Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (7): 77-85.DOI: 10.13304/j.nykjdb.2021.0096
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Congcong MA1,2,3(), Zehua LUO2, Bin CAI1, Haobao LIU1(
), Yunshan WANG3, Rui MA2, Jingang GU2(
)
Received:
2021-01-27
Accepted:
2021-07-07
Online:
2022-07-15
Published:
2022-08-15
Contact:
Haobao LIU,Jingang GU
马聪聪1,2,3(), 罗泽华2, 蔡斌1, 刘好宝1(
), 王云山3, 马锐2, 顾金刚2(
)
通讯作者:
刘好宝,顾金刚
作者简介:
马聪聪 E-mail: 15612884827@163.com
基金资助:
CLC Number:
Congcong MA, Zehua LUO, Bin CAI, Haobao LIU, Yunshan WANG, Rui MA, Jingang GU. Screening of Carbon Sources for Growth and Spore Formation of Bacillus altitudinis YC-9[J]. Journal of Agricultural Science and Technology, 2022, 24(7): 77-85.
马聪聪, 罗泽华, 蔡斌, 刘好宝, 王云山, 马锐, 顾金刚. 利于高地芽孢杆菌YC-9生长和芽孢形成的碳源筛选[J]. 中国农业科技导报, 2022, 24(7): 77-85.
基质 Substrate | 高度 Height | 芽孢量 Spore yield | 基质 Substrate | 高度 Height | 芽孢量 Spore yield | 基质 Substrate | 高度 Height | 芽孢量 Spore yield |
---|---|---|---|---|---|---|---|---|
D-乳糖 D-lactose | 170 | +++++ | N-乙酰-D-葡萄糖胺N-acetyl-D-glucosamine | 205 | ++++ | D-海藻糖 D-trehalose | 192 | + |
L-岩藻糖 L-fucose | 168 | +++++ | D-糖质酸 D-saccharic | 155 | +++ | D-纤维二糖 D-cellobiose | 196 | + |
L-鼠李糖 L-rhamnose | 172 | +++++ | N-乙酰-β-D-甘露糖胺N-acetyl-β-D-annosamine | 190 | +++ | β-甲基-D-葡萄糖苷β-methyl-D-glucoside | 201 | + |
3-甲基-D-葡萄糖 3-methyl-D-glucose | 189 | +++++ | N-乙酰-D-半乳糖胺N-acetyl-D-galactosamine | 160 | +++ | D-葡萄糖-6-磷酸 D-glucose-6-phosphate | 195 | + |
D-棉子糖 D-raffinose | 190 | +++++ | D-乳酸甲酯 D-methyl lactate | 155 | +++ | D-甘露醇 D-mannitol | 211 | + |
水苏糖 Stachyose | 152 | +++++ | α-酮戊二酸 α-ketoglutarate | 182 | +++ | L-苹果酸 L-malic acid | 222 | + |
D-松二糖 D-turanose | 170 | +++++ | α-丁酮酸 α-ketobutyric acid | 143 | +++ | L-精氨酸 L-arginine | 196 | + |
蜜二糖 Melibiose | 186 | +++++ | 葡萄糖酸 Gluconic acid | 182 | +++ | L-谷氨酸 L-glutamatic acid | 208 | + |
D-山梨醇 D-sorbitol | 181 | +++++ | 吐温40 Tween 40 | 201 | +++ | L-天冬氨酸 L-aspartic acid | 221 | + |
肌苷 Inosine | 183 | +++++ | 糊精 Dextrin | 186 | +++ | D-天冬氨酸 D-aspartic acid | 224 | + |
肌醇 Inositol | 196 | +++++ | D-甘露糖 D-mannose | 211 | ++ | 甘氨酸-L-脯氨酸 Glycine-L-proline | 185 | + |
果胶 Pectin | 215 | +++++ | D-苹果酸 D-malic acid | 138 | ++ | 葡萄糖醛酸 Glucuronic acid | 179 | + |
L-丙氨酸 L-alanine | 186 | +++++ | 柠檬酸 Citric acid | 205 | ++ | 葡糖醛酰胺 Glucuronamide | 132 | + |
Table 1 Growth and spore yields of Bacillus altitudinis YC-9 by using different carbon sources on GenⅢ plate
基质 Substrate | 高度 Height | 芽孢量 Spore yield | 基质 Substrate | 高度 Height | 芽孢量 Spore yield | 基质 Substrate | 高度 Height | 芽孢量 Spore yield |
---|---|---|---|---|---|---|---|---|
