Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (2): 1-12.DOI: 10.13304/j.nykjdb.2022.0923
• AGRICULTURAL INNOVATION FORUM •
Chen CHEN(), Dawei CHENG, Lan LI, Hong GU, Xizhi GUO, Ming LI(
), Jinyong CHEN(
)
Received:
2022-10-28
Accepted:
2022-12-15
Online:
2024-02-15
Published:
2024-02-04
Contact:
Ming LI,Jinyong CHEN
陈晨(), 程大伟, 李兰, 顾红, 郭西智, 李明(
), 陈锦永(
)
通讯作者:
李明,陈锦永
作者简介:
陈晨 E-mail: chenchen031018@163.com
基金资助:
CLC Number:
Chen CHEN, Dawei CHENG, Lan LI, Hong GU, Xizhi GUO, Ming LI, Jinyong CHEN. Research Progress on Mechanism of Brassinosteroids Regulating Plant Salt Tolerance[J]. Journal of Agricultural Science and Technology, 2024, 26(2): 1-12.
陈晨, 程大伟, 李兰, 顾红, 郭西智, 李明, 陈锦永. 油菜素内酯调控植物耐盐机理研究进展[J]. 中国农业科技导报, 2024, 26(2): 1-12.
1 | 赵起越,夏夜,邹本东. 土壤盐渍化成因危害及恢复[J]. 农业与技术, 2022, 42(11): 115-119. |
2 | 汤日圣,黄益洪,唐现洪,等. 生物源脱落酸对盐胁迫下辣椒苗生长和某些生理指标的影响[J]. 江苏农业学报,2009,25(4): 856-860. |
TANG R S, HUANG Y H, TANG X H,et al.. Effects of microoraganism-sourced ABA on the growth and some physiological indexes of pepper seedling under salt stress [J]. Jiangsu J. Agric. Sci., 2009, 25(4):856-860. | |
3 | 尚庆茂,宋士清,张志刚,等. 外源BR诱导黄瓜(Cucumis sativus L.)幼苗的抗盐性 [J]. 中国农业科学,2006,39(9): 1872-1877. |
SHANG Q M, SONG S Q, ZHANG Z G,et al.. Exogenous brassinosteroid induced the salt resistance of cucumber (Cucumis sativus L.) seedlings [J]. Sci. Agric. Sin., 2006, 39(9):1872-1877. | |
4 | MITCHELL J W, MANDAVA N, WORLEY J F,et al.. Brassins-a new family of plant hormones from rape pollen [J]. Nature, 1970, 225(5237): 1065-1066. |
5 | GROVE M D, SPENCER G F, ROHWEDDER W K. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen [J]. Nature, 1979, 281: 216-217. |
6 | 郑婷,程建徽,魏灵珠,等. 油菜素内酯及其在园艺植物中的研究进展[J/OL]. 分子植物育种,2022 [2022-09-28]. . |
ZHENG T, CHENG J H, WEI L Z,et al.. Progress of brassinosteroids and reasearch advancements on horticultural plants [J/OL]. Mol. Plant Breed., 2022 [2022-09-28]. . | |
7 | WADA K, MARUMO S, IKEKAWA N,et al.. Brassinolide and homobrassinolide promotion of lamina inclination of rice seedlings [J]. Plant Cell Physiol., 1981, 22(2): 323-325. |
8 | 习世宏,褚祥. 油菜素内酯对花椒幼苗生长和抗旱性影响 [J]. 陕西林业科技,2014(5): 1-4. |
XI S H, CHU X. Effect of natural brassinoide on the growth and drought resistance of Zanthoxylum bungeanum seedlings [J]. Shaanxi For. Sci. Technol., 2014(5):1-4. | |
9 | OGWENO J O, SONG X S, SHI K,et al.. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum [J]. J. Plant Growth Regul., 2008, 27(1): 49-57. |
10 | 董登峰,李杨瑞,江立庚. 油菜素内酯对铝胁迫大豆光合特性的影响[J]. 作物学报,2008,34(9): 1673-1678. |
DONG D F, LI Y R, JIANG L G. Effects of brassinosteroid on photosynthetic characteristics in soybean under aluminum stress [J]. Acta. Agron. Sin., 2008, 34(9):1673-1678. | |
11 | 吴雪霞,查丁石,朱宗文,等. 外源24-表油菜素内酯对盐胁迫下茄子种子萌发和幼苗生理特性的影响[J]. 植物生理学报,2011,47(6): 607-612. |
WU X X, CHA D S, ZHU Z W,et al.. Effects of exogenous 24-epibrassinolide on seed germination, physiological characteristics of eggplant seedlings under NaCl stress [J]. Acta Phytophysiol. Sin., 2011, 47(6):607-612. | |
