Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (2): 93-103.DOI: 10.13304/j.nykjdb.2021.0389
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Shaojing MO(), Zhicheng WANG(), Xingfen WANG, Zhengwen LIU, Liqiang WU, Guiyin ZHANG, Zhiying MA, Yan ZHANG(), Huijun DUAN()
Received:
2021-04-26
Accepted:
2021-06-01
Online:
2022-02-15
Published:
2022-02-22
Contact:
Yan ZHANG,Huijun DUAN
默韶京(), 王志城(), 王省芬, 刘正文, 吴立强, 张桂寅, 马峙英, 张艳(), 段会军()
通讯作者:
张艳,段会军
作者简介:
默韶京和王志城为本文共同第一作者。默韶京 E-mail:msjing1983@163.com基金资助:
CLC Number:
Shaojing MO, Zhicheng WANG, Xingfen WANG, Zhengwen LIU, Liqiang WU, Guiyin ZHANG, Zhiying MA, Yan ZHANG, Huijun DUAN. Genome-wide Identification of GELP Family Genes in Cotton and Expression Analysis Under Stress[J]. Journal of Agricultural Science and Technology, 2022, 24(2): 93-103.
默韶京, 王志城, 王省芬, 刘正文, 吴立强, 张桂寅, 马峙英, 张艳, 段会军. 陆地棉GELP家族基因鉴定及其响应胁迫的表达分析[J]. 中国农业科技导报, 2022, 24(2): 93-103.
Fig.1 Phylogenetic analysis of GELP proteins in cotton and ArabidopsisNote: Phylogenetic tree of GELP proteins from Arabidopsis and G. hirsutum. The GELP members are divided into 10 subfamilies(A~J). The branches of different subfamilies are marked using different colors.
Fig.3 Motif logos of four conservative blocks detected in GhGELP proteinsNote: Conservative amino acid residue Ser-Gly-Asn-His is marked by red triangle.
Fig.4 Expression profiles of GhGELPs from upland cotton inoculated with V. dahliaeNote: Red color indicates up-regulation expression. Blue color indicates down-regulation expression. 2 h, 6 h, 12 h, 24 h and 48 h represent the processing time under V.dahliae stress conditions.
Fig.5 Expression profiles of GhGELPs in response to different abiotic stressNote:FC is the ratio of treatment FPKM to control FPKM. Red color indicates up-regulation expression, blue color indicates down-regulation expression. 1 h, 3 h, 6 h, and 12 h represent the processing time under four abiotic stress conditions.
基因名称 Gene name | 盐 Salt | PEG | 热 Hot | 冷 Cold | 基因名称 Gene name | 盐 Salt | PEG | 热 Hot | 冷 Cold |
---|---|---|---|---|---|---|---|---|---|
GhGELP1 | √ | √ | GhGELP109 | √ | √ | ||||
GhGELP2 | √ | √ | √ | √ | GhGELP114 | √ | √ | √ | √ |
GhGELP5 | √ | √ | √ | √ | GhGELP115 | √ | √ | ||
GhGELP6 | √ | GhGELP118 | √ | √ | √ | √ | |||
GhGELP7 | √ | √ | GhGELP119 | √ | √ | √ | √ | ||
GhGELP9 | √ | √ | GhGELP120 | √ | |||||
GhGELP10 | √ | √ | GhGELP124 | √ | |||||
GhGELP15 | √ | GhGELP127 | √ | √ | √ | ||||
GhGELP26 | √ | √ | √ | GhGELP128 | √ | ||||
GhGELP29 | √ | √ | √ | √ | GhGELP131 | √ | √ | ||
GhGELP30 | √ | √ | √ | GhGELP133 | √ | √ | √ | √ | |
GhGELP32 | √ | √ | √ | GhGELP136 | √ | √ | |||
GhGELP33 | √ | √ | GhGELP137 | √ | √ | √ | √ | ||
GhGELP37 | √ | √ | √ | √ | GhGELP138 | √ | √ | ||
GhGELP38 | √ | √ | GhGELP139 | √ | √ | ||||