D-乳糖 D-lactose | 170 | +++++ | N-乙酰-D-葡萄糖胺N-acetyl-D-glucosamine | 205 | ++++ | D-海藻糖 D-trehalose | 192 | + |
L-岩藻糖 L-fucose | 168 | +++++ | D-糖质酸 D-saccharic | 155 | +++ | D-纤维二糖 D-cellobiose | 196 | + |
L-鼠李糖 L-rhamnose | 172 | +++++ | N-乙酰-β-D-甘露糖胺N-acetyl-β-D-annosamine | 190 | +++ | β-甲基-D-葡萄糖苷β-methyl-D-glucoside | 201 | + |
3-甲基-D-葡萄糖 3-methyl-D-glucose | 189 | +++++ | N-乙酰-D-半乳糖胺N-acetyl-D-galactosamine | 160 | +++ | D-葡萄糖-6-磷酸 D-glucose-6-phosphate | 195 | + |
D-棉子糖 D-raffinose | 190 | +++++ | D-乳酸甲酯 D-methyl lactate | 155 | +++ | D-甘露醇 D-mannitol | 211 | + |
水苏糖 Stachyose | 152 | +++++ | α-酮戊二酸 α-ketoglutarate | 182 | +++ | L-苹果酸 L-malic acid | 222 | + |
D-松二糖 D-turanose | 170 | +++++ | α-丁酮酸 α-ketobutyric acid | 143 | +++ | L-精氨酸 L-arginine | 196 | + |
蜜二糖 Melibiose | 186 | +++++ | 葡萄糖酸 Gluconic acid | 182 | +++ | L-谷氨酸 L-glutamatic acid | 208 | + |
D-山梨醇 D-sorbitol | 181 | +++++ | 吐温40 Tween 40 | 201 | +++ | L-天冬氨酸 L-aspartic acid | 221 | + |
肌苷 Inosine | 183 | +++++ | 糊精 Dextrin | 186 | +++ | D-天冬氨酸 D-aspartic acid | 224 | + |
肌醇 Inositol | 196 | +++++ | D-甘露糖 D-mannose | 211 | ++ | 甘氨酸-L-脯氨酸 Glycine-L-proline | 185 | + |
果胶 Pectin | 215 | +++++ | D-苹果酸 D-malic acid | 138 | ++ | 葡萄糖醛酸 Glucuronic acid | 179 | + |
L-丙氨酸 L-alanine | 186 | +++++ | 柠檬酸 Citric acid | 205 | ++ | 葡糖醛酰胺 Glucuronamide | 132 | + |
碳源 Carbon source | 芽孢率Spore rate /% | ||
---|---|---|---|
24 h | 36 h | 48 h | |
α-D-葡萄糖 α-D-glucose | 9 c | 82 a | 88 a |
L-苹果酸 L-malic acid | 5 c | 93 a | 93 a |
D-果糖D-fructose | 14 c | 2 c | 70 b |
D-海藻糖D-trehalose | 50 a | 48 b | 47 c |
D-纤维二糖D-cellobiose | 28 b | 53 b | 40 c |
甘油 Glycerol | 47 a | 1 c | 7 d |
D-甘露醇D-mannitol | 4 c | 4 c | 5 d |
水杨苷Salicin | 5 c | 2 c | 1 d |
Table 2 Spore rate of strain YC-9 by using different carbon sources
碳源 Carbon source | 芽孢率Spore rate /% | ||
---|---|---|---|
24 h | 36 h | 48 h | |
α-D-葡萄糖 α-D-glucose | 9 c | 82 a | 88 a |
L-苹果酸 L-malic acid | 5 c | 93 a | 93 a |
D-果糖D-fructose | 14 c | 2 c | 70 b |
D-海藻糖D-trehalose | 50 a | 48 b | 47 c |
D-纤维二糖D-cellobiose | 28 b | 53 b | 40 c |
甘油 Glycerol | 47 a | 1 c | 7 d |
D-甘露醇D-mannitol | 4 c | 4 c | 5 d |
水杨苷Salicin | 5 c | 2 c | 1 d |
基质 Substrate | 高度 Height | 芽孢量 Spore yield | 基质 Substrate | 高度 Height | 芽孢量 Spore yield | 基质 Substrate | 高度 Height | 芽孢量 Spore yield |
---|---|---|---|---|---|---|---|---|
L-焦谷氨酸 L-pyroglutamic acid | 175 | +++++ | 甲酸 Formic acid | 132 | ++ | 半乳糖二酸 Galactaric acid | 160 | + |
L-丝氨酸 L-serine | 150 | +++++ | 乙酸 Acetic acid | 216 | ++ | 半乳糖醛酸内酯 Galacturonic acid lactone | 169 | + |
半乳糖醛酸 Galacturonic acid | 194 | +++++ | D-丝氨酸 D-serine | 150 | ++ | 丙酸 Propionic acid | 162 | + |
