中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (10): 41-57.DOI: 10.13304/j.nykjdb.2024.0288
夏雪岩(), 崔纪菡(
), 黄玫红, 郭帅, 刘猛, 赵宇, 鲁一薇, 赵文庆, 王京新, 李顺国(
)
收稿日期:
2024-04-11
接受日期:
2024-05-29
出版日期:
2024-10-15
发布日期:
2024-10-18
通讯作者:
夏雪岩,李顺国
作者简介:
夏雪岩 E-mail:xyxia7808@126.com基金资助:
Xueyan XIA(), Jihan CUI(
), Meihong HUANG, Shuai GUO, Meng LIU, Yu ZHAO, Yiwei LU, Wenqin ZHAO, Jingxin WANG, Shunguo LI(
)
Received:
2024-04-11
Accepted:
2024-05-29
Online:
2024-10-15
Published:
2024-10-18
Contact:
Xueyan XIA,Shunguo LI
摘要:
氮利用效率是影响谷子产量和品质的重要因素。筛选氮高效谷子品种、挖掘控制氮利用效率的重要基因及解析其作用机制对于提高谷子氮利用效率、减少肥料使用、保护环境和保障粮食安全具有重要意义。通过比较氮高效和氮低效谷子品种在不同氮水平条件下表型性状和氮吸收能力发现,氮高效品种比低效品种具有较高的铵态氮和硝态氮吸收能力。设置3个氮素水平(0、3和6 mmol·L-1),在谷苗两叶一心期处理7 d后,运用转录组测序(RNA-seq)技术比较不同品种在各个处理之间的差异表达基因(differentially expressed genes,DEGs)。结果表明,以0 mmol·L-1氮处理为对照,共获得16 000个DEGs。通过GO和KEGG富集分析发现,氨基酸合成与代谢、防御相关代谢、乙醛酸和二羧酸代谢、光合生物的碳固定、丙酮酸代谢、卟啉与叶绿素代谢、MAPK信号通路-植物、氨基糖和核苷酸糖代谢在调控氮代谢生物反应过程中发挥重要作用。并预测到3 348个转录因子,分属46个家族,其中预测转录因子数量最多的是MYB-related家族(189个),其次为bHLH家族(182个)、WRKY家族(158个)、MYB家族(156个)和HB-other家族(153个)。通过WGCNA分析筛选出KME值排名前30位的基因,其中有7个基因被注释到基因信息。RT-qPCR结果显示,Seita.9G488700、Seita.2G368800和Seita.5G063300表达趋势与RNA-seq结果一致,主要调控糖转运蛋白和碳水化合物运输与代谢过程。说明氨基酸合成与代谢、光合生物的碳固定、乙醛酸和二羧酸代谢途径等信号通路在谷子氮高效利用方面发挥重要作用。研究结果筛选到3个与氮高效利用相关的基因,完善了谷子氮高效基因组注释信息,为氮高效基因资源的挖掘利用提供理论指导。
中图分类号:
夏雪岩, 崔纪菡, 黄玫红, 郭帅, 刘猛, 赵宇, 鲁一薇, 赵文庆, 王京新, 李顺国. 谷子苗期氮高效转录组分析与基因挖掘[J]. 中国农业科技导报, 2024, 26(10): 41-57.
Xueyan XIA, Jihan CUI, Meihong HUANG, Shuai GUO, Meng LIU, Yu ZHAO, Yiwei LU, Wenqin ZHAO, Jingxin WANG, Shunguo LI. Analysis of High-efficiency Transcriptome of Nitrogen in Millet Seedlings and Gene Mining[J]. Journal of Agricultural Science and Technology, 2024, 26(10): 41-57.
