Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (9): 207-216.DOI: 10.13304/j.nykjdb.2022.0322
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles Next Articles
Na CHA1(), Baohe LIU2, Zhen ZHANG1, Long LI1,3(), Yanjiao WANG3, Liguo WANG4, Feifei SU4
Received:
2022-04-20
Accepted:
2022-10-26
Online:
2023-09-15
Published:
2023-09-28
Contact:
Long LI
茶娜1(), 刘宝河2, 张朕1, 李龙1,3(), 王嫣娇3, 王立国4, 苏非非4
通讯作者:
李龙
作者简介:
茶娜E-mail:1091651174@qq.com;
基金资助:
CLC Number:
Na CHA, Baohe LIU, Zhen ZHANG, Long LI, Yanjiao WANG, Liguo WANG, Feifei SU. Study on Carbon Sink Function of Road Area of Typical Grassland Under Different Restoration Years in Inner Mongolia[J]. Journal of Agricultural Science and Technology, 2023, 25(9): 207-216.
茶娜, 刘宝河, 张朕, 李龙, 王嫣娇, 王立国, 苏非非. 不同恢复年限下典型草原区路域生态系统固碳功能研究[J]. 中国农业科技导报, 2023, 25(9): 207-216.
路段名称Section name | 起始位置 Starting position | 终止位置 End position | 恢复年限Recovery period/a | 扰动方式Disturbance mode | 样方数量Number of sample plots | 海拔Altitude/m | 坡度 Slope/(°) | 植被盖度Vegetation coverage/% |
---|---|---|---|---|---|---|---|---|
G303-A | 锡林浩特 Xilinhot | 阿巴嘎旗 Abaga Banner | 1 | 碾压Rolling | 4 | 1 023 | 4.23 | 5~10 |
路堤Embankment | 5 | 1 027 | 37.52 | 20~35 | ||||
取土场Borrow area | 4 | 1 098 | 24.60 | 10~15 | ||||
路堑Cutting | 5 | 1 103 | 38.90 | 15~25 | ||||
G207-X | 锡林浩特 Xilinhot | 西乌珠穆沁旗 Xiwuzhumuqin Banner | 5 | 碾压Rolling | 5 | 1 046 | 12.53 | 5~12 |
路堤Embankment | 5 | 1 103 | 41.20 | 35~45 | ||||
取土场Borrow area | 4 | 1 037 | 16.11 | 10~18 | ||||
路堑Cutting | 4 | 1 125 | 30.36 | 20~30 | ||||
G207-W | 锡林浩特 Xilinhot | 乌日图塔拉 Wuritutala | 15 | 碾压Rolling | 4 | 1 070 | 8.85 | 10~15 |
路堤Embankment | 5 | 1 065 | 32.12 | 50~60 | ||||
取土场Borrow area | 4 | 1 044 | 24.60 | 30~40 | ||||
路堑Cutting | 5 | 1 119 | 36.37 | 35~45 | ||||
CK | 5 | 1 093 | 9.10 | 45~90 |
Table 1 Basic information of sample plot
路段名称Section name | 起始位置 Starting position | 终止位置 End position | 恢复年限Recovery period/a | 扰动方式Disturbance mode | 样方数量Number of sample plots | 海拔Altitude/m | 坡度 Slope/(°) | 植被盖度Vegetation coverage/% |
---|---|---|---|---|---|---|---|---|
G303-A | 锡林浩特 Xilinhot | 阿巴嘎旗 Abaga Banner | 1 | 碾压Rolling | 4 | 1 023 | 4.23 | 5~10 |
路堤Embankment | 5 | 1 027 | 37.52 | 20~35 | ||||
取土场Borrow area | 4 | 1 098 | 24.60 | 10~15 | ||||
路堑Cutting | 5 | 1 103 | 38.90 | 15~25 | ||||
G207-X | 锡林浩特 Xilinhot | 西乌珠穆沁旗 Xiwuzhumuqin Banner | 5 | 碾压Rolling | 5 | 1 046 | 12.53 | 5~12 |
路堤Embankment | 5 | 1 103 | 41.20 | 35~45 | ||||
取土场Borrow area | 4 | 1 037 | 16.11 | 10~18 | ||||
路堑Cutting | 4 | 1 125 | 30.36 | 20~30 | ||||
G207-W | 锡林浩特 Xilinhot | 乌日图塔拉 Wuritutala | 15 | 碾压Rolling | 4 | 1 070 | 8.85 | 10~15 |
路堤Embankment | 5 | 1 065 | 32.12 | 50~60 | ||||
取土场Borrow area | 4 | 1 044 | 24.60 | 30~40 | ||||