12 | 范翠枝,吴馨怡,关欣,等. 油菜素内酯浸种对盐胁迫番茄种子萌发的影响及其生理机制[J]. 生态学报,2021,41(5): 1857-1867. |
FAN C Z, WU X Y, GUAN X,et al.. Concentration effects and its physiological mechanism of soaking seeds with brassinolide on tomato seed germination under salt stress [J]. Acta Ecol. Sin., 2021, 41(5):1857-1867. | |
13 | HU Y Q, XIA S T, SU Y,et al.. Brassinolide increases potato root growth in vitro in a dose-dependent way and alleviates salinity stress [J/OL]. Biomed. Res. Int., 2016, 2016:8231873 [2022-09-28]. . |
14 | 张林青. 油菜素内酯对盐胁迫下番茄幼苗生理指标的影响 [J]. 北方园艺,2013(1): 1-3. |
ZHANG L Q. The affection of brassinolide on the physiological indexes of tomato seedlings [J]. Northern Hortic., 2013(1):1-3. | |
15 | 张林青. 盐胁迫下油菜素内酯对番茄产量和品质的影响 [J]. 北方园艺,2012(20): 23-25. |
ZHANG L Q. Effect of brassinolide on yield and quality of tomato under salt stress [J]. Northern Hortic., 2012(20):23-25. | |
16 | 宋靓苑,林恬逸,许静雯,等. 盐胁迫下表油菜素内酯对沟叶结缕草愈伤组织生长和再生的影响[J]. 核农学报,2020,34(7): 1440-1446. |
SONG L Y, LIN T Y, XU J W,et al.. Effects of epibrassinolide on callus growth and regeneration of Zoysia matrella (L.) Merr. under salt stress [J]. J. Nucl. Agric. Sci., 2020, 34(7):1440-1446. | |
17 | WANG H J, YANG C J, ZHANG C,et al.. Dual role of BKI1 and 14-3-3s in brassinosteroid signaling to link receptor with transcription factors [J]. Dev. Cell, 2011, 21(5): 825-834. |
18 | IMKAMPE J, HALTER T, HUANG S H,et al.. The Arabidopsis leucine-rich repeat receptor kinase BIR3 negatively regulates BAK1 receptor complex formation and stabilizes BAK1 [J]. Plant Cell, 2017, 29(9): 2285-2303. |
19 | SHIMADA S, KOMATSU T, YAMAGAMI A,et al.. Formation and dissociation of the BSS1 protein complex regulates plant development via brassinosteroid signaling [J]. Plant Cell, 2015, 27(2): 375-390. |
20 | TIAN Y, FAN M, QIN Z,et al.. Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor [J/OL]. Nat. Commun., 2018, 9:3463 [2022-09-28]. . |
21 | WANG Z Y, SETO H, FUJIOKA S,et al.. BRI1 is a critical component of a plasma-membrane receptor for plant steroids [J]. Nature, 2001, 410(6826): 380-383. |
22 | WANG J, JIANG J J, WANG J,et al.. Structural insights into the negative regulation of BRI1 signaling by BRI1-interacting protein BKI1 [J]. Cell Res., 2014, 24(11): 1328-1341. |
23 | WANG X L, CHORY J. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane [J]. Science, 2006, 313(5790): 1118-1122. |
24 | WANG X F, KOTA U, HE K,et al.. Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling [J]. Dev. Cell, 2008, 15(2): 220-235. |
25 | ZHAO B L, LYU M H, FENG Z X,et al.. TWISTED DWARF 1 associates with BRASSINOSTEROID-INSENSITIVE 1 to regulate early events of the brassinosteroid signaling pathway [J]. Mol. Plant, 2016, 9(4): 582-592. |
26 | TANG W Q, KIM T W, OSES-PRIETO J A, et al.. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis [J]. Science, 2008, 321(5888): 557-560. |