成分 Component | N0 | N3 | N6 |
---|---|---|---|
1.0 mol·L-1 Ca(NO3)2·4H2O | 0 | 1.5 | 3 |
0.5 mol·L-1 K2SO4 | 5 | 5 | 5 |
1.0 mol·L-1 CaCl2 | 5 | 3.5 | 2 |
1.0 mol·L-1 MgSO4·7H2O | 2 | 2 | 2 |
1.0 mol·L-1 KH2PO4 | 1 | 1 | 1 |
0.5% Fe-EDTA | 1 | 1 | 1 |
微量元素母液 Trace element mother liquor | 1 | 1 | 1 |
ddH2O | 985 | 985 | 985 |
总体积Total volume | 1 000 | 1 000 | 1 000 |
表1 不同处理营养液配方 (mL)
Table 1 Nutrient solution formula of differnet treatment
成分 Component | N0 | N3 | N6 |
---|---|---|---|
1.0 mol·L-1 Ca(NO3)2·4H2O | 0 | 1.5 | 3 |
0.5 mol·L-1 K2SO4 | 5 | 5 | 5 |
1.0 mol·L-1 CaCl2 | 5 | 3.5 | 2 |
1.0 mol·L-1 MgSO4·7H2O | 2 | 2 | 2 |
1.0 mol·L-1 KH2PO4 | 1 | 1 | 1 |
0.5% Fe-EDTA | 1 | 1 | 1 |
微量元素母液 Trace element mother liquor | 1 | 1 | 1 |
ddH2O | 985 | 985 | 985 |
总体积Total volume | 1 000 | 1 000 | 1 000 |
基因名称 Gene name | 引物名称 Primer name | 引物序列 Primer sequence(5’-3’) |
---|---|---|
Seita.9G488700 | GS-488700-F1 | AAGAAGCACGAGGACAAGGA |
GS-488700-R1 | GTGGTGTAGGAGGCGAAGAA | |
Seita.2G368800 | GS-368800-F2 | CAAGGAACGAAACGGTGAGA |
GS-368800-R2 | CAAGCGGGCTGTAGAGGAC | |
Seita.5G063300 | GS-63300-F2 | GGACCAGAAGACCGTCAACTC |
GS-63300-R2 | TCGGGAACGCCGTGAGGAAC | |
SiActin | SiActin-F | GGCAAACAGGGAGAAGATGA |
SiActin-R | GAGGTTGTCGGTAAGGTCACG |
表2 实时荧光定量PCR的引物序列
Table 2 Primer sequence of real-time fluorescence quantitative PCR.
基因名称 Gene name | 引物名称 Primer name | 引物序列 Primer sequence(5’-3’) |
---|---|---|
Seita.9G488700 | GS-488700-F1 | AAGAAGCACGAGGACAAGGA |
GS-488700-R1 | GTGGTGTAGGAGGCGAAGAA | |
Seita.2G368800 | GS-368800-F2 | CAAGGAACGAAACGGTGAGA |
GS-368800-R2 | CAAGCGGGCTGTAGAGGAC | |
Seita.5G063300 | GS-63300-F2 | GGACCAGAAGACCGTCAACTC |
GS-63300-R2 | TCGGGAACGCCGTGAGGAAC | |
SiActin | SiActin-F | GGCAAACAGGGAGAAGATGA |
SiActin-R | GAGGTTGTCGGTAAGGTCACG |
图1 氮素处理下4个谷子品种的表型差异注:*和**分别表示P<0.05和P<0.01水平差异显著;不同大小写字母表示P<0.01和P<0.05水平差异显著。
Fig. 1 Phenotypic differences of four millet varieties under nitrogen treatmentNote: * and ** indicate significant different at P<0.05 and P<0.01 levels, respectively; different captial and small letters indicate significant differences at P<0.01 and P<0.05 levels, respectively.