路堑Cutting | 5 | 1 119 | 36.37 | 35~45 | ||||
CK | 5 | 1 093 | 9.10 | 45~90 |
植物种类Plant species | 重要值Important value | |||
---|---|---|---|---|
1 a | 5 a | 15 a | CK | |
猪毛蒿Artemisia scoparia Waldst. et Kit. | 0.371 3 | 0.201 5 | ||
栉叶蒿Neopallasia pectinata (Pall.) Poljak. | 0.834 2 | 0.109 0 | ||
野大麻Cannabis sativa L. | 0.176 0 | 0.078 5 | ||
羊草Leymus chinensis (Trin.ex Bunge) Tzvelev | 0.607 3 | 0.434 3 | 0.769 9 | 0.400 7 |
小叶锦鸡儿Caragana microphylla Lam | 0.072 5 | 0.026 0 | ||
细叶马莲Iris lactea Pall. | 0.039 4 | |||
委陵菜Potentilla chinensis Ser. | 0.033 1 | 0.021 2 | ||
菟丝子Cuscuta chinensis Lam. | 0.018 9 | 0.106 4 | ||
酸模叶蓼Persicaria lapathifolia (L.) Delarbre | 0.013 1 | |||
蒲公英Taraxacum mongolicum Hand.-Mazz. | 0.052 7 | 0.020 3 | ||
苜蓿Medicago sativa L. | 0.104 3 | 0.038 7 | ||
冷蒿Artemisia frigida Willd | 0.332 2 | 0.074 5 | ||
胡枝子Lespedeza bicolor Turcz. | 0.123 7 | |||
鹤虱Lappula myosotis Moench | 0.034 4 | 0.038 8 | 0.016 9 | |
褐沙蒿Artemisia halodendron | ||||
大籽蒿Artemisia sieversiana Ehrhart ex Willd. | 0.898 6 | 0.296 4 | 0.638 0 | 0.044 4 |
苁蓉Cistanche deserticola Ma | 0.052 2 | 0.020 8 | ||
刺儿菜Cirsium arvense var. integrifolium | 0.022 2 | |||
车前Plantago asiatica L. | 0.015 6 | 0.031 0 | ||
糙引子草Cleistogenes squarrosa (Trin.) Keng | 1.078 2 | 0.100 2 | ||
冰草Agropyron cristatum (L.) Gaertn. (Gramineae) | 0.418 0 | 0.295 2 | 0.055 6 | |
物种数量Number of species | 4 | 9 | 11 | 18 |
Table 2 Composition and important values of different plants in the study area
植物种类Plant species | 重要值Important value | |||
---|---|---|---|---|
1 a | 5 a | 15 a | CK | |
猪毛蒿Artemisia scoparia Waldst. et Kit. | 0.371 3 | 0.201 5 | ||
栉叶蒿Neopallasia pectinata (Pall.) Poljak. | 0.834 2 | 0.109 0 | ||
野大麻Cannabis sativa L. | 0.176 0 | 0.078 5 | ||
羊草Leymus chinensis (Trin.ex Bunge) Tzvelev | 0.607 3 | 0.434 3 | 0.769 9 | 0.400 7 |
小叶锦鸡儿Caragana microphylla Lam | 0.072 5 | 0.026 0 | ||
细叶马莲Iris lactea Pall. | 0.039 4 | |||
委陵菜Potentilla chinensis Ser. | 0.033 1 | 0.021 2 | ||
菟丝子Cuscuta chinensis Lam. | 0.018 9 | 0.106 4 | ||
酸模叶蓼Persicaria lapathifolia (L.) Delarbre | 0.013 1 | |||
蒲公英Taraxacum mongolicum Hand.-Mazz. | 0.052 7 | 0.020 3 | ||
苜蓿Medicago sativa L. | 0.104 3 | 0.038 7 | ||
冷蒿Artemisia frigida Willd | 0.332 2 | 0.074 5 | ||
胡枝子Lespedeza bicolor Turcz. | 0.123 7 | |||
鹤虱Lappula myosotis Moench | 0.034 4 | 0.038 8 | 0.016 9 | |
褐沙蒿Artemisia halodendron | ||||
大籽蒿Artemisia sieversiana Ehrhart ex Willd. | 0.898 6 | 0.296 4 | 0.638 0 | 0.044 4 |
苁蓉Cistanche deserticola Ma | 0.052 2 | 0.020 8 | ||
刺儿菜Cirsium arvense var. integrifolium | 0.022 2 | |||
车前Plantago asiatica L. | 0.015 6 | 0.031 0 | ||
糙引子草Cleistogenes squarrosa (Trin.) Keng | 1.078 2 | 0.100 2 | ||
冰草Agropyron cristatum (L.) Gaertn. (Gramineae) | 0.418 0 | 0.295 2 | 0.055 6 | |