α-羟基丁酸 α-hydroxybutyric acid | 146 | +++++ | L-组氨酸 L-histone | 165 | ++ | 乙酰乙酸 Acetoacetic acid | 228 | + |
β-羟基-D,L-丁酸 β-hydroxy-D,L-butyric acid | 162 | +++++ | D-阿拉伯醇 D-arabinol | 185 | ++ | 丙酮酸甲酯 Methyl pyruvate | 134 | + |
N-乙酰神经氨酸N-acetylneuraminic acid | 165 | +++++ | 明胶 Gelatin | 191 | ++ | 水杨苷 Salicin | 204 | + |
D-果糖-6-磷酸D-fructose-6-phosphate | 195 | +++++ | γ-氨基丁酸 γ-aminobutyric acid | 209 | + | 甘油 Glycerol | 217 | + |
D-半乳糖 D-galactose | 196 | ++++ | D-蔗糖 D-sucrose | 186 | + | 奎宁酸 Quinic acid | 203 | + |
D-麦芽糖 D-maltose | 161 | ++++ | D-果糖 D-fructose | 211 | + | ρ-羟基-苯乙酸ρ-hydroxy-phenylacetic acid | 151 | + |
龙胆二糖 Gentiobiose | 188 | ++++ | α-D-葡萄糖 α-D-glucose | 223 | + | 溴代丁二酸 Bromosuccinic acid | 170 | / |
L-乳酸 L-lactic acid | 162 | ++++ | D-岩藻糖 D-fucose | 189 | + |
Table 1 Growth and spore yields of Bacillus altitudinis YC-9 by using different carbon sources on GenⅢ plate
基质 Substrate | 高度 Height | 芽孢量 Spore yield | 基质 Substrate | 高度 Height | 芽孢量 Spore yield | 基质 Substrate | 高度 Height | 芽孢量 Spore yield |
---|---|---|---|---|---|---|---|---|
L-焦谷氨酸 L-pyroglutamic acid | 175 | +++++ | 甲酸 Formic acid | 132 | ++ | 半乳糖二酸 Galactaric acid | 160 | + |
L-丝氨酸 L-serine | 150 | +++++ | 乙酸 Acetic acid | 216 | ++ | 半乳糖醛酸内酯 Galacturonic acid lactone | 169 | + |
半乳糖醛酸 Galacturonic acid | 194 | +++++ | D-丝氨酸 D-serine | 150 | ++ | 丙酸 Propionic acid | 162 | + |
α-羟基丁酸 α-hydroxybutyric acid | 146 | +++++ | L-组氨酸 L-histone | 165 | ++ | 乙酰乙酸 Acetoacetic acid | 228 | + |
β-羟基-D,L-丁酸 β-hydroxy-D,L-butyric acid | 162 | +++++ | D-阿拉伯醇 D-arabinol | 185 | ++ | 丙酮酸甲酯 Methyl pyruvate | 134 | + |
N-乙酰神经氨酸N-acetylneuraminic acid | 165 | +++++ | 明胶 Gelatin | 191 | ++ | 水杨苷 Salicin | 204 | + |
D-果糖-6-磷酸D-fructose-6-phosphate | 195 | +++++ | γ-氨基丁酸 γ-aminobutyric acid | 209 | + | 甘油 Glycerol | 217 | + |
D-半乳糖 D-galactose | 196 | ++++ | D-蔗糖 D-sucrose | 186 | + | 奎宁酸 Quinic acid | 203 | + |
D-麦芽糖 D-maltose | 161 | ++++ | D-果糖 D-fructose | 211 | + | ρ-羟基-苯乙酸ρ-hydroxy-phenylacetic acid | 151 | + |
龙胆二糖 Gentiobiose | 188 | ++++ | α-D-葡萄糖 α-D-glucose | 223 | + | 溴代丁二酸 Bromosuccinic acid | 170 | / |
L-乳酸 L-lactic acid | 162 | ++++ | D-岩藻糖 D-fucose | 189 | + |
Fig.4 The growth and sporulation of Bacillus altitudinis YC-9 under different carbon sourcesNote:Different lowercase letters in figure indicate significant differences in the number of bacteria and spores of different carbon source combinations at P < 0.05 level.
Fig. 5 Growth and sporulation of Bacillus altitudinis YC-9 under different carbon sourcesNote:Different lowercase letters in figure indicate significant differences in the number of bacteria and spores of different carbon source combinations at P < 0.05 level.