图5 不同氮素处理下WGCNA分析A:基因和模块的树状图;B:MEbrown模块中连接程度(KME)排名前30基因的共表达网络;C:模块-性状关联分析,括号内数值为模块与表型的相关性P值
Fig. 5 Analysis of WGCNA under different nitrogen treatmentsA: Dendrogram of genes and modules; B: Co-expression network of top 30 genes highly connected (KME) in the MEbrown with high; C: Module-trait association, the values in bracket represent the P value of the correlation between the module and phenotype
1 | YANG X, WAN Z, PERRY L, et al.. Early millet use in northern China [J]. Proc. Natl. Acad. Sci., 2012, 109(10): 3726-3730. |
2 | 路海东,薛吉全,马国胜,等.低氮胁迫对不同基因型夏玉米源库性状和灌浆特性的影响[J].应用生态学报, 2010, 21(5): 1277-1282. |
LU H D, XUE J Q, MA G S, et al.. The effect of low nitrogen stress on the source sink and filling characteristics of different genotypes of summer maize [J]. J. Appl. Ecol., 2010, 21(5): 1277-1282. | |
3 | PENG S, BURESH R J, HUANG J, et al.. Improving nitrogen fertilization in rice by site-specific N management: a review [J]. Agron. Sustain. Dev., 2010, 30(3): 649-656. |
4 | JU C, BURESH R J, WANG Z, et al.. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application [J]. Field Crops Res., 2015, 175: 47-55. |
5 | 殷星.优化施氮对土壤硝态氮及棉花产量和氮肥利用率的影响[D].石河子:石河子大学, 2021. |
YIN X. The effects of optimizing nitrogen application on soil nitrate nitrogen, cotton yield and nitrogen fertilizer utilization efficiency [D]. Shihezi: Shihezi University, 2021. | |
6 | WANG Y Y, HSU P K, TSAY Y F. Uptake, allocation and signaling of nitrate [J]. Trends Plant Sci., 2012, 17(8): 458-467. |
7 | ARROBAS M, PARADA M J, MAGALHES P, et al.. Nitrogen-use efficiency and economic efficiency of slow-release N fertilisers applied to irrigated turfs in a mediterranean environment [J]. Nutr. Cycling Agroecosys., 2011, 89(3): 329-339. |
8 | 曾蓉.氮肥运筹对谷子产量及品质的影响[D].太谷:山西农业大学, 2013. |
ZENG R. The effect of nitrogen fertilizer operations on millet yield and quality [D]. Taigu: Shanxi Agricultural University, 2013. | |
9 | 梁兴萍,冯唯欣,秦鹏飞,等.谷子耐低氮品种的筛选[J].山西农业科学, 2016, 44(12): 1747-1750. |
LIANG X P, FENG W X, QIN P F, et al.. Selection of millet varieties with low nitrogen tolerance [J]. Shanxi Agric. Sci., 2016, 44(12): 1747-1750. | |
10 | 黄兴东.谷子耐低氮胁迫品种资源的筛选与鉴定[D].太谷:山西农业大学,2017. |
HUANG X D. Screening and identification of resistance to low nitrogen varieties of foxtail millet [D]. Taigu: Shanxi Agricultural University, 2017. | |
11 | 连盈,卢娟,胡成梅,等.低氮胁迫对谷子苗期性状的影响和耐低氮品种的筛选[J]. 中国生态农业学报, 2020, 28(4): 1-12. |
LIAN Y, LU J, HU C M, et al.. The effect of low nitrogen stress on the seedling traits of foxtail millet and the screening of low nitrogen tolerant varieties [J]. Chin. J. Eco-Agric., 2020, 28(4): 1-12. | |
12 | 罗世武,杨军学,王勇,等.低氮胁迫对不同谷子品种生长及产量的影响[J].江苏农业科学, 2019, 47(13): 100-104. |
LUO S W, YANG J X, WANG Y, et al.. The effect of low nitrogen stress on the growth and yield of different millet varieties [J]. Jiangsu Agric. Sci., 2019, 47(13): 100-104. | |
13 | 程璐,陈鑫,张涵,等.低氮胁迫对不同品种谷子生长及产量的影响[J].山东农业科学, 2016, 48(10): 103-106. |
