Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (3): 130-139.DOI: 10.13304/j.nykjdb.2021.0673
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Qin FANG(), Shisheng SONG, Ting ZHOU, Caiwang PENG(
), Songlin SUN(
), Haiying ZHU
Received:
2021-08-09
Accepted:
2021-11-22
Online:
2022-03-15
Published:
2022-03-14
Contact:
Caiwang PENG,Songlin SUN
方芹(), 宋世圣, 周婷, 彭才望(
), 孙松林(
), 朱海英
通讯作者:
彭才望,孙松林
作者简介:
方芹 E-mail:2512353158@qq.com
基金资助:
CLC Number:
Qin FANG, Shisheng SONG, Ting ZHOU, Caiwang PENG, Songlin SUN, Haiying ZHU. Design and Experiment of a Two-Stage Segmented Drum Screening Device for Black Soldier Fly Insect Sand[J]. Journal of Agricultural Science and Technology, 2022, 24(3): 130-139.
方芹, 宋世圣, 周婷, 彭才望, 孙松林, 朱海英. 两级分段式黑水虻虫沙滚筒筛分装置设计与试验[J]. 中国农业科技导报, 2022, 24(3): 130-139.
Fig.1 Structure of two?stage segmented black soldier fly insect sand separation drum screenNote: 1—Conveyor belt; 2—Feeding port; 3—First level screen; 4—Secondary screen; 5—Speed regulating motor; 6—Transmission system; 7—Discharge port; 8—Frame.
水平 Level | 因素Factor | ||
---|---|---|---|
A:滚筒转速 Drum speed/(r·min-1) | B:滚筒倾角 Drum inclination angle/(°) | C:喂入量 Feeding amount/(t·h-1) | |
-1 | 30 | 5 | 1.2 |
0 | 40 | 6 | 1.5 |
1 | 50 | 7 | 1.8 |
Table 1 Coding of test factors
水平 Level | 因素Factor | ||
---|---|---|---|
A:滚筒转速 Drum speed/(r·min-1) | B:滚筒倾角 Drum inclination angle/(°) | C:喂入量 Feeding amount/(t·h-1) | |
-1 | 30 | 5 | 1.2 |
0 | 40 | 6 | 1.5 |
1 | 50 | 7 | 1.8 |
序号 Number | A:滚筒转速 Drum speed/(r·min-1) | B:滚筒倾角 Drum inclination angle/(°) | C:喂入量 Feeding amount/(t·h-1) | Y1:含杂率 Impurity rate/% | Y2:损失率 Loss rate/% |
---|---|---|---|---|---|
1 | 30 | 5 | 1.5 | 1.50 | 12.16 |
2 | 50 | 5 | 1.5 | 2.00 | 19.05 |
3 | 30 | 7 | 1.5 | 1.10 | 9.46 |
4 | 50 | 7 | 1.5 | 1.25 | 18.37 |
5 | 30 | 6 | 1.2 | 1.65 | 9.92 |
6 | 50 | 6 | 1.2 | 1.95 | 18.33 |
7 | 30 | 6 | 1.8 | 1.21 | 8.43 |
8 | 50 | 6 | 1.8 | 1.80 | 16.85 |
9 | 40 | 5 | 1.2 | 1.11 | 15.38 |
10 | 40 | 7 | 1.2 | 0.95 | 14.75 |
11 | 40 | 5 | 1.8 | 1.30 | 13.83 |
12 | 40 | 7 | 1.8 | 2.40 | 9.60 |
13 | 40 | 6 | 1.5 | 1.40 | 13.42 |
14 | 40 | 6 | 1.5 | 1.50 | 12.75 |
15 | 40 | 6 | 1.5 | 1.38 | 13.33 |
16 | 40 | 6 | 1.5 | 1.49 | 12.84 |
17 | 40 | 6 | 1.5 | 1.53 | 12.34 |
Table 2 Experiment design and response values
序号 Number | A:滚筒转速 Drum speed/(r·min-1) | B:滚筒倾角 Drum inclination angle/(°) | C:喂入量 Feeding amount/(t·h-1) | Y1:含杂率 Impurity rate/% | Y2:损失率 Loss rate/% |
---|---|---|---|---|---|
1 | 30 | 5 | 1.5 | 1.50 | 12.16 |
2 | 50 | 5 | 1.5 | 2.00 | 19.05 |
3 | 30 | 7 | 1.5 | 1.10 | 9.46 |
4 | 50 | 7 | 1.5 | 1.25 | 18.37 |
5 | 30 | 6 | 1.2 | 1.65 | 9.92 |
6 | 50 | 6 | 1.2 | 1.95 | 18.33 |
7 | 30 | 6 | 1.8 | 1.21 | 8.43 |
8 | 50 | 6 | 1.8 | 1.80 | 16.85 |
9 | 40 | 5 | 1.2 | 1.11 | 15.38 |
10 | 40 | 7 | 1.2 | 0.95 | 14.75 |