GhGELP41 | √ | √ | GhGELP144 | √ | √ | √ | |||
GhGELP42 | √ | √ | √ | GhGELP146 | √ | √ | |||
GhGELP43 | √ | √ | √ | GhGELP149 | √ | √ | √ | √ | |
GhGELP46 | √ | √ | √ | GhGELP153 | √ | √ | |||
GhGELP50 | √ | √ | GhGELP154 | √ | √ | ||||
GhGELP51 | √ | √ | √ | √ | GhGELP157 | √ | |||
GhGELP55 | √ | GhGELP163 | √ | ||||||
GhGELP59 | √ | √ | GhGELP164 | √ | √ | ||||
GhGELP60 | √ | √ | GhGELP165 | √ | √ | ||||
GhGELP69 | √ | √ | √ | GhGELP175 | √ | √ | √ | ||
GhGELP71 | √ | √ | √ | GhGELP176 | √ | ||||
GhGELP72 | √ | √ | √ | GhGELP177 | √ | √ | |||
GhGELP79 | √ | GhGELP178 | √ | √ | |||||
GhGELP81 | √ | √ | √ | GhGELP185 | √ | √ | √ | √ | |
GhGELP84 | √ | √ | GhGELP186 | √ | √ | √ | |||
GhGELP85 | √ | √ | √ | GhGELP187 | √ | √ | |||
GhGELP86 | √ | √ | GhGELP190 | √ | √ | ||||
GhGELP90 | √ | √ | √ | √ | GhGELP191 | √ | √ | √ | |
GhGELP92 | √ | GhGELP192 | √ | √ | |||||
GhGELP98 | √ | GhGELP197 | √ | √ | |||||
GhGELP99 | √ | GhGELP199 | √ | ||||||
GhGELP104 | √ | √ | √ | √ | GhGELP205 | √ | √ | √ | |
GhGELP107 | √ | GhGELP207 | √ | √ | √ | ||||
GhGELP108 | √ | GhGELP208 | √ |
Table 1 GhGELP genes response to different abiotic stress
基因名称 Gene name | 盐 Salt | PEG | 热 Hot | 冷 Cold | 基因名称 Gene name | 盐 Salt | PEG | 热 Hot | 冷 Cold |
---|---|---|---|---|---|---|---|---|---|
GhGELP1 | √ | √ | GhGELP109 | √ | √ | ||||
GhGELP2 | √ | √ | √ | √ | GhGELP114 | √ | √ | √ | √ |
GhGELP5 | √ | √ | √ | √ | GhGELP115 | √ | √ | ||
GhGELP6 | √ | GhGELP118 | √ | √ | √ | √ | |||
GhGELP7 | √ | √ | GhGELP119 | √ | √ | √ | √ | ||
GhGELP9 | √ | √ | GhGELP120 | √ | |||||
GhGELP10 | √ | √ | GhGELP124 | √ | |||||
GhGELP15 | √ | GhGELP127 | √ | √ | √ | ||||
GhGELP26 | √ | √ | √ | GhGELP128 | √ | ||||
GhGELP29 | √ | √ | √ | √ | GhGELP131 | √ | √ | ||
GhGELP30 | √ | √ | √ | GhGELP133 | √ | √ | √ | √ | |
GhGELP32 | √ | √ | √ | GhGELP136 | √ | √ | |||
GhGELP33 | √ | √ | GhGELP137 | √ | √ | √ | √ | ||
GhGELP37 | √ | √ | √ | √ | GhGELP138 | √ | √ | ||
GhGELP38 | √ | √ | GhGELP139 | √ | √ | ||||
GhGELP41 | √ | √ | GhGELP144 | √ | √ | √ | |||
GhGELP42 | √ | √ | √ | GhGELP146 | √ | √ | |||
GhGELP43 | √ | √ | √ | GhGELP149 | √ | √ | √ | √ | |
GhGELP46 | √ | √ | √ | GhGELP153 | √ | √ | |||
GhGELP50 | √ | √ | GhGELP154 | √ | √ | ||||
GhGELP51 | √ | √ | √ | √ | GhGELP157 | √ | |||
GhGELP55 | √ | GhGELP163 | √ | ||||||
GhGELP59 | √ | √ | GhGELP164 | √ | √ | ||||
GhGELP60 | √ | √ | GhGELP165 | √ | √ | ||||
GhGELP69 | √ | √ | √ | GhGELP175 | √ | √ | √ | ||
GhGELP71 | √ | √ | √ | GhGELP176 | √ | ||||
GhGELP72 | √ | √ | √ | GhGELP177 | √ | √ | |||
GhGELP79 | √ | GhGELP178 | √ | √ | |||||
GhGELP81 | √ | √ | √ | GhGELP185 | √ | √ | √ | √ | |
GhGELP84 | √ | √ | GhGELP186 | √ | √ | √ | |||
GhGELP85 | √ | √ | √ | GhGELP187 | √ | √ | |||
GhGELP86 | √ | √ | GhGELP190 | √ | √ | ||||