27 | KIM T W, GUAN S, BURLINGAME A L,et al.. The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2 [J]. Mol. Cell, 2011, 43(4): 561-571. |
28 | RYU H, KIM K, CHO H, et al.. Predominant actions of cytosolic BSU1 and nuclear BIN2 regulate subcellular localization of BES1 in brassinosteroid signaling [J]. Mol. Cell, 2010, 29(3): 291-296. |
29 | PENG P, YAN Z Y, ZHU Y Y,et al.. Regulation of the Arabidopsis GSK3-like kinase brassinosteroid-insensitive 2 through proteasome-mediated protein degradation [J]. Mol. Plant, 2008, 1(2): 338-346. |
30 | ZHU J Y, LI Y, CAO D M,et al.. The F-box Protein KIB1 mediates brassinosteroid-induced inactivation and degradation of GSK3-like kinases in Arabidopsis [J]. Mol. Cell, 2017, 66(5): 648-657. |
31 | TANG W, YUAN M, WANG R,et al.. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1 [J]. Nat. Cell Biol., 2011, 13(2): 124-131. |
32 | YIN Y H, WANG Z Y, MORA-GARCIA S,et al.. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation [J]. Cell, 2002, 109(2): 181-191. |
33 | WANG Z Y, NAKANO T, GENDRON J,et al.. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis [J]. Dev. Cell, 2002, 2(4): 505-513. |
34 | NOLAN T, CHEN J, YIN Y. Cross-talk of brassinosteroid signaling in controlling growth and stress responses [J]. Biochem. J., 2017, 474(16): 2641-2661. |
35 | OH M H, WANG X F, CLOUSE S D,et al.. Deactivation of the Arabidopsis BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase by autophosphorylation within the glycine-rich loop [J]. Proc. Natl. Acad. Sci. USA, 2012, 109(1): 327-332. |
36 | NOLAN T M, VUKASINOVIC N, LIU D,et al.. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses [J]. Plant Cell, 2020, 32(2): 295-318. |
37 | ZHAO X, ZHONG Y, SHI J,et al.. 24-epibrassinolide confers tolerance against deep-seeding stress in Zea mays L. coleoptile development by phytohormones signaling transduction and their interaction network [J/OL]. Plant Signal. Behav., 2021, 16(11):1963583 [2022-09-28]. . |
38 | YAMAMURO C, IHARA Y, WU X, et al.. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint [J]. Plant Cell, 2000, 12(9): 1591-1606. |
39 | LI D, WANG L, WANG M, et al.. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield [J]. Plant Biotechnol. J., 2010, 7(8): 791-806. |
40 | BAI M Y, ZHANG L Y, GAMPALA S S,et al.. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice [J]. Proc. Natl. Acad. Sci. USA, 2007, 104(34): 13839-13844. |
41 | TONG H N, JIN Y, LIU W B,et al.. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice [J]. Plant J., 2009, 58(5): 803-816. |
42 | HU X M, QIAN Q, XU T,et al.. The U-Box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate brassinosteroid-mediated growth in rice [J/OL]. PLoS Genet., 2013, 9(3): 1003391 [2022-09-28]. . |
43 | WANG L, XU Y, ZHANG C,et al.. OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling [J/OL]. PLoS One, 2008, 3(10): e0003521 [2022-09-28]. . |
44 | GAO X Y, ZHANG J Q, ZHANG X J,et al.. Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY-like kinase OsGSK3 to modulate brassinosteroid signaling [J]. Plant cell, 2019, 31(5): 1077-1093. |
