1 |
梁丽琛,刘维涛,张雪,等.盐土植物提取修复重金属污染盐土研究进展[J].农业环境科学学报,2016,35(7):1233-1241.
|
|
LIANG L S, LIU W T, ZHANG X, et al.. Research progress in phytoextraction of heavy metal contaminated saline soil [J]. J. Agro-Environ. Sci., 2016, 35(7):1233-1241.
|
2 |
叶武威,穆敏,王俊娟,等.真菌的耐盐基因挖掘与棉花的耐盐性改良研究[C]// 中国农学会棉花分会2016年年会论文汇编.江苏 徐州:中国农业学会,2016:73-74.
|
3 |
KOLEVA-VALKOVA L, VASILEV A. Physiological parameters of young cotton plants, grown on heavy metal contaminated soils [J]. Agrarni Nauki, 2015, 7(18):61-66.
|
4 |
MANOUSAKI E, KALOGERAKIS N. Halophytes-an emerging trend in phytoremediation [J]. Int. J. Phytorem., 2011, 13(10):959-969.
|
5 |
ARIF N, YADAV V, SINGH S, et al.. Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development [J]. Front Environ. Sci., 2016, 4:69-80.
|
6 |
SALAM L B, OBAYORI O S, ILORI M O, et al.. Effects of cadmium perturbation on the microbial community structure and heavy metal resistome of a tropical agricultural soil [J]. Bioresour. Bioprocess., 2020, 7(1):1-19.
|
7 |
FARCASANU I C, POPA C V, RUTA L L. Calcium and cell response to heavy metals: can yeast provide an answer ? [J]. Calcium Signal Transduction, 2018:23-41.
|
8 |
JALMI S K, BHAGAT P K, VERMA D, et al.. Traversing the links between heavy metal stress and plant signaling [J/OL]. Front Plant Sci., 2018, 9:12 [2020-11-10]. .
|
9 |
EMAMVERDIAN A, DING Y, MOKHBERDORAN F, et al.. Heavy metal stress and some mechanisms of plant defense response [J/OL]. Sci. World J., 2015(2015):756120 [2020-11-10]. .
|
10 |
CHAUDHARY K, AGARWAL S, KHAN S. Role of Phytochelatins (PCs), Metallothioneins (MTs), and Heavy Metal ATPase (HMA) Genes in Heavy Metal Tolerance [M]. Mycoremediation and Environmental Sustainability, Springer, 2018:39-60.
|
11 |
GHORI N, GHORI T, HAYAT M Q, et al.. Heavy metal stress and responses in plants [J]. Int. J. Environ. Sci.Technol., 2019, 16(3):1807-1828.
|
12 |
BELYKH E S, MAYSTRENKO T A, VELEGZHANINOV I O. Recent trends in enhancing the resistance of cultivated plants to heavy metal stress by transgenesis and transcriptional programming [J]. Mol. Biotechnol., 2019, 61(4):725-741.
|
13 |
SHARMA S S, DIETZ K J, MIMURA T. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants [J]. Plant Cell Environ., 2016, 39(5):1112-1126.
|
14 |
LI J, CHEN C, WEI J, et al.. SpPKE1, a multiple stress-responsive gene confers salt tolerance in tomato and tobacco [J]. Int. J. Mol. Sci., 2019, 20(10):2478-2493.
|
15 |
PETERSENSUP SUP S K E SJAN. The lysine-rich motif of intrinsically disordered stress protein CDeT11-24 from Craterostigma plantagineum is responsible for phosphatidic acid binding and protection of enzymes from damaging effects caused by desiccation [J]. J. Exp. Bot., 2012, 63(13):4919-4929.
|
16 |
PITZSCHKE A, XUE H, PERSAK H, et al.. Post-translational modification and secretion of azelaic acid induced 1 (AZI1), a hybrid proline-rich protein from Arabidopsis [J/OL]. Int. J. Mol. Sci., 2016, 17(1):85 [2020-11-10]. .
|
17 |
BENEŠ V, LEONHARDT T, SÁCKÝ J, et al.. Two P1B-1-ATPases of Amanita strobiliformis with distinct properties in Cu/Ag transport [J/OL]. Front Microbiol., 2018, 9:747 [2020-11-10]. .
|
18 |
ZHANG Y, CHEN K, ZHAO F, et al.. OsATX1 interacts with heavy metal P1B-type ATPases and affects copper transport and distribution [J]. Plant Physiol., 2018, 178(1):329-344.
|
19 |
DAI W, WANG M, GONG X, et al.. The transcription factor Fc WRKY 40 of Fortunella crassifolia functions positively in salt tolerance through modulation of ion homeostasis and proline biosynthesis by directly regulating SOS2 and P5CS1 homologs [J]. New Phytol., 2018, 219(3):972-989.
|
20 |
CONG W, MIAO Y, XU L, et al.. Transgenerational memory of gene expression changes induced by heavy metal stress in rice (Oryza sativa L.) [J/OL]. BMC Plant Biol., 2019, 19(1):7 [2020-11-10]. .
|
21 |
WANG X, GONG X, CAO F, et al.. HvPAA1 encodes a P-Type ATPase, a novel gene for cadmium accumulation and tolerance in barley (Hordeum vulgare L.) [J/OL]. Int. J. Mol. Sci., 2019, 20(7):1732 [2020-11-10]. .
|
22 |
KEERAN N S, GANESAN G, PARIDA A K. A novel heavy metal ATPase peptide from Prosopis juliflora is involved in metal uptake in yeast and tobacco [J]. Transgenic Res., 2017, 26(2):247-261.
|
23 |
LEKEUX G, CROWET J, NOUET C, et al.. Homology modeling and in vivo functional characterization of the zinc permeation pathway in a heavy metal P-type ATPase [J]. J. Exp. Bot., 2019, 70(1):329-341.
|
24 |
GRISPEN V M, HAKVOORT H W, BLIEK T, et al.. Combined expression of the Arabidopsis metallothionein MT2b and the heavy metal transporting ATPase HMA4 enhances cadmium tolerance and the root to shoot translocation of cadmium and zinc in tobacco [J]. Environ. Exp. Bot., 2011, 72(1):71-76.
|
25 |
HUSSAIN D, HAYDON M J, WANG Y, et al.. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis [J]. Plant Cell, 2004, 16(5):1327-1339.
|
26 |
SHRIVASTAVA M, KHANDELWAL A, SRIVASTAVA S. Heavy Metal Hyperaccumulator Plants: The Resource to Understand the Extreme Adaptations of Plants Towards Heavy Metals [M]. Plant-Metal Interactions, Springer, 2019:79-97.
|
27 |
LI J, WANG Y, WEI J, et al.. A tomato proline-, lysine-, and glutamic-rich type gene SpPKE1 positively regulates drought stress tolerance [J]. Biochem. Biophys. Res. Commun., 2018, 499(4):777-782.
|