CHENG L, CHEN X, ZHANG H, et al.. The effect of low nitrogen stress on the growth and yield of different varieties of foxtail millet [J]. Shandong Agric. Sci., 2016, 48(10): 103-106. | |
14 | 时丽冉,郝洪波,李明哲.不同基因型谷子幼苗期对低氮胁迫的响应[J].作物杂志, 2014(4): 75-79. |
SHI L R, HAO H B, LI M Z. Response of different genotypes of millet seedlings to low nitrogen stress during the seedling stage [J]. Crops, 2014(4): 75-79. | |
15 | 李明哲,时丽冉,郝洪波,等.低氮胁迫对不同品种谷子生长和光合特性的影响[J].中国农学通报, 2017, 33(16): 19-22. |
LI M Z, SHI L R, HAO H B, et al.. The effect of low nitrogen stress on the growth and photosynthetic characteristics of different varieties of foxtail millet [J]. Chin. Agric. Sci. Bull., 2017, 33(16): 19-22. | |
16 | 陈二影,杨延兵,秦岭,等.谷子苗期氮高效品种筛选及相关特性分析[J].中国农业科学, 2016, 49(17): 3287-3297. |
CHEN E Y, YANG Y B, QIN L, et al.. Screening of nitrogen efficient varieties and analysis of related characteristics during the seedling stage of foxtail millet [J]. Sci. Agric. Sin., 2016, 49(17): 3287-3297. | |
17 | 秦娜,马春业,朱灿灿,等.谷子氮高效基因型筛选及相关特性分析[J].河南农业科学, 2019, 48(5): 22-29. |
QIN N, MA C Y, ZHU S S, et al.. Screening of nitrogen efficient genotypes and analysis of related characteristics in foxtail millet [J]. J. Henan, 2019, 48(5): 22-29. | |
18 | SHU S H, CHEN B, ZHOU M C, et al.. De novo sequencing andtranscriptome analysis of Wolfiporia cocos to reveal genes related to biosynthesis of triterpenoids [J/OL]. PLoS One, 2013, 8(8): 71350 [2024-07-05]. . |
19 | COMINELI E, GALBIATI M, VAVASSEUR A, et al.. A guard-cell-specific MYB transcription factor regulates stomatalmovements and plant drought tolerance [J]. Curr. Biol., 2005, 15(13): 1196-1200. |
20 | KIM S, KANG J Y, CHO D I, et al.. ABF2, an ABRE-bind-ing bZIP factor, is an essential component of glucose sig-naling and its overexpression affects multiple stress toler-ance [J]. Plant J., 2004, 40(1): 75-87. |
21 | ZHOU Y, YANG P, CUI F L, et al.. Transcriptome analysis of salt stress responsiveness in the seedlings of dongxiang wild rice (Oryza rufipogon Griff.) [J/OL]. PLoS One, 2016, 11(1): e0146242 [2024-07-05]. . |
22 | 邵彩虹,李瑶,钱银飞,等.氮素胁迫对水稻根系影响的转录组分析[J]. 华北农学报, 2018, 33(1): 168-175. |
SHAO C H, LI Y, QIAN Y F, et al.. Transcriptome analysis of the effects of nitrogen stress on rice roots [J]. Acta Agric. Boreali-Sin., 2018, 33(1): 168-175. | |
23 | 丁庆倩,刁现民,闵东红,等.谷子MYB类转录因子SiMYB42提高转基因拟南芥低氮胁迫耐性[J].遗传, 2018, 40(4): 327-338. |
DING Q Q, DIAO X M, MIN H D, et al.. Millet MYB transcription factor SiMYB42 enhances the tolerance of transgenic Arabidopsis to low nitrogen stress [J]. Hereditas, 2018, 40(4): 327-338. | |
24 | 杨瑞.谷子SiWLIM2b基因提高水稻抗旱及耐低氮胁迫的功能研究[D].杨凌:西北农林科技大学, 2019. |
YANG R. Functional study on the SiWLIM2b gene of foxtail millet to enhance drought resistance and low nitrogen stress tolerance in rice [D]. Yangling: Northwest A&F University, 2019. | |
25 | 何明洁.烟草K326、红花大金元对 N O 3 - 和 N O 4 + 的吸收利用的生理学研究[D].长沙: 湖南农业大学, 2017. |