GhGELP90 | √ | √ | √ | √ | GhGELP191 | √ | √ | √ | |
GhGELP92 | √ | GhGELP192 | √ | √ | |||||
GhGELP98 | √ | GhGELP197 | √ | √ | |||||
GhGELP99 | √ | GhGELP199 | √ | ||||||
GhGELP104 | √ | √ | √ | √ | GhGELP205 | √ | √ | √ | |
GhGELP107 | √ | GhGELP207 | √ | √ | √ | ||||
GhGELP108 | √ | GhGELP208 | √ |
1 | ARPIGNY J, JAEGER K. Bacterial lipolytic enzymes:classification and properties [J]. Biochem. J., 1999, 343(1): 177-183. |
2 | UPTON C, BUCKLEY J T. A new family of lipolytic enzymes? [J]. Trends Biochem. Sci., 1995, 20(5): 178-179. |
3 | AKOH C C, LEE G C, LIAW Y C, et al.. GDSL family of serine esterases/lipases [J]. Prog. Lipid Res., 2004, 43(6): 534-552. |
4 | JIANG Y Y, CHEN R J, DONG J L, et al.. Analysis of GDSL lipase (GLIP) family genes in rice (Oryza sativa) [J]. Plant Omics, 2012, 5(4): 351-358. |
5 | CHEPYSHKO H L, CHIA P H, LI M, et al.. Multifunctionality and diversity of GDSL esterase/ lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis [J/OL]. BMC Genomics, 2012, 13(1):309 [2021-06-09]. . |
6 | KWON S J, JIN H C, LEE S, et al.. GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis [J]. Plant J., 2009, 58(2): 235-245. |
7 | KIM H G, KWON S J, JANG Y J, et al.. GDSL LIPASE1 modulates plant immunity through feedback regulation of ethylene signaling [J]. Plant Physiol., 2013, 163(4): 1776-1791. |
8 | KIM H G, KWON S J, JANG Y J, et al.. GDSL lipase 1 regulates ethylene signaling and ethylene-associated systemic immunity in Arabidopsis [J]. FEBS Lett., 2014, 588(9): 1652-1658. |
9 | LEE D S, KIM B K, KWON S J, et al.. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling [J]. Biochem. Biophys. Res. Commun., 2009, 379(4): 1038-1042. |
10 | RAJARAMMOAN S, PRADHAN A K, PENTAL D, et al.. Genome-wide association mapping in Arabidopsis identifies novel genes underlying quantitative disease resistance to Alternaria brassicae [J]. Mol. Plant Pathol., 2018, 19(7): 1719-1732. |
11 | DING L N, LI M G, XIAO J, et al.. ArabidopsisGDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus [J]. Plant Biotechnol. J., 2020, 18(5): 1255-1270. |
12 | HONG J K, CHOI H W, HWANG I S, et al.. Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance [J]. Planta, 2008, 227(3): 539-558. |
13 | NARANJO M A, FORMENT J, ROLDAN M, et al.. Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants [J]. Plant Cell Environ., 2006, 29(10): 1890-1900. |
14 | KIM K J, LIM J H, KIM M J, et al.. GDSL-lipase1 (CaGL1) contributes to wound stress resistance by modulation of CaPR-4 expression in hot pepper [J].Biochem. Biophys. Res. Commun., 2008, 374(4): 693-698. |
15 | LAI C P, HUANG L M, CHRN L F O, et al.. Genome-wide analysis of GDSL-type esterases/lipases in Arabidopsis [J]. Plant Mol. Biol., 2017, 95: 181-197. |
