 9 261±287 | 2.76 |
表1 不同处理下的水稻产量及其构成因素
Table 1 Yield and yield factors under different treatments
指标Indicates | CK | MT | t值t value |
---|---|---|---|
有效穗数Panicles number/(104·hm-2) | 329.22±7.41 | 299.29±7.41 | 4.95** |
穗粒数Spikelets per panicle | 134.34±3.06 | 147.79±3.61 | -4.92** |
结实率Seed setting rate/% | 94.57±1.00 | 92.79±0.39 | 2.87* |
千粒重1 000-grain weight/g | 30.12±0.48 | 30.83±0.21 | -2.35 |
产量Yield/(kg·hm-2) | 9 838±455 | 9 261±287 | 2.76 |
指标Index | CK | MT | t值t value |
---|---|---|---|
株高Plant height/cm | 98.80±3.50 | 85.92±2.48 | -6.00** |
鲜重Fresh weight/g | 21.95±2.16 | 21.40±1.34 | -0.43 |
单穗重Panicle weight/g | 4.24±0.51 | 3.59±0.44 | -1.90 |
穗颈高度Panicle length/cm | 81.58±4.10 | 69.42±2.75 | -4.92** |
重心高Gravity center height/cm | 46.35±3.04 | 35.72±2.02 | -5.82** |
茎粗Culm diameter/mm | 5.16±0.39 | 4.89±0.30 | -1.09 |
壁厚Culm wall thickness/mm | 0.80±0.29 | 0.69±0.05 | -0.82 |
茎重比Culm density/(mg·cm-1) | 51.03±2.27 | 72.99±1.82 | -7.56** |
叶鞘重比Leaf sheath density/(mg·cm-1) | 27.23±2.05 | 32.98±2.31 | -1.86 |
表2 不同处理下的水稻植株形态特性
Table 2 Morphological traits of rice plants under different treatments
指标Index | CK | MT | t值t value |
---|---|---|---|
株高Plant height/cm | 98.80±3.50 | 85.92±2.48 | -6.00** |
鲜重Fresh weight/g | 21.95±2.16 | 21.40±1.34 | -0.43 |
单穗重Panicle weight/g | 4.24±0.51 | 3.59±0.44 | -1.90 |
穗颈高度Panicle length/cm | 81.58±4.10 | 69.42±2.75 | -4.92** |
重心高Gravity center height/cm | 46.35±3.04 | 35.72±2.02 | -5.82** |
茎粗Culm diameter/mm | 5.16±0.39 | 4.89±0.30 | -1.09 |
壁厚Culm wall thickness/mm | 0.80±0.29 | 0.69±0.05 | -0.82 |
茎重比Culm density/(mg·cm-1) | 51.03±2.27 | 72.99±1.82 | -7.56** |
叶鞘重比Leaf sheath density/(mg·cm-1) | 27.23±2.05 | 32.98±2.31 | -1.86 |
图2 不同处理下水稻植株形态特征注:a1—短轴外径;a2—短轴内径;b1—长轴外径;b2—长轴内径;N1~N7表示基部第1~第7节间;*表示差异显著(P<0.05),ns表示差异不显著(P>0.05)。
Fig. 2 Morphological traits of rice plants under different treatmentsNote: a1—Outer diameters of minor axis; a2—Inner diameters of minor axis; b1—Outer diameters of major axis; b2—Inner diameters of major axis; N1~N7 indicate 1st~7th internode; * indicates significant difference (P<0.05), and ns indicates no significant difference (P>0.05).
