1 |
LUAN S, KUDLA J, RODRIGUEZ-CONCEPCION M, et al.. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants [J]. Plant Cell, 2002, 14 (Sl): S389-S400.
|
2 |
KUDLA J, BATISTIC O. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network [J]. Planta, 2004, 219: 915-924.
|
3 |
KOLUKISAOGLU U, WEINL S, BLAZEVIC D, et al.. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks [J]. Plant Physiol., 2004, 134 (1): 43-58.
|
4 |
DU W, LIN H, CHEN S, et al.. Phosphorylation of SOS3-like calcium-binding proteins by their interacting SOS2-like protein kinases is a common regulatory mechanism in Arabidopsis [J]. Plant Physiol., 2011, 156 (4): 2235-2243.
|
5 |
LIN H X, YANG Y Q, QUAN R D, et al.. Phosphorylation of SOS3-like calcium binding protein 8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis [J]. Plant Cell, 2009, 21 (5): 1607-1619.
|
6 |
LIN H, DU W M, YANG Y Q, et al.. A calcium-independent activation of the Arabidopsis SOS2-like protein kinase 24 by its interacting SOS3-like calcium binding protein1 [J]. Plant Physiol., 2014, 164 (4): 2197-2206.
|
7 |
MAHAJAN S, TUTEJA N. Cold salinity and drought stresses: an overview [J]. Arch Biochem. Biophy., 2005, 444: 139-158.
|
8 |
KOLUKISAOGLU U, WEINL S, BLAZEVIC D, et al.. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks [J]. Plant Physiol., 2004, 134 (1): 43-58.
|
9 |
赵晋锋,余爱丽,王高鸿,等.植物CBL/CIPK网络系统逆境应答研究进展[J].中国农业科技导报, 2011, 13(4): 32-38.
|
|
ZHAO J F, YU A L, WANG G H, et al.. Progress of CBL/CIPK signal system in response to stresses in plant [J]. J. Agric. Sci. Technol., 2011, 13(4): 32-38.
|
10 |
杨秀,邓艳凤,肖水平,等.亚洲棉CBL基因家族鉴定及生物信息学分析[J].棉花科学, 2021, 43(2): 14-21.
|
|
YANG X, DENG Y F, XIAO S P, et al.. Identification and bioinformatics analysis of GACBL family gene in Gossypium arboretum [J]. Cotton Sci., 2021, 43(2) : 14-21.
|
11 |
张兴政,黄浩捷,孙一闻,等.蒺藜苜蓿CBL基因家族全基因组鉴定及表达分析[J].中国草地学报, 2021, 43(7): 1-11.
|
|
ZHANG X Z, HUANG H J, SUN Y W, et al.. Genome-wide identification and expression analysis od CBL gene family in Medicago truncatula [J]. Chin. J. Grassland, 2021, 43(7):1-11.
|
12 |
高玲,王斐,谢双全,等.乌拉尔甘草CBL基因家族的鉴定与表达分析[J].生物技术通报, 2021, 37(4): 18-27.
|
|
GAO L, WANG F, XIE S Q, et al.. Genome-wide identification and expression analysis of CBL gene family in Glycyrrhiza uralensis [J]. Biotechnol. Bull., 2021, 37(4):18-27.
|
13 |
曹齐卫,刘明毓,陈伟,等. 黄瓜CBL基因的鉴定和特征分析[J].核农学报, 2016, 30(11): 2127-2132.
|
|
CAO Q W, LIU M Y, CHEN W, et al.. Identification and vharacterization of cucumber CBL genes [J]. J. Nucl. Agric. Sci., 2016, 30(11): 2127-2132.
|
14 |
许园园,蔺经,李晓刚,等.梨CBL基因家族全基因组序列的鉴定及非生物胁迫下的表达分析[J].中国农业科学, 2015, 48(4):735-747.
|
|
XU Y Y, LIN J, LI X G, et al.. Identification and expression analysis under abiotic stresses of the CBL gene family in pear [J]. Sci. Agric. Sin., 2015, 48(4): 735-747.
|
15 |
HALFTER U, ISHITANI M, ZHU J K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3 [J]. Proc. Natl. Acad. Sci. USA, 2000, 97( 7): 3735-3740.
|
16 |
MARTINEZ A J, JIANG X, GARCIADEBLAS B, et al.. Conservation of the salt overly sensitive pathway in rice [J]. Plant Physiol., 2007, 143: 1001-1012.
|
17 |
ZHANG Y M, LINGHU J J, WANG D, et al.. Foxtail millet CBL4 (SiCBL4) interacts with SiCIPK24, modulates plant salt stress tolerance [J]. Plant Mol. Biol. Rep., 2017, 35(6): 634-646.
|
18 |
WANG M Y, GU D, LIU T S, et al.. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance [J]. Plant Mol. Biol., 2007, 65: 733-746.
|
19 |
GAO P, ZHAO P M, WANG J, et al.. Co-expression and preferential interaction between two calcineurin B-like proteins and a CBL-interacting protein kinase from cotton [J]. Plant Physiol. Biochem., 2008, 46: 925-940.
|
20 |
XU J, LI H D, CHEN L Q, et al.. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis [J]. Cell, 2006, 125: 1347-1360.
|
21 |
TANG R J, LIU H, YANG Y, et al.. Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis [J]. Cell Res., 2012, 22(12):1650-1665.
|
22 |
ECKERT C, OFFENBORN J N, HEINZ T, et al.. The vacuolar calcium sensors CBL2 and CBL3 affect seed size and embryonic development in Arabidopsis thaliana [J]. Plant J., 2014, 78(1):146-156.
|
23 |
HWANG Y H, BETHKE P C, CHEONG Y H, et al.. A gibberellin-regulated calcineurin B in rice localizes to thetonoplast and is implicated in vacuole function [J]. Plant Physiol., 2005,138: 1347-1358.
|
24 |
D'NGELO C, WEINL S, BATISTIC O, et al.. Alternative complex formation of the Ca2 + -regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis [J]. Plant J., 2006, 48(6): 857-872.
|
25 |
HO C H, LIN S H, HU H C, et al.. CHL1 functions as a nitrate sensor in plants [J]. Cell, 2009, 138(6):1184-1194.
|
26 |
DRERUP M M, SCHLUCKING K, HASHIMOTO K, et al... The calcineurin B-like calciumsensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF [J]. Mol. Plant, 2013, 6(2):559-569.
|
27 |
NOZAWA A, KOIZUMI N, SANO H. An Arabidopsis SNF1-related protein kinase, AtSR1, interacts with a calcium-binding protein, AtCBL2, of which transcripts respond to light [J]. Plant Cell Physiol., 2001, 42(9):976-981.
|
28 |
赵晋锋,杜艳伟,王高鸿,等.谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J].作物学报, 2020, 46(5): 700-711.
|
|
ZHAO J F, DU Y WEI, WANG G H, et al.. Identification of PEPC genes from foxtail millet and its response to abiotic stress [J]. Acta Agron. Sin., 2020, 46(5): 700-711.
|
29 |
ZHANG Y, SU J, DUAN S, et al.. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes [J/OL]. Plant Methods, 2011, 7(1):30 [2022-08-31]. .
|
30 |
GU L, ZHANG Y, ZHANG M, et al.. ZmGOLS2, a target of transcription factor ZmDREB2A, offers similar protection against abiotic stress as ZmDREB2A [J]. Plant Mol. Biol., 2016, 90(1-2):157-170.
|
31 |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CT method [J]. Methods, 2001, 25: 402-408.
|