11 | 40 | 5 | 1.8 | 1.30 | 13.83 |
12 | 40 | 7 | 1.8 | 2.40 | 9.60 |
13 | 40 | 6 | 1.5 | 1.40 | 13.42 |
14 | 40 | 6 | 1.5 | 1.50 | 12.75 |
15 | 40 | 6 | 1.5 | 1.38 | 13.33 |
16 | 40 | 6 | 1.5 | 1.49 | 12.84 |
17 | 40 | 6 | 1.5 | 1.53 | 12.34 |
变异来源 Source | 含杂率Impurity rate | |||
---|---|---|---|---|
自由度 Degree of freedom | 均方 Mean square | F值 F value | P值 P value | |
模型Molel | 11 | 0.20 | 40.22 | 0.000 4** |
A | 1 | 0.30 | 60.25 | 0.000 6** |
B | 1 | 0.22 | 44.90 | 0.001 1** |
C | 1 | 0.67 | 136.67 | <0.000 1** |
AB | 1 | 0.031 | 6.22 | 0.054 8 |
AC | 1 | 0.021 | 4.27 | 0.093 6 |
BC | 1 | 0.40 | 80.67 | 0.000 3** |
A2 | 1 | 0.049 | 9.89 | 0.025 5* |
B2 | 1 | 0.046 | 9.44 | 0.027 7* |
C2 | 1 | 0.030 | 6.18 | 0.055 4 |
残差Residual | 5 | |||
失拟项Lack of fit | 1 | 1.66 | 0.267 7 | |
纯误差Pure error | 4 |
Table 3 Significance test result of impurity rate model
变异来源 Source | 含杂率Impurity rate | |||
---|---|---|---|---|
自由度 Degree of freedom | 均方 Mean square | F值 F value | P值 P value | |
模型Molel | 11 | 0.20 | 40.22 | 0.000 4** |
A | 1 | 0.30 | 60.25 | 0.000 6** |
B | 1 | 0.22 | 44.90 | 0.001 1** |
C | 1 | 0.67 | 136.67 | <0.000 1** |
AB | 1 | 0.031 | 6.22 | 0.054 8 |
AC | 1 | 0.021 | 4.27 | 0.093 6 |
BC | 1 | 0.40 | 80.67 | 0.000 3** |
A2 | 1 | 0.049 | 9.89 | 0.025 5* |
B2 | 1 | 0.046 | 9.44 | 0.027 7* |
C2 | 1 | 0.030 | 6.18 | 0.055 4 |
残差Residual | 5 | |||
失拟项Lack of fit | 1 | 1.66 | 0.267 7 | |
纯误差Pure error | 4 |
变异来源 Source | 损失率Loss rate | |||
---|---|---|---|---|
自由度 Degree of freedom | 均方 Mean square | F值 F value | P值 P value | |
模型Model | 9 | 18.39 | 43.86 | <0.000 1** |
A | 1 | 133.09 | 317.52 | <0.000 1** |
B | 1 | 8.49 | 20.25 | 0.002 8** |
C | 1 | 11.69 | 27.89 | 0.001 1** |
AB | 1 | 1.02 | 2.43 | 0.162 7 |
AC | 1 | 0.994 1 | ||
BC | 1 | 3.24 | 7.73 | 0.027 3* |
A2 | 1 | 3.47 | 8.29 | 0.023 7* |
B2 | 1 | 3.53 | 8.42 | 0.022 9* |
C2 | 1 | 0.90 | 2.14 | 0.186 7 |
残差Residual | 7 | 0.42 | ||
失拟项Lack of fit | 3 | 0.72 | 3.63 | 0.122 6 |
纯误差Pure error | 4 | 0.20 |
Table 4 Significance test result of loss rate model
变异来源 Source | 损失率Loss rate | |||
---|---|---|---|---|
自由度 Degree of freedom | 均方 Mean square | F值 F value | P值 P value | |
模型Model | 9 | 18.39 | 43.86 | <0.000 1** |
A | 1 | 133.09 | 317.52 | <0.000 1** |
B | 1 | 8.49 | 20.25 | 0.002 8** |
C | 1 | 11.69 | 27.89 | 0.001 1** |
AB | 1 | 1.02 | 2.43 | 0.162 7 |
AC | 1 | 0.994 1 | ||
BC | 1 | 3.24 | 7.73 | 0.027 3* |
A2 | 1 | 3.47 | 8.29 | 0.023 7* |
B2 | 1 | 3.53 | 8.42 | 0.022 9* |
C2 | 1 | 0.90 | 2.14 | 0.186 7 |
残差Residual | 7 | 0.42 | ||
失拟项Lack of fit | 3 | 0.72 | 3.63 | 0.122 6 |
纯误差Pure error | 4 | 0.20 |
指标 Index | 含杂率 Impurity rate/% | 损失率 Loss rate/% |
---|---|---|
平均实际值 Average actual value | 1.165 | 8.877 |
预测值 Predictive value | 1.109 | 8.430 |
相对误差 Relative error | 4.807 | 5.035 |
Tab.5 Verification result