16 | DONG X, YI H, HAN C T, et al.. GDSL esterase/lipase genes in Brassica rapa L.: genome-wide identification and expression analysis [J]. Mol. Genet. Genomics, 2016, 291(2): 531-542. |
17 | NI P Y, JI X R, GUO D L, et al.. Genome-wide identification, characterization, and expression analysis of GDSL-type esterases/lipases gene family in relation to grape berry ripening [J]. Sci. Hortic., 2020, 264: 109162. |
18 | SU H G, ZHANG X H, WANG T T, et al.. Genome-wide identification, evolution, and expression of GDSL-type esterase/lipase gene family in soybean [J/OL]. Front. Plant Sci., 2020, 11: 726[2021-06-09]. . |
19 | BOLEK Y, EL-ZIK K M, PEPPER A E, et al.. Mapping of verticillium wilt resistance genes in cotton [J]. Plant Sci., 2005. 168(6): 1581-1590. |
20 | CAI Y F, HE X H, MO J C, et al.. Molecular research and genetic engineering of resistance to Verticillium wilt in cotton [J]. Afr. J. Biotechnol., 2009, 8(25): 7363-7372. |
21 | SHABAN M, MIAO Y, ULLAH A, et al.. Physiological and molecular mechanism of defense in cotton against Verticillium dahliae [J]. Plant Physiol. Biochem., 2018, 125: 193-204. |
22 | JIMENEZ-DIAZ R M, GARCIA C O, TRAPERO-CASAS J L, et al.. Variation of pathotypes and races and their correlations with clonal lineages in Verticillium dahliae [J]. Plant Pathol., 2017, 66(4): 651-666. |
23 | OH I S, PARK A R, BAE M S, et al.. Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola [J]. Plant Cell, 2005, 17(10): 2832-2847. |
24 | WANG G N, WANG X F, ZHANG Y, et al.. Dynamic characteristics and functional analysis provide new insights into long non-coding RNA responsive to Verticillium dahliae infection in Gossypium hirsutum [J]. BMC Plant Biol., 2021, 21(1): 68 [2021-06-09]. . |
25 | YADAV V K, YADAV V K, PANT P, et al.. GhMYB1 regulates SCW stage-specific expression of the GhGDSL promoter in the fibres of Gossypium hirsutum L [J]. Plant Biotechnol. J., 2017, 15(9): 1163-1174. |
26 | ZHANG J S, MA R, YUAN H, et al.. A Gossypium hirsutum GDSL lipase/hydrolase gene (GhGLIP) appears to be involved in promoting seed growth in Arabidopsis [J/OL]. PLoS One, 2018, 13(4): e0195556 [2021-06-09]. . |
27 | TAKAHASHI K, SHIMADA T, KONDO M, et al.. Ectopic expression of an esterase, which is a candidate for the unidentified plant cutinase, causes cuticular defects in Arabidopsis thaliana [J]. Plant Cell Physiol., 2010, 51(1): 123-131. |
28 | GAO M, YIN X, YANG W, et al.. GDSL lipases modulate immunity through lipid homeostasis in rice [J/OL]. PLoS Pathog., 2017, 13(11): e1006724[2021-06-09]. . |
29 | ZHANG B C, ZHANG L J, LI F, et al.. Control of secondary cell wall patterning involves xylan deacetylation by a GDSL esterase [J]. Nat. Plants, 2017, 3(3): 17017 [2021-06-09]. . |