45 | XIAO Y, ZHANG G, LIU D,et al.. GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice [J]. Plant J., 2020, 102(6): 1187-1201. |
46 | 沈爱华,罗红兵,邓志平,等. 油菜素内酯信号传递在水稻中的研究进展[J]. 浙江农业学报,2014,26(5): 1399-1404. |
SHEN A H, LUO H B, DENG Z P,et al.. Recent advances in brassinosteriod signaling in rice [J]. Acta Agric. Zhejiangensis, 2014, 26(5):1399-1404. | |
47 | JI Y L, QU Y, JIANG Z Y,et al.. The mechanism for brassinosteroids suppressing climacteric fruit ripening [J]. Plant Physiol., 2021, 185(4): 1875-1893. |
48 | XIA X J, DONG H, YIN Y L,et al.. Brassinosteroid signaling integrates multiple pathways to release apical dominance in tomato [J/OL]. Proc. Natl. Acad. Sci. USA, 2021, 118(11):384118 [2022-09-28]. . |
49 | AN S M, LIU Y, SANG K Q,et al.. Brassinosteroid signaling positively regulates abscisic acid biosynthesis in response to chilling stress in tomato [J]. J. Integr. Plant Biol., 2023, 65(1): 10-24. |
50 | WU Z Y, GU S C, GU H, et al.. Physiological and transcriptomic analyses of brassinosteroid function in kiwifruit root [J]. Environ. Exp. Bot., 2022, 194: 104685-104685. |
51 | ZHENG T, DONG T, HAIDER M S,et al.. Brassinosteroid regulates 3-hydroxy-3-methylglutaryl CoA reductase to promote grape fruit development [J]. J. Agric. Food Chem., 2020, 68(43): 11987-11996. |
52 | 胡文海,黄黎锋,毛伟华,等. 油菜素内酯对黄瓜苗期叶片光合机构调节作用的研究[J]. 园艺学报,2006,33(4): 762-766. |
HU W H, HUANG L F, MAO W H,et al.. Role of brassinosteroids in the regulation of photosynthetic apparatus in cucumber leaves [J]. Acta Hortic. Sin., 2006, 33(4):762-766. | |
53 | 王金平,张金池,岳健敏,等. 油菜素内酯对氯化钠胁迫下樟树幼苗光合色素和叶绿素荧光参数的影响[J]. 浙江农林大学学报,2017,34(1): 20-27. |
WANG J P, ZHANG J C, YUE J M,et al.. BRs, photosynthetic pigment, and chlorophyll fluorescence parameters in Cinnamomum camphora seedlings with NaCl stress [J]. J. Zhejiang A & F Univ., 2017, 34(1):20-27. | |
54 | GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiol. Biochem., 2010, 48(12): 909-930. |
55 | ÖZDEMIR F,BOR M, DEMIRAL T,et al.. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress [J]. Plant Growth Regul., 2004, 42(3): 203-211. |
56 | LIU J L, YANG R C, JIAN N,et al.. Putrescine metabolism modulates the biphasic effects of brassinosteroids on canola and Arabidopsis salt tolerance [J]. Plant Cell Environ., 2020, 43(6): 1348-1359. |
57 | CHEN H, JIANG J G. Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity [J]. Environ. Rev., 2010, 18: 309-319. |
58 | 孙珊珊,安勐颍,韩烈保,等. 外源24-表油菜素内酯对多年生黑麦草幼苗耐盐性的影响[J]. 草地学报, 2014, 22(5): 1045-1050. |
SUN S S, AN M Y, HAN L B, et al.. Effects of exogenously applied 24-epibrassinolide on the seedlings perennial ryegrass under NaCl stress [J]. Acta Agrestia Sin.,2014, 22(5): 1045-1050. | |
59 | 郑春芳,范翠枝,郑青松,等. 外施2,4-表油菜素内酯对盐胁迫下番茄幼苗生长及生理特性的影响[J]. 浙江农林科学,2022,63(5): 991-995. |