指标 Index | 含杂率 Impurity rate/% | 损失率 Loss rate/% |
---|---|---|
平均实际值 Average actual value | 1.165 | 8.877 |
预测值 Predictive value | 1.109 | 8.430 |
相对误差 Relative error | 4.807 | 5.035 |
1 | 王攀,任连海,甘筱.城市餐厨垃圾产生现状调查及影响因素分析[J].环境科学与技术, 2013, 36 (3): 181-185. |
WANG P, REN L H, GAN X. Investigation and output factors analysis garbage for cities in China [J]. Environ. Sci. Technol., 2013, 36 (3): 181-185. | |
2 | LI P Y, XIE Y, ZENG Y, et al.. Bioconversion of welan gum from kitchen waste by a two-step enzymatic hydrolysis pretreatment [J]. Appl. Biochem. Biotechnol., 2017, 183 (3): 820-832. |
3 | 梅冰,窦法楷,汪慧莲,等.餐厨垃圾处理技术研究进展[J].环境卫生工程, 2015,23 (5): 17-18. |
MEI B, DOU F K, WANG H L, et al.. Research progress of food waste treatment technology [J]. Environ. Sanitation Eng., 2015, 23 (5): 17-18. | |
4 | NGUYEN T T X, TOMBERLIN J K, VANLAERHOVEN S. Ability of black soldier fly (Diptera:Stratiomyidae) larvae to recycle food waste [J]. Environ. Entomol., 2015, 44 (2): 406-410. |
5 | 张杰,温逸婷,高正辉,等.黑水虻的资源化利用研究现状[J].应用昆虫学报, 2019, 56 (5): 997-1006. |
ZHANG J, WEN Y T, GAO Z H, et al.. Progress in research on and the utilization of Hermetia illucens [J]. Acta Appl. Entomol., 2019, 56 (5): 997-1006. | |
6 | 尹靖凯,龚小燕,孙丽娜,等.黑水虻对餐厨垃圾养分转化研究[J].中国农业科技导报, 2021, 23 (6): 154-159. |
YIN J K, GONG X Y, SUN L, et al.. Study on the transformation of nutrients kitchen waste by black soldier fly [J]. J. Agric. Sci. Technol., 2021, 23 (6): 154-159. | |
7 | 柴志强,朱彦光.黑水虻在餐厨垃圾处理中的应用[J].科技展望, 2016, 26 (22): 321. |
8 | 张钰. 煤泥脱水筛分滚筒筛性能试验研究与离散元模拟[D].太原: 太原理工大学, 2016. |
ZHANG Y. Experimental study and discrete element simulation of coal slime dewatering sieving drum screen’s performance [D]. Taiyuan: Taiyuan University of Technology, 2016. | |
9 | 张林海,薛党勤,马世榜,等.农作物秸秆物料杂质及滚筒筛分研究[J].太阳能学报, 2014, 35 (3): 433-438. |
ZHANG L H, XUE D Q, MA S B, et al.. Research on impurities of the cropstraw and trommel sieve [J]. Acta Solar Energy, 2014, 35 (3): 433-438. | |
10 | 石鑫,牛长河,王学农,等.滚筒筛式废旧地膜与杂质风选装置设计[J].农业工程学报, 2017, 33 (18): 19-26. |
SHI X, NIU C H, WANG X N, et al.. Design of rolller sieve plastic film and trash winnowing machine [J]. Trans. Chin. Soc. Agric. Eng., 2017, 33 (18): 19-26. | |
11 | 李心平,孟亚娟,张家亮,等.辊搓圆筒筛式谷子清选装置设计与试验[J].农业机械学报, 2018, 49 (10): 92-102, 136. |
LI X P, MENG Y J, ZHANG J L, et al.. Design and experiment of longitudinal axial flow double flexible rolling and kneading threshing device for millet [J]. Trans. Chin. Soc. Agric. Machinery, 2018, 49 (10): 92-102, 136. | |
12 | 彭强吉,李成松,康建明,等.气力式圆筒筛膜杂分离机改进设计与试验[J].农业机械学报, 2020, 51 (8): 126-135. |
PENG Q J, Li C S, KANG J M, et al.. Improved design and test of pneumatic cylindrical sieve film hybrid separator [J]. Trans. Chin. Soc. Agric. Machinery, 2020, 51 (8): 126-135. | |
13 | 王升升,陈盼,卢梦晴,等.大白菜种子收获分离清选装置设计与试验[J].农业机械学报, 2020, 51 (S2): 181-190. |