HE M J. Physiological study on the absorption and utilization of N O 3 - and N O 4 + by tobacco K326 and Honghuadajinyuan [D]. Changsha: Hunan Agricultural University, 2017. | |
26 | DIAZ C, VERA S C, LOUDRT O. Leaf yellowing and anthocyanin accumulation are two genetically independent strategies in response to nitrogen limitation in Arabidopsis thaliana [J]. Plant Cell Physiol., 2006, 47(1): 74-83. |
27 | 张亚军,王丽学,陈超,等. 植物对逆境的响应机制研究进展[J].江西农业学报, 2011(9): 64-69. |
28 | 张敏.谷子苗期响应低氮胁迫生理及转录组特征分析[D].太谷:山西农业大学, 2021. |
ZHANG M. Physiological and transcriptome characteristics analysis of millet seedlings in response to low nitrogen stress during seedling stage [D]. Taigu: Shanxi Agricultural University, 2021. | |
29 | 张立媛,琦明玉,李志光,等.不同谷子品种氮素吸收与利用差异的研究[J].东北农业科学, 2021, 46(1): 13-16. |
ZHANG L Y, QI M Y, LI Z G, et al.. A study on the differences in nitrogen absorption and utilization among different millet varieties [J]. Northeast Agric. Sci., 2021, 46(1): 13-16. | |
30 | 陈凌,王君杰,王海岗,等.耐低氮糜子品种的筛选及农艺性状的综合评价[J]. 中国农业科学, 2020, 53(16): 3214-3225. |
CHEN L, WANG J J, WANG H G, et al.. Screening of low nitrogen tolerant millet varieties and comprehensive evaluation of agronomic traits [J]. Scientia Agric. Sin., 2020, 53(16): 3214-3225. | |
31 | 刘晓嵩.硝态氮和甘氨酸态氮供应下菠菜氮素吸收与代谢差异研究[D].上海: 上海交通大学,2024. |
LIU X S. Study on nitrogen absorption and metabolism difference of spinach under nitrate nitrogen and glycine nitrogen supply [D]. Shanghai: Shanghai Jiao Tong University, 2024. | |
32 | 丁文家,胡峻铭,王嘉力.水稻育种主要目标性状基因挖掘研究进展[J].杂交水稻, 2023, 38(3): 1-19. |
DING W J, HU J M, WANG J L. Research progress on gene mining for the main target traits in rice breeding [J]. Hybrid Rice, 2023, 38(3): 1-19. | |
33 | 王爽.基于茶树转录组SSR标记开发及部分山茶属植物遗传多样性分析[D].南京:南京农业大学, 2019. |
WANG S. Development of SSR markers based on tea tree transcriptome and genetic diversity analysis of some camellia plants [D]. Nanjing: Nanjing Agricultural University, 2019. | |
34 | XIA S L, ZHAO X H, YU H T, et al.. Research Note: Identification of breeding-related candidate genes in Tianjin-monkey chickens by transcriptome analysis [J/OL]. Poul. Sci., 2023, 102(10): 102928 [2024-07-05]. . |
35 | HASAN K N, JING K, NATHAN M R, et al.. Comparative transcriptome and metabolome analyses of wild and mutant Oujiang color common carp through editing SCARB1 gene by CRISPR/Cas technology [J/OL]. Aquaculture, 2023, 577: 739901 [2024-07-05]. . |
36 | FU G F, MA Y L, LI L, et al.. Transcriptome analysis revealed water balance controlled by ZxOSCA1.1 and lateral root development are crucial strategies for Zygophyllum xanthoxylon [J]. South Afr. J. Bot., 2023, 160, 354-368. |
37 | NIU Y X, YE L X, WANG Y, et al.. Transcriptome analysis reveals salicylic acid treatment mitigates chilling injury in kiwifruit by enhancing phenolic synthesis and regulating phytohormone signaling pathways [J/OL]. Postharvest Biol. Technol., 2023, 205: 112483 [2024-07-05]. . |