物种数量Number of species | 4 | 9 | 11 | 18 |
恢复年限 Recovery period/a | Simpsom优势度指数 D | Shannon-Wiener多样性指数 H | Margale丰富度指数 M | Pielon均匀度指数 E |
---|---|---|---|---|
1 | 0.209±0.021 c | 0.340±0.011 c | 0.347±0.032 c | 0.491±0.015 c |
5 | 0.339±0.030 c | 0.654±0.025 b | 0.592±0.017 b | 0.573±0.009 b |
15 | 0.413±0.033 b | 0.900±0.019 a | 0.700±0.021 a | 0.670±0.028 a |
CK | 0.542±0.012 a | 0.947±0.040 a | 0.691±0.064 a | 0.683±0.036 a |
Table 3 Vegetation diversity index of the study area
恢复年限 Recovery period/a | Simpsom优势度指数 D | Shannon-Wiener多样性指数 H | Margale丰富度指数 M | Pielon均匀度指数 E |
---|---|---|---|---|
1 | 0.209±0.021 c | 0.340±0.011 c | 0.347±0.032 c | 0.491±0.015 c |
5 | 0.339±0.030 c | 0.654±0.025 b | 0.592±0.017 b | 0.573±0.009 b |
15 | 0.413±0.033 b | 0.900±0.019 a | 0.700±0.021 a | 0.670±0.028 a |
CK | 0.542±0.012 a | 0.947±0.040 a | 0.691±0.064 a | 0.683±0.036 a |
扰动方式 Perturbation method | 土层深度 Depth of soil layer/cm | 恢复年限 Recovery period/a | CK | ||
---|---|---|---|---|---|
1 | 5 | 15 | |||
路堤Embankment | 0—10 | 10.98±0.68 αb | 13.61±0.97 αa | 14.33±0.93 αa | 13.57±0.88 αa |
10—20 | 9.30±0.23 αb | 10.00±0.74 αab | 10.90±0.89 αa | 10.80±0.49 αa | |
20—30 | 6.05±0.34 αc | 7.33±0.69 αb | 8.44±0.58 αa | 8.97±0.57 αa | |
路堑Borrow area | 0—10 | 6.09±0.32 βc | 8.07±0.45 βb | 10.76±0.77 βab | 13.57±0.91 αa |
10—20 | 4.99±0.44 γc | 6.54±0.22 βb | 9.83±0.71 αa | 10.80±0.79 αa | |
20—30 | 4.87±0.19 βc | 6.58±0.13 αab | 7.62±0.68 βa | 8.97±0.61 αa | |
碾压Rolling | 0—10 | 4.50±0.51 γc | 4.90±0.27 γc | 6.81±0.47 γb | 13.57±0.64 αa |
10—20 | 3.32±0.12 γc | 3.90±0.19 γbc | 4.50±0.21 βb | 10.80±0.76 αa | |
20—30 | 2.60±0.22 γc | 3.01±0.22 βc | 4.10±0.37 γb | 8.97±0.67 αa | |
取土场Cutting | 0—10 | 7.12±0.68 βb | 11.57±0.43 αb | 12.35±0.35 αab | 13.57±0.98 αa |
10—20 | 6.19±0.49 βc | 7.80±0.68 βb | 8.28±0.69 αb | 10.80±0.29 αa | |
20—30 | 6.01±0.53 αc | 7.03±0.66 αb | 7.61±0.37 βb | 8.97±0.46 αa |
Table 4 Soil organic carbon content of different sites in the study area
扰动方式 Perturbation method | 土层深度 Depth of soil layer/cm | 恢复年限 Recovery period/a | CK | ||
---|---|---|---|---|---|
1 | 5 | 15 | |||
路堤Embankment | 0—10 | 10.98±0.68 αb | 13.61±0.97 αa | 14.33±0.93 αa | 13.57±0.88 αa |
10—20 | 9.30±0.23 αb | 10.00±0.74 αab | 10.90±0.89 αa | 10.80±0.49 αa | |
20—30 | 6.05±0.34 αc | 7.33±0.69 αb | 8.44±0.58 αa | 8.97±0.57 αa | |
路堑Borrow area | 0—10 | 6.09±0.32 βc | 8.07±0.45 βb | 10.76±0.77 βab | 13.57±0.91 αa |
10—20 | 4.99±0.44 γc | 6.54±0.22 βb | 9.83±0.71 αa | 10.80±0.79 αa | |
20—30 | 4.87±0.19 βc | 6.58±0.13 αab | 7.62±0.68 βa | 8.97±0.61 αa | |
碾压Rolling | 0—10 | 4.50±0.51 γc | 4.90±0.27 γc | 6.81±0.47 γb | 13.57±0.64 αa |
10—20 | 3.32±0.12 γc | 3.90±0.19 γbc | 4.50±0.21 βb | 10.80±0.76 αa | |