1 | 李文,陈复生,丁长河,等.高地芽孢杆菌碱性蛋白酶酶学性质研究[J].河南工业大学学报(自然科学版), 2014, 35(4): 27-31. |
LI W, CHEN F S, DING C H, et al.. Study on enzymatic property of alkaline protease from Bacillus subtilis [J]. J. Henan Univ. Technol. (Nat. Sci.), 2014,35(4): 27-31. | |
2 | 徐智勇, 闫岩, 王卫, 等. 芽孢生成和萌发相关机制[J]. 中西医结合护理, 2016, 2(11):169-172. |
3 | 刘莹莹,曲甜甜,张丹雨,等.芽孢杆菌的生防活性及其发酵条件优化[J]. 贵州农业科学, 2019, 47(4):79-83. |
LIU Y Y, QU T T, ZHANG D Y, et al.. Biocontrol activity and optimization of fermentation conditions of Bacillus strains [J]. Guizhou Agric. Sci., 2019, 47(4): 79-83. | |
4 | 王晓阁.枯草芽孢杆菌研究进展与展望[J]. 中山大学研究生学刊(自然科学与医学版), 2012,33(3):14-23. |
WANG X G. Research progress and prospect of Bacillus subtilis [J]. J. Graduates Sun Yat-Sen Univ. (Nat.Sci.Med.), 2012, 33(3):14-23. | |
5 | 徐世荣, 陈骧, 吴云鹏. 细菌芽孢形成机制在微生态制剂生产中的应用[J]. 食品与生物技术学报, 2007, 26(4):121-126. |
XU S R, CHEN X, WU Y P. Application of bacterial spore formation mechanism in the production of probiotics [J]. Acta Food Biotechnol., 2007, 26(4):121-126. | |
6 | 郭荣君, 王步云, 李世东. 营养对生防菌株BH-1芽孢产量的影响研究[J]. 植物病理学报, 2005, 35(3): 283-285. |
7 | 程池, 杨梅, 李金霞, 等. Biolog微生物自动分析系统-细菌鉴定操作规程的研究[J]. 食品与发酵工业, 2006, 32(5):50-54. |
CHENG C, YANG M, LI J X, et al.. Biolog microbial identification system—study on the operating regulation of bacteria identification [J]. Food Fermentation Ind., 2006, 32(5):50-54. | |
8 | 赵斌, 何绍江. 微生物学实验[M]. 北京: 科学出版社, 2008:1-285. |
9 | 方中达. 植病研究方法[M].第三版. 北京:中国农业出版社, 1998:1-427. |
10 | ELISASHVILI V, KACHLISHVILI E, CHIKINDAS M L. Recent advances in the physiology of spore formation for Bacillus probiotic production [J]. Probiotics Antimicrob. Proteins, 2019, 11: 731-747. |
11 | 郭夏丽, 狄源宁, 王岩.枯草芽孢杆菌产芽孢条件的优化[J]. 中国土壤与肥料, 2012 (3): 99-103. |
GUO X L, DI Y N, WANG Y. Optimization of sporulation conditions of Bacillus subtilis [J]. China Soils Fert., 2012 (3): 99-103. | |
12 | 胡瑞萍, 丁贤, 李来好, 等. 响应面法优化枯草芽孢杆菌NHS1产芽孢发酵培养[J]. 生态学杂志, 2018, 37(2):605-612. |
HU R P, DING X, LI L H, et al.. Optimization of fermentation medium composition by response surface methodology for the spore production of Bacillus subtilis [J]. Chin. J. Ecol., 2018, 37(2): 605-612. | |
13 | 郑双凤, 谭石勇, 谭武贵, 等. 生防芽孢杆菌高密度发酵技术研究进展[J]. 湖南农业科学, 2017(3):120-124. |
ZHENG S F, TAN S Y, TAN W G, et al.. Research progress of high cell density fermentation technology in biocontrol of Bacillus spp [J]. Hunan Agric. Sci., 2017 (3):120-124. | |
14 | OSADCHAYA A I, KUDRIAVTSEV V A, SAFRONOVA L A, et al.. Stimulation of growth and spore formation of Bacillus subtilis by optimization of carbohydrate nutrition during submerged cultivation [J]. Prikl. Biokhim. Mikrobiol., 1997, 33(3):321-324. |
15 | KHARDZIANI T, KACHLISHVILI E, SOKHADZE K, et al.. Elucidation of Bacillus subtilis KATMIRA 1933 potential for spore production in submerged fermentation of plant raw materials [J]. Probiotics Antimicrob. Proteins, 2017, 9:435-443. |
[1] | Shuai WANG, Wei SONG, Ronghuan WANG, Jiuran ZHAO. Progress of Maize Biology Research in China [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 23-31. |
[2] | Hai WANG, Jinsheng LAI, Haiyang WANG, Xinhai LI. Bipartite Intelligent Design of Crops—Intelligent Combination of Natural Variation and Intelligent Creation of Artificial Variation [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 1-8. |