指标Index | CK | MT | t值t value |
---|---|---|---|
抗折力Flexural resistance/N | 15.01±0.97 | 18.37±0.31 | 5.82** |
折断弯矩Breaking strength/(g·cm) | 3 003±195 | 3 674±62 | 5.82** |
断面系数Section modulus/mm | 9.98±3.60 | 7.94±1.31 | -1.11 |
弯曲应力Bending stress/(g·mm-2) | 3 359±1 385 | 4 702±823 | 1.71 |
弯曲力矩Bending moment by whole plant/(g·cm) | 2 043±240 | 1 622±78 | -2.94** |
折断部位至穗顶的鲜重FW/g | 20.61±1.99 | 19.79±0.67 | -0.68 |
折断部位至穗顶的距离SL/cm | 94.13±3.70 | 81.85±1.89 | -5.04** |
倒伏指数Lodging index/% | 68.02±6.77 | 44.19±2.37 | -5.76** |
表3 不同处理下茎秆基部第2节间力学特性
Table 3 Mechanical traits of internode N2 of rice stem under different treatments
指标Index | CK | MT | t值t value |
---|---|---|---|
抗折力Flexural resistance/N | 15.01±0.97 | 18.37±0.31 | 5.82** |
折断弯矩Breaking strength/(g·cm) | 3 003±195 | 3 674±62 | 5.82** |
断面系数Section modulus/mm | 9.98±3.60 | 7.94±1.31 | -1.11 |
弯曲应力Bending stress/(g·mm-2) | 3 359±1 385 | 4 702±823 | 1.71 |
弯曲力矩Bending moment by whole plant/(g·cm) | 2 043±240 | 1 622±78 | -2.94** |
折断部位至穗顶的鲜重FW/g | 20.61±1.99 | 19.79±0.67 | -0.68 |
折断部位至穗顶的距离SL/cm | 94.13±3.70 | 81.85±1.89 | -5.04** |
倒伏指数Lodging index/% | 68.02±6.77 | 44.19±2.37 | -5.76** |
指标Index | CK | MT | t值t value | |
---|---|---|---|---|
可溶性糖Soluble sugar/(mg·g-1) | 茎Culm | 68.21±3.28 | 83.01±12.25 | -2.02 |
鞘Leaf sheath | 58.87±7.84 | 70.34±7.06 | -1.88 | |
淀粉Starch/(mg·g-1) | 茎Culm | 95.45±0.21 | 105.92±0.48 | -1.99 |
鞘Leaf sheath | 27.91±0.05 | 56.51±0.06 | -37.14** | |
木质素Lignin/% | 茎Culm | 15.21±0.31 | 24.43±0.20 | 25.07** |
鞘Leaf sheath | 13.56±0.26 | 22.61±0.09 | 33.42** | |
纤维素Cellulose/% | 茎Culm | 15.69±1.20 | 25.66±2.31 | 3.90* |
鞘Leaf sheath | 24.79±1.30 | 32.80±0.54 | 5.72** |
表4 不同处理下水稻茎秆基部第2节间化学成分
Table 4 Chemical composition of Internode N2 of rice stem under different treatments
指标Index | CK | MT | t值t value | |
---|---|---|---|---|
可溶性糖Soluble sugar/(mg·g-1) | 茎Culm | 68.21±3.28 | 83.01±12.25 | -2.02 |
鞘Leaf sheath | 58.87±7.84 | 70.34±7.06 | -1.88 | |
淀粉Starch/(mg·g-1) | 茎Culm | 95.45±0.21 | 105.92±0.48 | -1.99 |
鞘Leaf sheath | 27.91±0.05 | 56.51±0.06 | -37.14** | |
木质素Lignin/% | 茎Culm | 15.21±0.31 | 24.43±0.20 | 25.07** |
鞘Leaf sheath | 13.56±0.26 | 22.61±0.09 | 33.42** | |
纤维素Cellulose/% | 茎Culm | 15.69±1.20 | 25.66±2.31 | 3.90* |
鞘Leaf sheath | 24.79±1.30 | 32.80±0.54 | 5.72** |
图3 不同处理下水稻茎秆基部第2节间木质素和纤维素生物合成相关基因相对表达量
Fig. 3 Relative expression of genes related to lignin and cellulose biosynthesis in internode N2 of rice stems under different treatments
图4 喷施褪黑素处理下水稻茎秆特性与倒伏特性的相关性分析注:PH—株高;PL—穗颈高度;GCH—重心高;CD—节间粗度;TCW—茎壁厚度;F—抗折力;M—折断弯矩;Z—断面系数;BS—弯曲应力;WP—弯曲力矩;FW—折断部位至穗顶鲜重;SL—折断部位至穗顶距离;LI—倒伏指数;MWL—木质素;CEL—纤维素;SS—可溶性糖;S—淀粉; *和**分别表示在P<0.05和P<0.01水平相关显著。
Fig. 4 Correlation analysis between culm and lodging characteristics of rice under melatonin treatmentNote: PH—Plant height; PL—Panicle length; GCH—Gravity center high; CD—Culm diameter; TCW—Culm wall thickness; F—Flexural resistance; M—Breaking strength; Z—Section modulus; BS—Bending stress; WP—Bending moment by whole plant; FW—Fresh weight from breaking point to panicle top; SL—Length from breaking point to panicle top; LI—Lodging index; MWL—Lignin; CEL—Cellulose; SS—Soluble sugars; S—Starch, * and ** indicate significant correlations at P<0.05 and P<0.01 levels, respectively.