ZHENG C F, FAN C Z, ZHENG Q S, et al.. Effect of exogenous 2, 4-epibrassinolide on the growth and physiological characteristics of tomato seedlings under salt stress [J]. J. Zhejiang Agric. Sci., 2022, 63(5):991-995. | |
60 | DEMIDCHIK V, MAATHUIS F. Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development [J]. New Phytol., 2007, 175(3): 387-404. |
61 | ZHANG M F, WANG D, KANG Y L,et al.. Structure of the mechanosensitive OSCA channels [J]. Nat. Struct. Mol. Biol., 2018, 25(9): 850-858. |
62 | LÄUCHLI A, GRATTAN S R. Plant Growth and Development under Salinity Stress [M]// Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer Netherlands, 2007: 1-32. |
63 | MILLER G, SUZUKI N, CIFTCI-YILMAZ S,et al.. Reactive oxygen species homeostasis and signalling during drought and salinity stresses [J]. Plant, Cell Environ., 2010, 33(4): 453-467. |
64 | SUN J, DAI S X, WANG R G,et al.. Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance [J]. Tree Physiol., 2009, 29(9): 1175-1186. |
65 | SHI H Z, ISHITANI M, KIM C,et al.. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter [J]. Nat. Acad. Sci., 2000, 97(12): 6896-6901. |
66 | MASER P, ECKELMAN B, VAIDYANATHAN R, et al.. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKTI1 [J]. FEBS Lett., 2002, 531(2): 157-161. |
67 | HALFTER U, ISHITANI M, ZHU J K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3 [J]. Proc. Natl. Acad. Sci. USA, 2000, 97(7): 3735-3740. |
68 | QUAN R, LIN H, MENDOZA I,et al.. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress [J]. Plant Cell, 2007, 19(4): 1415-1431. |
69 | KIM W Y,ALI Z, PARK H J,et al.. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis [J/OL]. Nat. Commun., 2013, 4:2357 [2022-09-28]. . |
70 | YANG Z J, WANG C W, XUE Y, et al.. Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance [J/OL]. Nat. Commun., 2019, 10(1) :09181 [2022-09-28]. . |
71 | FUKUDA A, CHIBA K, MAEDA M,et al.. Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley [J]. J. Exp. Bot., 2002, 55(397): 585-594. |
72 | YANG Y Q, GUO Y. Unraveling salt stress signaling in plants [J]. J. Integr. Plant Biol., 2018, 60(9): 796-804. |
73 | PLANAS-RIVEROLA A, GUPTA A, BETEGON-PUTZE I,et al.. Brassinosteroid signaling in plant development and adaptation to stress [J/OL]. Development, 2019, 146(5): 151894 [2022-09-28]. . |
74 | LI J F, ZHOU H P, ZHANG Y,et al.. The GSK3-like kinase BIN2 is a molecular switch between the salt stress response and growth recovery in Arabidopsis thaliana [J]. Dev. Cell, 2020, 55(3): 367-380. |
75 | ZHANG S S, CAI Z Y, WANG X L. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling [J]. Proc. Natl. Acad. Sci. USA, 2009, 106(11): 4543-4548. |
76 | ZHAO X, DOU L R, GONG Z Z, et al.. BES1 hinders ABSCISIC ACID INSENSITIVE5 and promotes seed germination in Arabidopsis [J]. New Phytol., 2019, 221(2): 908-918. |
77 | CHEN J, YU F, LIU Y,et al.. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis [J]. Proc. Natl. Acad. Sci. USA, 2016, 113(37): 5519-5527. |