[3] | Jiahuan HUO, Xiaolei WEN, Shuangmin LI, Lina FENG, Shuhui LAN, Lixin DONG, Sirou GUO, Jianing LI, Jianhua WANG, Huixia QI. Identification and Biological Characteristics of the Pathogen Causing Root Rot of Atractylodes chinensis [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 137-144. |
[4] | Tao YANG, Xiaoqian MA, Quan ZHANG, Hongliang ZHANG. Research Progress of Histone Modification in Rice [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 11-20. |
[5] | Hua SUN, Ning GUO, Xiaojuan ZHENG, Jie SHI, Lirong ZHANG, Hongfei YAN. Identification and Biological Characteristics Analysis of Fusarium andiyazi Causing Maize Ear Rot [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 145-151. |
[6] | ZHANG Nana§, LI Shuangmin§, WEN Xiaolei, FENG Lina, WANG Junfeng, YANG Wenjie, HUO Jiahuan, LAN Shuhui, SUN Weiming, QI Huixia. Identification and Biological Characteristics of the Pathogen Causing Pink Disease of Chestnut [J]. Journal of Agricultural Science and Technology, 2021, 23(7): 145-152. |
[7] | ZOU Wannong, SONG Min*. Reform of the Supply System of Public Resources Governance in China——Taking Agricultural Biological Genetic Resources as an Example [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 11-19. |
[8] | YANG Hua1, LI Jiang2, ZHANG Wei1, ZHOU Zhengfu1, YAN Yongliang1, GUO Jia3, LIU Xiangguo3, HAO Dongyun3, LIN Min1, KE Xiubin1*. Maize Growth Promotion and Nitrogen-fixing Rates by Inoculation with Wild-type and Ammonium-excreting Mutant of Pseudomonas stutzeri [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 76-84. |
[9] | ZHOU Maochao1,2, HUANG Yanna2, DUAN Saifei1,2, SHU Shiyuan1,2, TANG Xueming2*. Development of Microbial Seed Coating Agents and Their Effects on the Growth of Maize Seedlings [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 110-118. |
[10] | PU Weijun, TAN Binglan, ZHU Li*. Progress on the Biological Functions of Argonaute Proteins in Response to Stress in Plants [J]. Journal of Agricultural Science and Technology, 2021, 23(2): 17-26. |
[11] |
ZHAO Xingli1, TAO Gang2,3*, LOU Xuan4, GU Jingang5*.
Colonization Dynamics of Trichoderma hamatum in Pepper Rhizosphere and Its Biological Control Against Pepper Phytophthora Blight
[J]. Journal of Agricultural Science and Technology, 2020, 22(5): 106-114.
|
[12] | WEN Xiaolei1,2, QI Huixia1*, SUN Weiming1, LIU Yijian1, FENG Lina1, MENG Tongyao2, HAN Zhiling1, CAO Jia1, WANG Junfeng1. Identification and Biological Characteristics of the Pathogen (Fusarium equiseti) Causing Shoot Blight of Atractylodes chinensis [J]. Journal of Agricultural Science and Technology, 2020, 22(5): 115-121. |
[13] | ZHOU Hongzi1, ZHOU Fangyuan1, ZHAO Xiaoyan1, WU Cuixia2, ZHANG Guangzhi1, YUAN Weiwei3, WU Xiaoqing1, XIE Xueying1, FAN Susu1, ZHANG Xinjian1*. Screening of Biocontrol Agents Against Wheat Fusarium Head Blight and Its Field Control Experiment [J]. Journal of Agricultural Science and Technology, 2020, 22(1): 67-77. |
[14] | LU Lu1,2, ZHANG Mengli2, DI Yilin2, ZHU Kai1*, SHI Baojun2*. Insecticidal Effects of Thymol Against Caenorhabditis elegans at Different Stages [J]. Journal of Agricultural Science and Technology, 2019, 21(9): 97-103. |
[15] | WANG Wei1, ZHENG Dahao1, YANG Chaobo2, LI Yong1, WANG Wei1, LI Xiying1,3*. Isolation of High Efficient Cellulose Decomposing Bacteria and Biological Effects on Straw Degradation [J]. Journal of Agricultural Science and Technology, 2019, 21(8): 36-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||