1 | XU Q, PENG X, GUO H, et al.. Rice-crayfish coculture delivers more nutrition at a lower environmental cost [J]. Sust. Prod. Cons., 2021, 29(1):14-24. |
2 | 蒋榕,徐强,李京咏,等.稻虾共作模式碳足迹评价的敏感性和不确定性分析[J].中国生态农业学报,2022,30(10):1577-1587. |
JIANG R, XU Q, LI J Y, et al.. Sensitivity and uncertainty analysis of carbon footprint evaluation: a case study of rice-crayfish coculture in china [J]. Chin. J. Eco-Agric., 2022, 30(10):1577-1587. | |
3 | 于秀娟,郝向举,党子乔,等.中国小龙虾产业发展报告(2022)[J].中国水产,2022(6):47-54. |
4 | 陈林荣,李阳阳,郭哈伦,等.深水灌溉对稻渔共生水稻抗倒伏性的影响研究进展[J].中国稻米,2021,27(5):102-104. |
CHEN L R, LI Y Y, GUO H L, et al.. Research progress on the effects of deep-water irrigation on rice lodging resistance in rice-fishing symbiosis [J]. China Rice, 2021, 27(5):102-104. | |
5 | GAO H, DOU Z, CHEN L R, et al.. Effects of semi-deep water irrigation on hybrid indica rice lodging resistance [J/OL]. Front. Plant Sci., 2022,13:1038129 [2023-02-20]. . |
6 | 徐强,李京咏,戴林秀,等.氮肥管理对稻虾共作模式水稻产量和抗倒伏特性的影响[J].中国稻米,2022,28(6):30-36. |
XU Q, LI J Y, DAI L X, et al.. Effects of nitrogen management on yield and lodging resistance of rice under rice-cray fish coculture [J]. China Rice, 2022, 28(6):30-36. | |
7 | 鞠晓晨,胡杰,高冠军,等.水稻茎秆抗倒伏相关QTL定位与分析[J].分子植物育种,2016,14(2):475-481. |
JU X C, HU J, GAO G J, et al.. Relevant QTL mapping and analysis of lodging resistance in rice [J]. Mol. Plant Breeding, 2016, 14(2):475-481. | |
8 | 邢志鹏,吴培,朱明,等.机械化种植方式对不同品种水稻株型及抗倒伏能力的影响[J].农业工程学报,2017,33(1):52-62. |
XING Z P, WU P, ZHU M, et al.. Effect of mechanized planting methods on plant type and lodging resistance of different rice varieties [J]. Trans. Chin. Soc. Agric. Eng., 2017, 33(1):52-62. | |
9 | 何振嘉,范王涛,杜宜春,等.基于土体有机重构的水肥耦合对土壤理化性质和水稻产量的影响[J].中国农业科技导报,2022,24(3):176-185. |
HE Z J, FAN W T, DU Y C, et al.. Effects of water and fertilizer coupling on the physical and chemical properties of rice soil and yield based on soil organic reconstruction [J]. J. Agric. Sci. Technol., 2022, 24(3):176-185. | |
10 | 文廷刚,王伟中,杨文飞,等.水稻茎秆形态特征与抗倒伏能力对外源植物生长调节剂的响应差异[J].南方农业学报,2020,51(1):48-55. |
WEN T G, WANG W Z, YANG W F, et al.. Morphological characteristics and lodging resistance of rice stems and its response to exogenous plant growth regulators [J]. J. Southern Agric., 2020, 51(1):48-55. | |
11 | ZHANG W J, YAO X, DUAN X J, et al.. Foliar application uniconazole enhanced lodging resistance of hybrid indica rice by altering basal stem quality under poor light stress [J]. Agron. J., 2021, 114(1): 524-544. |
12 | 鱼冰星,王宏富,王振华,等.多效唑对谷子茎秆特征及抗倒性的影响[J].中国农业科技导报,2021,23(8):37-44. |