20—30 | 2.60±0.22 γc | 3.01±0.22 βc | 4.10±0.37 γb | 8.97±0.67 αa | |
取土场Cutting | 0—10 | 7.12±0.68 βb | 11.57±0.43 αb | 12.35±0.35 αab | 13.57±0.98 αa |
10—20 | 6.19±0.49 βc | 7.80±0.68 βb | 8.28±0.69 αb | 10.80±0.29 αa | |
20—30 | 6.01±0.53 αc | 7.03±0.66 αb | 7.61±0.37 βb | 8.97±0.46 αa |
Fig. 4 Redundancy analysis of vegetation community characteristics and carbon contentNote: M—Margalef richness index; D—Simpson dominance index; H—Shannon-Wiener diversity index; E—Pielou evenness index; R—Number of species.
1 | 王雷, 王海洋. 基于Meta分析的路域植物物种丰富度变化及其影响因素[J]. 生态学杂志, 2021, 40(9):2945-2953. |
WANG L, WANG H Y. Variation of plant species richness in road area and its influencing factors beasd on meta analysis [J]. Chin. J. Ecol., 2021, 40(9):2945-2953. | |
2 | EWERS R M, KLISKEY A D, WALKER S,et al.. Past and future trajectories of forest loss in New Zealand [J]. Biol. Conserv., 2006, 133(3): 312-325. |
3 | 侯程程. 全球气候变暖背景下公路碳排放及路域碳汇研究[D]. 青岛: 中国海洋大学, 2013. |
HOU C C. The research of highway carbon emissions and expressway carbon sink under the background of global clamit warming [D]. Qingdao: Ocean University of China, 2013. | |
4 | 杨季. 试论草原碳源与碳汇的对立统一关系及草原碳汇的作用[J]. 国家林业和草原局管理干部学院学报, 2019, 18(2):8-12. |
YANG J. On the unity of opposites between grassland carbon source and carbon sink and the role of grassland carbon sink [J]. J. Manage. Cadre College State For. Grassland Administration, 2019, 18(2): 8-12. | |
5 | 赵宁, 周蕾, 庄杰, 等. 中国陆地生态系统碳源/汇整合分析[J]. 生态学报, 2021, 41(19): 7648-7658. |
ZHAO N, ZHOU L, ZHUANG J, et al.. Integration analysis of the carbon source and sink in terrestrial ecosystem, China [J]. Acta Ecol. Sin., 2021, 41(19): 7648-7658. | |
6 | 王勇辉, 焦黎. 艾比湖湿地土壤有机碳及储量空间分布特征[J]. 生态学报, 2016, 36(18): 5893-5901. |
WANG Y H, JIAO L. The characteristics and storage of soil organic carbon in Ebinur Lake wetland [J]. Acta Ecol.Sin., 2016, 36 (18): 5893-5901. | |
7 | 王绍强, 周成虎, 李克让, 等. 中国土壤有机碳库及空间分布特征分析[J]. 地理学报, 2000, 55(5): 533-544. |
WANG S Q, ZHOU C H, LI K R, et al.. Analysis on spatial distribution characterisics of soil organic carbon reservoir in China [J]. Acta Geogr. Sin., 2000, 55(5): 533-544. | |
8 | 周莉, 李保国, 周广胜. 土壤有机碳的主导影响因子及其研究进展[J]. 地球科学进展, 2005, 20(1): 99-105. |
ZHOU L, LI B G, ZHOU G S. Advances in controlling factors of soil organic carbon [J]. Adv. Earth Sci., 2005, 20(1): 99-105. | |
9 | 林枫, 王丽芳, 文琦. 黄土高原土壤有机碳固存对植被恢复的动态响应及其碳汇价值[J]. 水土保持研究, 2021, 28(3): 53-58. |
LIN F, WANG L F, WEN Q. Dynamic responses of sequestration of soil organic carbon to vegetation restoration and the values of carbon sink in the Loess Platea [J]. Res. Soil Water Conserv., 2021, 28(3): 53-58. | |
10 | 黄先飞, 周运超, 张珍明. 喀斯特石漠化区不同土地利用方式下土壤有机碳分布特征[J]. 水土保持学报, 2017, 31(5): 215-221. |