78 | KANCHAN V, NEHA U, NITIN K,et al.. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects [J/OL]. Front. Plant Sci., 2017, 8:161 [2022-09-28]. . |
79 | XIA X J, GAO C J, SONG L X, et al.. Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum [J]. Plant Cell Environ., 2014, 37(9): 2036-2050. |
80 | HAUBRICK L L, TORSETHAUGEN G, ASSMANN S M, et al.. Effect of brassinolide, alone and in concert with abscisic acid, on control of stomatal aperture and potassium currents of Vicia faba guard cell protoplasts [J]. Physiol. Plantarum, 2006, 128(1): 134-143. |
81 | LI J G, FAN M, HUA W,et al.. Brassinosteroid and hydrogen peroxide interdependently induce stomatal opening by promoting guard cell starch degradation [J]. Plant Cell, 2020, 32(4): 984-999. |
82 | ÁBRAHÁM E, RIGÓ G, SZÉKELY G,et al.. Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis [J]. Plant Mol. Biol., 2003, 51(3): 363-372. |
83 | HANSEN M, CHAE H S, KIEBER J J. Regulation of ACS protein stability by cytokinin and brassinosteroid [J]. Plant J., 2009, 57(4): 606-614. |
84 | PENG J Y, LI Z H, WEN X, et al.. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis [J/OL]. PLoS Genet., 2014, 10(10): 1004664 [2022-09-28]. . |
85 | CHEN Y, CAO C, GUO Z,et al.. Herbivore exposure alters ion fluxes and improves salt tolerance in a desert shrub [J]. Plant Cell Environ., 2020, 43(2): 400-419. |
86 | BAO F, SHEN J, BRADY S R,et al.. Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis [J]. Plant Physiol., 2004, 134(4): 1624-1631. |
87 | MOUBAYIDIN L, PERILLI S, DELLO IOIO R, et al.. The rate of cell differentiation controls the Arabidopsis root meristem growth phase [J]. Curr. Biol., 2010, 20(12): 1138-1142. |
88 | MOUCHEL C F, OSMONT K S, HARDTKE C S. BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth [J]. Nature, 2006, 443(7110): 458-461. |
89 | YOSHIMITSU Y, TANAKA K, FUKUDA W,et al.. Transcription of DWARF4 plays a crucial role in auxin-regulated root elongation in addition to brassinosteroid homeostasis in Arabidopsis thaliana [J/OL]. PLoS One, 2011, 6(8):e0023851 [2022-09-28]. . |
90 | WASTERNACK C, HAUSE B. A bypass in jasmonate biosynthesis-the OPR3-independent formation [J]. Trends Plant Sci., 2018, 23(4): 276-279. |
[1] | Wenjun YANG, Yuting ZHU, Jie ZHANG, Kaixiang XU, Congmin WEI, Quanjia CHEN. Meta-analysis of QTL for Salt Tolerance-related Traits at Seeding Stage in Cotton [J]. Journal of Agricultural Science and Technology, 2023, 25(12): 26-34. |
[2] | Hongliang CUI, Xiaoxiao SONG, Qing YAO, Wangang AN, Bao XING, Peiyou QIN. Physiological Responses of Different Quinoa Varieties to Salt Stress and Evaluation of Salt Tolerance in Yili Valley [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 32-45. |
[3] | Zhiyong WU, Hong GU, Dawei CHENG, Lan LI, Shasha HE, Ming LI, Jinyong CHEN. Advances in Regulatory Mechanism of Brassinolide on Plant Root Development [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 68-76. |