30 | UPDEGRAFF E P, Zhao F, PREUSS D, et al.. The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen [J]. Sex. Plant Reprod., 2009, 22(3): 197-204. |
31 | ZHAO J, LONG T, WANG Y F, et al.. RMS2 Encoding a GDSL lipase mediates lipid homeostasis in anthers to determine rice male fertility [J]. Plant Physiol., 2020, 182(4): 2047-2064. |
32 | YU Y, WOO M O, RIHUA P, et al.. The DROOPING LEAF (DR) gene encoding GDSL esterase is involved in silica deposition in rice (Oryza sativa L.) [J/OL]. PLoS One, 2020, 15(9): e0238887 [2021-06-09]. . |
33 | LIM G H, SINGHAL R, KACHROO A, et al.. Fatty acid-and lipid-mediated signaling in plant defense [J]. Annu. Rev. Phytopathol., 2017, 55(1): 505-536. |
34 | WALLEY J W, KLIEBENSTEIN D J, BOSTOCK R M, et al.. Fatty acids and early detection of pathogens [J]. Curr. Opin. Plant Biol., 2013, 16(4): 520-526. |
[1] | SU Yue§, LIU Juanjuan§, WAN Bin, ZHANG Pengju, CHEN Zhenggen, SU Junji, WANG Caixiang. Chloroplast Genome Structure Characteristic and Phylogenetic Analysis of Mulgedium tataricum [J]. Journal of Agricultural Science and Technology, 2021, 23(6): 33-42. |
[2] | PU Weijun, TAN Binglan, ZHU Li*. Progress on the Biological Functions of Argonaute Proteins in Response to Stress in Plants [J]. Journal of Agricultural Science and Technology, 2021, 23(2): 17-26. |
[3] | SHI Mengmeng1, WEN Siyu1, ZHAO Jiajia2, QIAO Ling2, WU Bangbang2, ZHENG Xingwei1,2*, ZHENG Jun1,2*. Identification, Evolution and Stress Response of RCAR Family Genes in Wheat (Trticum aestivum L.) [J]. Journal of Agricultural Science and Technology, 2020, 22(8): 14-24. |
[4] | GE Chuan1, YANG Rong2, LI Liujun2, ZHANG Jiancheng2, ZHENG Xingwei2*. Genome-Wide Identification and Characterization of the YABBY Family Genes of Wheat (Trticum aestivum L.) [J]. Journal of Agricultural Science and Technology, 2019, 21(8): 11-18. |
[5] | HUANG Fei1,2, LI Xuemei1*, WANG Wensheng2*, FU Binying2. Research Progress of DNA Methylation in Stress Response and Breeding in Plant [J]. , 2013, 15(6): 83-91. |
[6] | SONG Peiyong, ZHENG Yaqiang, LI Bin, XIAO Zhongjiu. Studies on Antimicrobial Activity of Actinomycetes Isolated from Soils of Chishui River Basin [J]. , 2013, 15(1): 136-143. |
[7] | FENG Lei, ZHANG Hai-wen*, HUANG Rong-feng. Research Progress on LRR Receptorlike Protein Kinase in Plant [J]. , 2012, 14(6): 43-48. |
[8] | SHI Gong-yao1, WANG Yu-mei2, HUA Jin-ping1. Aquaporins and Salt Tolerance of Higher Plant [J]. , 2012, 14(4): 31-38. |
[9] | XU Tao, WANG Lei. Research Progress on Plant RNA-dependant RNA Polymerase [J]. , 2011, 13(6): 46-53. |
[10] | ZHAO Jin-feng1, YU Ai-li2, WANG Gao-hong1, TIAN Gang1, WANG Han-yu2, Du Yan-wei1. Progress of CBL/CIPK Signal System in Response to Stresses in Plant [J]. , 2011, 13(4): 32-38. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||