YU B X, WANG H F, WANG Z H, et al.. Effects of paclobutrazol on stalk characteristics and lodging resistance of foxtail milet [J]. J. Agric. Sci. Technol., 2021, 23(8):37-44. | |
13 | FERRARI S, POLYCARPO G, VARGAS P F, et al.. Mix of trinexapac-ethyl and nitrogen application to reduce upland rice plant height and increase yield [J]. Plant Growth Regul., 2022, 96(1):209-219. |
14 | NA C, HAMAYUN M, KHAN A L, et al.. Influence of prohexadione-calcium, trinexapac-ethyl and hexaconazole on lodging characteristic and gibberellin biosynthesis of rice (Oryza sativa L.) [J]. Afr. J. Biotechnol., 2011, 10(61):13097-13106. |
15 | CHEN Y L, LI R K, GE J F, et al.. Exogenous melatonin confers enhanced salinity tolerance in rice by blocking the ROS burst and improving Na+/K+ homeostasis [J/OL]. Environ. Exp. Bot., 2021,189:104530 [2023-02-20]. . |
16 | NAWAZ K, CHAUDHARY R, SARWAR A, et al.. Melatonin as master regulator in plant growth, development and stress alleviator for sustainable agricultural production: current status and future perspectives [J/OL]. Sustainability, 2020, 13(1):294 [2023-02-20]. . |
17 | YE J, YANG W J, LI Y L, et al.. Seed pre-soaking with melatonin improves wheat yield by delaying leaf senescence and promoting root development [J/OL]. Agronomy, 2020, 10(1):84 [2023-02-20]. |
18 | PARK S, BACK K. Melatonin promotes seminal root elongation and root growth in transgenic rice after germination [J]. J. Pineal Res., 2012, 53(4):385-389. |
19 | HAN Q, HUANG B, DING C, et al.. Effects of melatonin on anti-oxidative systems and photosystem II in cold-stressed rice seedlings [J/OL]. Front. Plant Sci., 2017, 8:785 [2023-02-20]. . |
20 | AGATHOKLEOUS E, ZHOU B, XU J, et al.. Exogenous application of melatonin to plants, algae, and harvested products to sustain agricultural productivity and enhance nutritional and nutraceutical value: a meta-analysis [J/OL]. Environ. Res., 2021, 200:111746 [2023-02-20]. . |
21 | FAN X, ZHAO J, SUN X, et al.. Exogenous melatonin improves the quality performance of rice under high temperature during grain filling [J/OL]. Agronomy, 2022, 12:949 [2023-02-20]. . |
22 | ZHAO D, LUAN Y, SHI W, et al.. Melatonin enhances stem strength by increasing the lignin content and secondary cell wall thickness in herbaceous peony [J]. J. Exp Bot., 2022, 73(17):5974-5991. |
23 | XU Q, DAI L X, SHANGZ Y, et al.. Application of controlled-release urea to maintain rice yield and mitigate greenhouse gas emissions of rice-crayfish coculture field [J/OL]. Agric. Ecosyst. Environ., 2023, 344:108312 [2023-02-20]. . |