HUANG X F, ZHOU Y C, ZHANG Z M. Distribution characteristics of soil organic carbon under different land use modes in Karst Rocky Desertification Area [J]. J. Soil Water Conserv., 2017, 31(5): 215-221. | |
11 | 季波, 谢应忠, 何建龙, 等. 宁夏典型温性天然草地固碳特征[J]. 应用生态学报, 2020, 31(11): 3657-3664. |
JI B, XIE Y Z, HE J L, et al.. Carbon sequestration characteristics of typical temperate natural grasslands in Ningxia, China [J]. Chin. J. Appl. Ecol., 2020, 31(11): 3657-3664. | |
12 | 许小明, 张晓萍, 何亮, 等. 黄土丘陵区不同恢复植被类型的固碳特征[J]. 环境科学, 2022, 43(11): 5263-5273. |
XU X M, ZHANG X P, HE L,et al.. Carbon sequestration characteristics of different restored vegetation typesin loess hilly reqion [J]. Chin. J. Environ. Sci., 2022, 43(11): 5263-5273. | |
13 | 李令, 贺慧丹, 未亚西, 等. 三江源农牧交错区植被群落及土壤固碳持水能力对退耕还草措施的响应[J]. 草业科学,2017, 34(10): 1999-2008. |
LI L, HE H D, WEI Y X, et al.. Response of vegetation community structure, soil carbon sequestration, and water-holding capacity in returning farmland to grassland plots, in the agro pastoral transitional zone in the Three Rivers Source Region [J]. Pratac. Sci., 2017, 34(10): 1999-2008. | |
14 | 国家林业局.森林土壤分析方法[J].北京:中国标准出版社,1999:1-48. |
15 | 王志婷, 刘廷玺, 童新, 等. 不同处理方式对沙丘‒草甸草地植被和土壤特征的影响[J]. 中国草地学报, 2022, 44(7): 43-52. |
WANG Z T, LIU T X, TONG X, et al.. Effects of different treatments on vegetation and soil characteristics of dune-meadow grassland [J]. Chin. J. Grass., 2022, 44(7): 43-52. | |
16 | 安慧, 杨新国, 刘秉儒, 等. 荒漠草原区弃耕地植被演替过程中植物群落生物量及土壤养分变化[J]. 应用生态学报, 2011,22(12): 3145-3149. |
AN H, YANG X G, LIU B R,et al.. Changes of plant community biomass and soil nutrients during the vegetation succession on abandoned cultivated land in desert steppe region [J]. Chin. J. Appl. Ecol., 2011, 22(12): 3145-3149. | |
17 | 杨振意, 薛立, 许建新. 采石场废弃地的生态重建研究进展[J]. 生态学报, 2012, 32(16): 5264-5274. |
YANG Z Y, XUE L, XU J X. Advances in ecology restoration of abandoned quarries [J]. Acta Ecol. Sin., 2012, 32(16): 5264-5274. | |
18 | DENG L, WANG K B, CHENG M L, et al.. Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China [J/OL]. Catena, 2013, 110: 7428 [2022-04-10]. . |
19 | 冯棋, 杨磊, 王晶, 等. 黄土丘陵区植被恢复的土壤碳水效应[J]. 生态学报, 2019, 39(18): 6598-6609. |
FENG Q, YANG L, WANG J, et al.. Response of soil moisture and soil organic carbon to vegetation restoration in deep soil profiles in Loess Hilly region [J]. Acta Ecol. Sin., 2019, 39(18): 6598-6609. | |
20 | 马维伟, 孙文颖. 尕海湿地植被退化过程中有机碳及相关土壤酶活性变化特征[J]. 自然资源学报, 2020, 35(5): 1250-1260. |
MA W W, SUN W Y. Changes of organic carbon and related soil enzyme activities during vegetation degradation in Gahai Wetland [J]. J. Nat. Resour., 2020, 35(5): 1250-1260. | |
21 | 陈春兰, 陈安磊, 魏文学, 等. 长期施肥对红壤稻田剖面土壤碳氮累积的影响[J]. 水土保持研究, 2021, 28(2): 14-20. |