[4] | WANG Fangfang1,2, LI Yuxiang2, LIANG Yuhang2, HUANG Rongfeng2, ZHANG Yuqiong1*, QIN Hua2*. Map-based Cloning of Rice Short Coleoptile Gene SCP1 [J]. Journal of Agricultural Science and Technology, 2020, 22(11): 17-25. |
[5] | DUAN Min1, XIE Liujie1, ZHU Yajun2, HUANG Shanjun1, PAN Xiaobiao1*, XU Jianlong2,3*. salt tolerance; survival rate; SSR molecular marker; quantitative trait locus; genetic linkage mapQTL Mapping of Seedling Survival Rate Under Salt Stress in Rice (Oryza sativa L.) [J]. Journal of Agricultural Science and Technology, 2019, 21(9): 25-35. |
[6] | GUO Guangyan§, YANG Yaling§, CAO Lu, LIU Wei, BI Caili*. RF2 Basic Leucine Zipper Transcription Factor TabZIP3 Involved in Salt Stress Response in Wheat [J]. Journal of Agricultural Science and Technology, 2019, 21(6): 20-27. |
[7] | SUN Fan1§, JI Dongwu2§, HUANG Fei1, WANG Yinxiao1, XIE Ziyan1, WANG Wensheng1*. Effects of DNA Methylation Inhibitor on Growth and Salt Tolerance of Rice Seedlings [J]. Journal of Agricultural Science and Technology, 2019, 21(6): 28-35. |
[8] | REN Fuli1,2, PAN Yinghong3, ZHANG Xiaoxiao2, PU Weijun2, MU Yongying3, LI Yubin2, ZHANG Hua1*, ZHU Li2*. Comprehensive Evaluation Method for Sorghum Salt Tolerance Based on Multilevel Phenotypic Analysis [J]. Journal of Agricultural Science and Technology, 2019, 21(6): 152-162. |
[9] | SUN Xiaochun1, ZHANG Huihui2, HUANG Wenjing1, YANG Junying2, WANG Li1, TANG Zhishu1*. Influence of Salicylic Acid on Seed Germination and Plant Hormones of Platycodon grandiflorum under Drought Stress [J]. Journal of Agricultural Science and Technology, 2019, 21(10): 74-79. |
[10] | DING Danyang, ZHANG Yijie, WANG Kaiyue, LIU Zhihong, LU Yutong, SHAO Huifang*. Physiological Achine of Laxogenin C on Increasing the Resistance to Drought Stress of Tobacco Seedlings [J]. Journal of Agricultural Science and Technology, 2018, 20(12): 36-44. |
[11] | YANG Zhengtao1§, XIN Shurong1§, WANG Xingjie2, ZHANG Changai1*. Research Advance on the Application of Chitin Fertilizer [J]. Journal of Agricultural Science and Technology, 2018, 20(1): 130-136. |
[12] | XU Changgui, ZHANG Chongye, JIN Ziyu, CHE Daidi*. Effect of IAA on the Rooting of Parthenocissus Thomsoni Cuttings [J]. Journal of Agricultural Science and Technology, 2017, 19(3): 26-30. |
[13] | LI Li-li1, JIANG Qi-yan2*, NIU Feng-juan2, HU Zheng2, ZHANG Hui2*. Research Progress on Salt Tolerance Mechanisms in Quinoa [J]. Journal of Agricultural Science and Technology, 2016, 18(2): 31-40. |
[14] | ZHAI Hong-hong1,2, MENG Zhi-gang1, ZHANG Rui1, SUN Guo-qing1, MENG Zhao-hong1, L. Overexpression of AtNEK6 Gene Improves Drought and Salt Tolerance in Transgenic Tobacco [J]. Journal of Agricultural Science and Technology, 2015, 17(6): 29-36. |
[15] | LI Yuan-yuan1,2, CAO Qing-he1,2*. Mechanism of Brassinosteroid Involved in Regulating Plant Development, Stress Resistance and its Application in Breeding [J]. , 2015, 17(2): 25-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||