38 | CUI M, LIANG Z, LIU Y, et al.. Flavonoid profile of Anoectochilus roxburghii (wall) lindl under short-term heat stress revealed by integrated metabolome, transcriptome, and biochemical analyses [J/OL]. Plant Physiol. Biochem., 2023, 201: 107896 [2024-07-05]. . |
39 | KUAIFEI X, PAN X Q, ZENG X, et al.. Xoo-responsive transcriptome reveals the role of the circular RNA133 in disease resistance by regulating expression of OsARAB in rice [J/OL]. Phytopathol. Res., 2023, 5:33 [2024-07-05]. |
40 | JAEWOOK K, YEONGBAE Y, JEONGHOON H, et al.. Comparative transcriptome analysis on wild-simulated ginseng of different age revealed possible mechanism of ginsenoside accumulation [J/OL]. Plant Physiol. Biochem., 2023, 201, 107870 [2024-07-05]. . |
41 | NIU Y F, LI J Y, SUN F T, et al.. Comparative transcriptome analysis reveals the key genes and pathways involved in drought stress response of two wheat (Triticum aestivum L) varieties [J/OL]. Genomics, 2023, 115(5): 110688 [2024-07-05]. . |
42 | SUN Y P, LIU X Y, LI W X, et al.. The regulatory metabolic networks of the Brassica campestris L. hairy roots in response to cadmium stress revealed from proteome studies combined with a transcriptome analysis [J/OL]. Ecotoxicol. Environ. Safety, 2023, 263, 115214 [2024-07-05]. . |
43 | 张婷婷,孟丽丽,刘晓蕊,等.马铃薯氮代谢对低氮胁迫的响应及转录组分析[J]. 西北农林科技大学学报(自然科学版), 2022, 50(8): 15-26. |
ZHANG T T, MENG L L, LIU X R, et al.. Response and transcriptome analysis of potato nitrogen metabolism to low nitrogen stress [J]. J. Northwest Sci-Tech. Univ. Agric. Forestry, 2022, 50(8): 15-26. | |
44 | ZHAO M L, GUO R, LI M X, et al.. Physiological characteristics and metabolomics reveal the tolerance mechanism to low nitrogen in Glycine soja leaves [J]. Physiol. Plantarum, 2020, 168(4): 819-834. |
45 | 张新城.氮素穗肥调控粳稻籽粒灌浆的代谢组学与转录组学研究[D].南京: 南京农业大学, 2017. |
ZHANG X C. Metabolomics and transcriptomics analysis of grain filling in japonica rice regulated by panicle nitrogen fertilizer [D]. Nanjing: Nanjing Agricultural University, 2017. | |
46 | 李丽.水稻热激转录因子OsHsf18调控植物抗生物胁迫与非生物胁迫的功能机制研究[D].长沙:湖南农业大学, 2018. |
LI L. Research on the functional mechanism of rice heat shock transcription factor OsHsf18 regulating plant resistance to biological and abiotic stress [D]. Changsha: Hunan agricultural university, 2018. | |
47 | 柴华,杨曌,李红,等.干旱胁迫下紫花苜蓿抗旱性评价及代谢组学分析[J].黑龙江畜牧兽医, 2023(7): 94-137. |
CHAI H, YANG Z, LI H, et al.. Evaluation of drought resistance and metabolomics analysis of purple alfalfa under drought stress [J]. Heilongjiang Anim. Sci. Vet. Med., 2023 (7): 94-137. | |
48 | 张文云,张建诚,姚景珍.氮胁迫下小麦叶片转录组分析[J].中国农业科技导报, 2020, 22(11): 26-34. |
ZHANG W Y, ZHANG J C, YAO J Z. Transcriptome analysis of wheat leaves under nitrogen stress [J]. China Agric. Sci. Techno., 2020, 22(11): 26-34. | |
49 | 王洪飞,欧静,王孝敬,等.马缨杜鹃bHLH转录因子家族的鉴定与表达分析 [J]. 广西植物, 2023, 1-21. |