24 | OOKAWA T, YASUDA K, KATO H, et al.. Biomass production and lodging resistance in ‘Leaf Star’, a new long-culm rice forage cultivar [J]. Plant Prod. Sci., 2010, 13(1):58-66. |
25 | ZHANG W, WU L, DING Y, et al.. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa) [J]. J. Plant Res., 2017, 130(5): 859-871. |
26 | JIANG Y, HUANG S, MA L, et al.. Effect of exogenous melatonin application on the grain yield and antioxidant capacity in aromatic rice under combined lead-cadmium stress [J/OL]. Antioxidants, 2022, 11(4):776 [2023-02-20]. . |
27 | 单莉莉.孕穗期低温对水稻叶片生理、产量的影响及外源褪黑素缓解效应[J].中国农业科技导报,2023,25(9):23-33. |
SHAN L L. Effects of low temperature during booting stage on rice physiology and alleviating effect of exogenous melatonin [J]. J. Agric. Sci. Technol., 2023, 25(9):23-33. | |
28 | 刘立军,周沈琪,刘昆,等.水稻大穗形成及其调控的研究进展[J].作物学报,2023,49(3):585-596. |
LIU L J, ZHOU S Q, LIU K, et al.. Research progress on the formation of large panicles in rice and its requlation [J]. Acta Agron. Sin., 2023, 49(3):585-596. | |
29 | 姜龙,曲金玲,孙国宏,等.矮壮素、烯效唑和多效唑对水稻倒伏及产量的影响[J].中国林副特产,2018(2):10-13. |
[1] | 单莉莉. 孕穗期低温对水稻叶片生理、产量的影响及外源褪黑素缓解效应[J]. 中国农业科技导报, 2023, 25(9): 23-33. |
[2] | 刘雪静, 鲍晓远, 候晓阳, 甄文超. 海河平原春季限水灌溉下冬小麦农田水分动态及产量形成特征[J]. 中国农业科技导报, 2022, 24(7): 167-176. |
[3] | 许辉, 赵阳阳, 孙东岳, 柯媛媛, 张乐乐, 陈翔, 魏凤珍, 李金才. 稻虾共作模式研究进展[J]. 中国农业科技导报, 2022, 24(2): 160-168. |
[4] | 鱼冰星, 王宏富, 王振华, 张鹏, 成锴, 余爱丽, 闫海丽, 鱼冰洁. 多效唑对谷子茎秆特征及抗倒性的影响[J]. 中国农业科技导报, 2021, 23(8): 37-44. |
[5] | 王文玉,万思宇,张雪松,王旭,李佳硕,郑桂萍*. 不同耕作模式下施硅量对垦粳7号抗倒伏性能的影响[J]. 中国农业科技导报, 2021, 23(4): 145-153. |
[6] | 张嘉雯,卢绍浩,赵喆,赵铭钦*. 外源褪黑素对低温胁迫下烟草幼苗生理指标的影响[J]. 中国农业科技导报, 2020, 22(9): 78-86. |
[7] | 段路路1,2,黄婧1,2*,王凯越1,2. HPLC法测定水溶性肥料植物生长调节剂的不确定度评定[J]. 中国农业科技导报, 2020, 22(9): 169-178. |
[8] | 贺嘉豪1,陈建中2,徐坚强3,向金友4,杨懿德4,张学伟5,宁尚辉3,王林6,刘园7,杨洋4,景延秋1*,程玉渊7*. 外源褪黑素对烟草幼苗抗旱性生理机制的影响[J]. 中国农业科技导报, 2020, 22(2): 50-57. |
[9] | 李鹏辉1§,向金友2§,王林3,徐坚强4,李常军5,雷强6,杨懿德2,张学伟7,李怀奇8,张启明9,景延秋1*,熊斌3*. 干旱胁迫下外源褪黑素对烟草幼苗生理特性的影响[J]. 中国农业科技导报, 2019, 21(5): 41-48. |
[10] | 李猛,陈栋,李秀妮,李林林,王荣浩,时向东*. 盐胁迫下外源褪黑素对烟草幼苗抗氧化特性和光合特性的影响[J]. 中国农业科技导报, 2019, 21(2): 141-147. |
[11] | 范海霞1,郭若旭1,辛国奇2,李丰芹3. 外源褪黑素对盐胁迫下芦苇幼苗生长和生理特性的影响[J]. 中国农业科技导报, 2019, 21(11): 51-58. |
[12] | 吴超,崔克辉*. 高温影响水稻产量形成研究进展[J]. , 2014, 16(3): 103-111. |
[13] | 孙苏阳,王永军,李海军,李丽丽. 高产广适小麦品种淮麦25产量形成分析[J]. , 2014, 16(1): 98-103. |
[14] | 夏雪岩1,程汝宏1*,陈媛1,师志刚1,张婷1, 刘恩魁2,相金英1,庞素芬2 . 植物生长调节剂和叶面肥对谷子杂交种的防早衰效应分析[J]. , 2014, 16(1): 104-110. |
[15] | 田晓莉 李召虎 段留生 王保民 何钟佩. 作物化学控制的研究进展及前景[J]. , 2004, 6(5): 11-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||