WANG S S, CHEN P, LU M Q, et al.. Design and experiment of separation and cleaning device for Chinese cabbage seeds harvester [J]. Trans. Chin. Soc. Agric. Machinery, 2020, 51 (S2): 181-190. | |
14 | 姬越,安新城,徐齐云.一种风干式黑水虻幼虫分离装置:CN206491189U [P]. 2017-09-15. |
15 | 徐美庆,周建新.一种利用黑水虻幼虫处理餐厨垃圾用虫粪分离装置: CN207978745U [P]. 2020-07-23. |
16 | 曹卫彬,焦灏博,刘姣娣,等.基于TRIZ理论的红花丝盲采装置设计与试验[J].农业机械学报, 2018, 49 (8): 76-82. |
CAO W B, JIAO H B, LIU J D, et al.. Design and safflower filament picking device based on TRIZ theory [J]. Trans. Chin. Soc. Agric. Machinery, 2018, 49 (8): 76-82. | |
17 | 李兵.生活垃圾深度分选及设备优化组合技术研究[D].上海: 同济大学, 2006. |
LI B. Integrated mechanical separation and parameter optimization for municipal solid wastes [D]. Shanghai: Tongji University, 2006. | |
18 | 中国农业机械化科学研究院.农业机械设计手册 (下册) [M].北京:中国农业科学技术出版社, 2007: 965-966. |
19 | 康建明,张恒,张国海,等.残膜物料空气动力学特性与膜杂分离装置试验[J].中国农机化学报, 2020, 41 (1): 167-172. |
KANG J M, ZHANG H, ZHANG G H, et al.. Aerodynamic characteristics of residual film materials and test of membrane separation device [J]. J. Chin. Agric. Mechanization, 2020, 41 (1): 167-172. | |
20 | 刘廷发.堆肥滚筒筛分机开发研究[D].北京:中国农业机械化科学研究院, 2017. |
LIU T F. Research and design of compost trommel screen [D]. Beijing: Chinese Academy of Agricultural Mechanization Sciences, 2017. | |
21 | 李兵,董志颖,赵由才,等.城市生活垃圾滚筒筛分选特性研究[J].环境科学学报, 2011, 31 (10): 2268-2274. |
LI B, DONG Z Y, ZHAO Y C, et al.. Study on the mechanical separation characteristics for municipal solid waste using trommel screener [J]. Acta Sci. Circum., 2011, 31 (10): 2268-2274. | |
22 | 康建明,陈学庚,温浩军,等.基于响应面法的梳齿式采棉机采收台优化设计[J/OL].农业机械学报, 2013, 44 (S2): 57-61. |
KANG J M, CHEN X G, WEN H J, et al.. Optimization of comb-type cotton picker device based on response surface methodology [J/OL]. Trans. Chin. Soc. Agric. Machinery, 2013, 44 (S2): 57-61. | |
23 | 任露泉.试验优化设计与分析[M].第2版.北京:高等教育出版社, 2003:1-585. |
[1] | LI Siqingaowa, WANG Chunguang, DU Haifeng, JIN Eerdumutu. Research on Cutting Performance of Convex Arc Blade [J]. Journal of Agricultural Science and Technology, 2021, 23(12): 94-100. |
[2] | HUANG Weiwei1, BI Shenglei2, YANG Di3, LIU Yu1, XIN Nahui1, LI Yuyuan1, ZHANG Naiqun1*. Study on the Collecting Method of Heterotrophic Chlorella Cells [J]. Journal of Agricultural Science and Technology, 2021, 23(1): 186-193. |
[3] | GUO Huihui, LIN Congfa, JIANG Yuanbin, LI Zhigang. Optimization of Protocorm Proliferation Medium of Dendrobium huoshanense by Response Surface Methodology [J]. Journal of Agricultural Science and Technology, 2020, 22(3): 173-180. |
[4] | LIANG Zhaochao, GUO Xianwei, SONG Yanjuan, MA Tianfu, WANG Feng, WANG Liyan, JING Ruiyong*. Extraction Process of Polysaccharide in Agaricus bisporus Optimized by Response Surface Method and Its Antioxidant Activity in vitro [J]. Journal of Agricultural Science and Technology, 2019, 21(8): 161-168. |