WANG H F, OU J, WANG X J, et al.. Identification and expression analysis of bHLH Transc-ription factor family in Rhododendron camara [J]. Guihaia, 2023, 1-21. | |
50 | HEIM A M, MARC J, MARTIN W, et al.. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity [J]. Mol. Biol. Evol., 2003, 20(5): 735-747. |
51 | NAWAZ M A, CHEN C, SHIREEN F, et al.. Genome-wide expression profiling of leaves and roots of watermelon in response to low nitrogen [J]. BMC Genomics, 2018, 19(1): 456-456. |
52 | SUPRIYA A, POONAM S, YADAV N R, et al.. MYB transcription factor genes as regulators for plant responses: an overview [J]. Physiol. Mol. Biol. Plants, 2013, 19(3): 307-321. |
53 | ZHANG L C, ZHAO G Y, JIA J Z, et al.. Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress [J]. J. Exp. Bot., 2012, 63(1): 203-214. |
54 | YANG Y, GAO S, SU Y, et al.. Transcripts and low nitrogen tolerance: Regulatory and metabolic pathways in sugarcane under low nitrogen stress [J]. Environ. Exp. Bot., 2019, 163: 97-111. |
55 | CURCI P L, CIGLIANO R A, ZULUAGA D L, et al... Transcriptomic response of durum wheat to nitrogen starvation [J/OL]. Sci. Rep., 2019, 7: 1176 [2024-07-05] . . |
56 | 丁红,张智猛,徐扬,等.氮素缓解花生干旱胁迫的生理和转录调控机制[J].作物学报, 2023, 9(1): 225-238. |
JING H, ZHANG Z M, XU Y, et al... Physiological and transcriptional regulation mechanism of nitrogen alleviating drought stress in peanut [J]. J. Crop Sci., 2023, 9(1): 225-238. |
[1] | 鲁一薇, 夏雪岩, 赵宇, 崔纪菡, 刘猛, 黄玫红, 褚程, 刘建军, 李顺国. 缺钾胁迫下谷子转录组分析及相关基因挖掘[J]. 中国农业科技导报, 2024, 26(6): 30-44. |
[2] | 蒋沛含, 杨晓楠, 杨晨旭, 张爱军. 基于偏最小二乘回归的谷子冠层氮素含量高光谱估测研究[J]. 中国农业科技导报, 2024, 26(6): 91-101. |
[3] | 李瑞珍, 姚建民, 王忠祥, 高凤翔, 窦贵新, 杨瑞平, 刘钊, 张继, 张振宇. 全生物降解渗水地膜覆盖冬播谷子产量结构关系分析[J]. 中国农业科技导报, 2023, 25(5): 185-191. |
[4] | 张会, 王越越, 赵波, 张丽玲, 郄倩茹, 韩渊怀, 李旭凯. 基于WGCNA的谷子苗期冷胁迫应答基因网络构建与核心因子发掘[J]. 中国农业科技导报, 2023, 25(10): 22-34. |
[5] | 焦雄飞, 于晋, 冯乐勇, 郭耀东, 樊丽生. 不同播期对谷子DUS测试性状的影响[J]. 中国农业科技导报, 2022, 24(8): 55-64. |
[6] | 赵晋锋, 余爱丽, 李颜方, 杜艳伟, 王高鸿, 王振华. 谷子SiCBL3对非生物胁迫响应特征分析[J]. 中国农业科技导报, 2022, 24(11): 68-75. |
[7] | 郭瑞锋, 任月梅, 杨忠, 刘贵山, 任广兵, 张绶, 朱文娟. 草甘膦铵盐诱导谷子雄性不育的转录组分析[J]. 中国农业科技导报, 2022, 24(10): 35-43. |
[8] | 鱼冰星, 王宏富, 王振华, 张鹏, 成锴, 余爱丽, 闫海丽, 鱼冰洁. 多效唑对谷子茎秆特征及抗倒性的影响[J]. 中国农业科技导报, 2021, 23(8): 37-44. |
[9] | 李冉, 刘宇航, 梁杉, 张敏, . 硒肥对谷子产量因子及其籽粒富硒效果的影响[J]. 中国农业科技导报, 2021, 23(6): 140-146. |
[10] | 张宇杰, 郭平毅, 郭美俊, 周浩, 原向阳, 董淑琦, 王玉国. 外源硒矿粉对谷子保护酶活性、产量和籽粒中硒含量的影响[J]. 中国农业科技导报, 2021, 23(5): 153-159. |
[11] | 杨华1,李江2,张维1,周正富1,燕永亮1,郭嘉3,刘相国3,郝东云3,林敏1,柯秀彬1*. 施氏假单胞菌在玉米根际的固氮效率和促生效果研究[J]. 中国农业科技导报, 2021, 23(4): 76-84. |
[12] | 岳琳祺,郭佳晖,白雄辉,施卫萍,郭平毅*,郭杰*. 叶面喷施硒肥对不同基因型谷子农艺性状及籽粒硒含量的影响[J]. 中国农业科技导报, 2021, 23(4): 154-163. |
[13] | 田岗, 刘鑫, 王玉文, 刘永忠, 李会霞, 成锴, 王振华, 刘红. 遮光处理对谷子农艺性状、小米品质及蒸煮特性的影响[J]. 中国农业科技导报, 2021, 23(11): 47-54. |
[14] | 李敏,罗德强,江学海,蒋明金,李树杏,姬广梅,李立江,周维佳*. 高产氮高效型籼稻品种的籽粒灌浆特性[J]. 中国农业科技导报, 2020, 22(9): 22-30. |
[15] | 相吉山1,张恒儒2,刘涵1,索良喜2,贾姝婧1,张颖1,史景奇1,胡利喆1,蔡一宁1. 不同生态区谷子种质资源表型比较分析[J]. 中国农业科技导报, 2020, 22(9): 31-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||