CHEN C L, CHEN A L, WEI W X, et al.. Effect of long-term fertilization on accumulation of soil carbon and nitrogen in eeddish paddy soil profiles [J]. Res. Soil Water Conserv., 2021, 28(2): 14-20. | |
22 | WANG Y Q, SHAO M A, ZHANG C C, et al.. Soil organic carbon in deep profiles under Chinese continental monsoon climate and its relations with land uses [J]. Ecol. Eng., 2015, 82: 361-367. |
23 | 余海龙, 宋同清, 肖润林, 等. 高速公路路域边坡人工植被下土壤质量的变化[J]. 生态学杂志, 2021, 25(3): 281-285. |
YU H L, SONG T Q, XIAO R L, et al.. Changes of soil quality under artificial vegetation on highway slope [J]. Chin. J. Ecol., 2021, 25(3): 281-285. | |
24 | 孙小丽, 康萨如拉, 张庆, 等. 荒漠草原物种多样性、生产力与气候因子和土壤养分之间关系的研究[J]. 草业学报, 2015, 24(12): 10-19. |
SUN X L, KANG S R L, ZHANG Q, et al.. Relationship between species diversity,productivity,climatic factors and soil nutrients in the desert steppe [J] Acta Pratac. Sin., 2015, 24(12): 10-19. | |
25 | LI Y Q, ZHAO X Y, ZHANG F X, et al.. Accumulation of soil organic carbon during natural restoration of desertified grassland in China’s Horqin sandy land [J]. J. Arid Land,2015, 7(3): 328-340. |
26 | 赵啸龙, 谢玉鸿, 马旭君, 等. 科尔沁沙质草地不同恢复年限草本层群落结构及其与土壤理化性质的关系[J]. 中国沙漠, 2022, 42(2): 134-141. |
ZHAO X L, XIE Y H, MA X J, et al.. Vegetation structure and its relationship with soil physicochemical properties in restoring sandy grassland in Horqin sandy land [J]. J. Desert Res., 2022, 42(2): 134-141. | |
27 | 李金全, 李兆磊, 江国福, 等. 中国农田耕层土壤有机碳现状及控制因素[J]. 复旦学报(自然科学版), 2016, 55(2): 247-256, 266. |
LI J Q, LI Z L, JIANG G F, et al.. A study on soil organic carbon in plough layer of China's Arable land [J]. Fudan J. (Nat. Sci.), 2016, 55(2): 247-256, 266. | |
28 | 杨颖慧, 张锦华, 杨春华. 退化草地恢复生态对土壤物理性状的影响——以藏北公路沿线车辆碾压干扰矮嵩草草甸为例[J]. 水土保持学报, 2006, 20(5): 56-59, 72. |
YANG Y H, ZHANG J H, YANG C H. Effects of ecological restoration of degraded grassland on soil physical characteristics-as an example of trampling disturbance on Kobresia Humilis grassland alone Qingzang road in North Tibet [J]. J. Soil Water Conserv., 2006, 20(5): 56-59, 72. | |
29 | 张琳琳, 丁国栋, 肖萌, 等. 干草原区车辆碾压对土壤理化性质的影响[J]. 干旱区资源与环境, 2013, 27(12): 81-86. |
ZHANG L L, DING G D, XIAO M, et al.. The influence of vehicles rolling on physical and chemical properties of soil in steppes [J]. J. Arid Land Res. Environ., 2013, 27(12): 81-86. | |
30 | 翟佳. 鲁中南丘陵区高速公路边坡微立地类型划分与立地质量评价[D]. 北京: 北京林业大学, 2019. |
ZHAI J. Classification of micro-site types and site quality evaluation of expressway slopes in central and southern Shandong [D]. Beijing: Beijing Forestry University, 2019. | |
31 | 廖娇娇, 窦艳星, 安韶山. 黄土高原不同植被群落多样性与土壤有机碳密度关系研究[J]. 水土保持研究, 2022, 29(4):75-82. |
LIAO J J, DOU Y X, AN S S. Relationship between vegetation community diversity and soil organic carbon density on the Loess Plateau [J ]. Res. Soil Water Conserv., 2022, 29(4): 75-82. | |
32 | 赵冰清. 半干旱黄土区大型露天煤矿植被演替规律研究[D]. 北京: 中国地质大学,2019. |