[5] | WU Qi1,2,3§, ZHANG Yuhui1,2§, SU Rongrong1,2, SUN Bo1,3, WU Qiuyun1,2, XIA Zhilan1,2*. Optimization of Submerged Fermentation Medium of Agaricus blazei Murrill for Mycelial Biomass Accumulation Using Response Surface Methodology [J]. Journal of Agricultural Science and Technology, 2019, 21(3): 152-160. |
[6] | ZHANG Nan, LIU Jing, NIU Zhiyou*, SHI Lijun, LIU Zhaoxia. Experimental Study on Mechanical Properties of Pellet Feed [J]. Journal of Agricultural Science and Technology, 2019, 21(2): 82-90. |
[7] | DAI Yangjun1, HU Jian1,2, ZHOU Ying2, ZUO Bo1, SHI Yixue1. Optimization of Compound Enzymolysis Process of Dried Figs by Plackett-Burman Design and Response Surface Methodology [J]. Journal of Agricultural Science and Technology, 2018, 20(7): 146-153. |
[8] | CHEN Jine, LIU Hui, ZHAO Zhigang, ZHANG Hairong*. Optimization of Ultrasound-assisted Extraction of Panax notoginseng Root Polysaccharides Using Response Surface Methology [J]. Journal of Agricultural Science and Technology, 2018, 20(4): 138-146. |
[9] | CHEN Xinyao, DONG Xing, CHEN Jingjie, QIN Tao, LI Jian*, HUANG Yifan*. Optimization of Extraction Process for Crude Polysaccharide from Hericium Erinaceus by Response Surface Methodology [J]. Journal of Agricultural Science and Technology, 2017, 19(3): 131-136. |
[10] | DUAN Li-li, JU Rong-hui, WANG Hui, LIU Chao, LUO Hong-xia*, ZHAO Xin-yu. Research of the Extraction Process of Polysaccharides from Fuling using Supercritical Method Optimized by Response Surface [J]. Journal of Agricultural Science and Technology, 2016, 18(5): 193-199. |
[11] | XU Lan1, ZHANG Peng-fei1, LEI Li-xia1, ZHANG Hai-rong2, WANG Chuang-yun3. A Microwave-assisted Procedure for the Extraction Polysaccharide from Evodia rutaecarpa Using Response Surface Methodology [J]. Journal of Agricultural Science and Technology, 2016, 18(4): 174-180. |
[12] | XIONG Xia-yu, ZENG Xin-an*| WANG Man-sheng, ZHANG Zhi-hong. Studies on Optimization of Extraction Technology Assisted by Pulsed Electric Field of Total Flavonolds from Rape Pollen Using Response Surface Methodology [J]. Journal of Agricultural Science and Technology, 2015, 17(5): 88-93. |
[13] | TU De-yu1,2, LI An-xin1, HE Gui-sheng1. Parameter Optimization of Rice Straw Cold Press Process [J]. , 2015, 17(3): 56-62. |
[14] | WANG Yang, WEI Yun-lu, GUO Xiu-feng, LI Hong-xia, HU Jin-rong, LI Ping-lan*. Manufacture of Selenium-rich Bifidobacterium spp. Pumpkin Powder [J]. , 2015, 17(3): 92-99. |
[15] | XIN Chongbo, ZI Lihan, LIU Chenguang, BAI Fengwu*. Response Surface Methodology Application for Optimizing Corncobs Pretreatment Conditions During Simultaneous Saccharification and Ethanol Fermentation [J]. , 2013, 15(5): 173-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||