ZHAO B Q. Vegetation succession of large open-pit coal mine in semi-arid loess area [D]. Beijing:China University of Geosciences, 2019. | |
33 | 张亦扬. 榆神府采煤塌陷区不同植被恢复方式下土壤与植物演替规律及其耦合关系[D]. 西安: 西安科技大学, 2019. |
ZHANG Y Y. Soil-vegetation evolution dynamics and coupling effects of different vegetation restoration modes in Yushenfu coalmining area [D]. Xi’an: Xi’an University of science and technology, 2019. | |
34 | 李文军, 刘少文, 贾春峰, 等. 黄土地区高速公路边坡土质特征试验研究[J]. 公路, 2015, 60(7): 259-264. |
LI W J, LIU S W, JIA C F, et al.. Experimental study on soil characteristics of expressway slope in Loess Area [J]. Highway,2015, 60(7): 259-264. |
[1] | Hongjun GUAN, Yuhuan CHEN, Aiwu ZHAO. Assessment of Carbon Neutrality Capacity of China’s Marine Fisheries [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 215-224. |
[2] | Xue LI, Zifei LIU, Mingjun ZHAO, Lejun XU, Huiwu SUN. Carbon Peak and Carbon Neutralization Goals and Realization Paths of the Aquaculture and Fishing Industry in China [J]. Journal of Agricultural Science and Technology, 2022, 24(11): 13-26. |
[3] | YUE Dongdong, WANG Lumin*, FANG Hai, WANG Qian, XIAO Li, . Evaluation of Carbon Sinks in Freshwater Fisheries ——A Case Research on the Sample Production Survey Data of Zhejiang Province [J]. Journal of Agricultural Science and Technology, 2017, 19(11): 117-124. |
[4] | GUO Yue-feng1, QI Wei1,2, YAO Yun-feng1*, ZHANG Mei-li1, WEN Jian1, HAN Zhao-min1, LIU Long1, YUCHI Wen-si1. Carbon Sink Effect in Pinus tabulaeformis Afforestation Species of the Agro-pasture Zigzag Zone in Inner Mongolia [J]. Journal of Agricultural Science and Technology, 2016, 18(5): 141-147. |
[5] | YUE Dong-dong1, WANG Lu-min1*, FANG Hai1, GENG Rui2, ZHAO Peng-fei2, . Development Strategy of Marine Fisheries in China Based on the Carbon Balance [J]. Journal of Agricultural Science and Technology, 2016, 18(4): 1-8. |
[6] | YUE Dong\|dong1, WANG Lu\|min1*, ZHANG Xun1, ZHENG Han\|feng1, FENG Chun\|lei1, . Studies on Assessment of Carbon Sinks of Indian Ocean Tuna Fishery ——Taking China for Example [J]. , 2014, 16(5): 132-138. |
[7] | DONG Li-guo, LI Sheng-bao, PAN Zhan-bin| CAI Jin-jun, ZHANG Yuan-run, JIANG Qi,. Discussion on Ecological Restoration Mode and Technology Systems of |Degraded Ecosystems for Semi-arid Loess Hilly Areas [J]. , 2008, 10(6): 35-41. |
[8] | ZHAO Hai-chao , LIU Jing-hui , WANG Sheng-rui , WANG Ying . The Application of Aquatic Vascular Macrophytes on Ecological Restoration of Eutrophication Lake [J]. , 2006, 8(3): 47-52. |
[9] | CHENG Mo . Wrong Policy Supporting and Adjusting of Methane Producing Pool |Cnstruction in Northwest Ecological Restoration Area [J]. , 2006, 8(2): 56-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||