Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (12): 26-34.DOI: 10.13304/j.nykjdb.2022.0283
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Wenjun YANG(), Yuting ZHU, Jie ZHANG, Kaixiang XU, Congmin WEI, Quanjia CHEN(
)
Received:
2022-04-10
Accepted:
2022-05-17
Online:
2023-12-15
Published:
2023-12-12
Contact:
Quanjia CHEN
杨文俊(), 朱雨婷, 张杰, 徐凯祥, 韦聪敏, 陈全家(
)
通讯作者:
陈全家
作者简介:
杨文俊 E-mail: wenjunyang2022@163.com;
基金资助:
CLC Number:
Wenjun YANG, Yuting ZHU, Jie ZHANG, Kaixiang XU, Congmin WEI, Quanjia CHEN. Meta-analysis of QTL for Salt Tolerance-related Traits at Seeding Stage in Cotton[J]. Journal of Agricultural Science and Technology, 2023, 25(12): 26-34.
杨文俊, 朱雨婷, 张杰, 徐凯祥, 韦聪敏, 陈全家. 棉花苗期耐盐相关性状QTL元分析[J]. 中国农业科技导报, 2023, 25(12): 26-34.
性状 Trait | QTL数量 QTL number | 作图群体 Mapping population | 群体大小 Population size | 群体类型 Population type | 置信度 Logarithm of odds | 贡献率 R2/% |
---|---|---|---|---|---|---|
叶绿素含量 Chlorophyll content | 2 | CRI-12×AD3-00 | 188 | F2:3 | 2.80 | 11.60~13.40 |
7 | TM-1×NM24016 | 97 | RIL | 2.54~6.43 | 11.32~20.54 | |
10 | CCRI35×NH | 277 | F2:3 | 2.56~3.97 | 0.02~6.84 | |
电导率 Electrical conductivity | 14 | CCRI35×NH | 277 | F2:3 | 2.51~4.58 | 0.32~8.29 |
鲜重 Fresh weight | 23 | CCRI35×NH | 277 | F2:3 | 2.51~6.05 | 0.01~9.87 |
发芽率 Germination rate | 6 | CCRI35×NH | 277 | F2:3 | 2.54~3.06 | 0.67~5.78 |
叶干重 Leaf dry weight | 13 | CCRI35×NH | 277 | F2:3 | 2.65~4.21 | 0.66~10.50 |
叶鲜重 Leaf fresh weight | 5 | CCRI35×NH | 277 | F2:3 | 2.61~3.25 | 3.09~4.97 |
丙二醛含量 Malondialdehyde content | 11 | CCRI35×NH | 277 | F2:3 | 2.65~5.13 | 0.09~8.41 |
株高 Plant height | 4 | CRI-12×AD3-00 | 188 | F2:3 | 2.80~3.00 | 7.05~13.30 |
6 | TM-1×NM24016 | 97 | RIL | 2.59~5.60 | 11.43~16.54 | |
光合速率 Photosynthetic rate | 3 | TM-1×NM24016 | 97 | RIL | 3.09~4.71 | 9.43~11.21 |
根干重 Root dry weight | 5 | TM-1×NM24016 | 97 | RIL | 2.78~4.65 | 9.54~14.32 |
根鲜重 Root fresh weight | 4 | CRI-12×AD3-00 | 188 | F2:3 | 2.90~3.10 | 5.80~9.58 |
8 | TM-1×NM24016 | 97 | RIL | 2.55~6.53 | 11.32~20.43 | |
主根长Root length | 4 | CRI-12×AD3-00 | 188 | F2:3 | 2.70~2.90 | 2.50~18.44 |
相对含水量 Relative water content | 11 | CCRI35×NH | 277 | F2:3 | 2.58~4.05 | 0.01~4.13 |
气孔导度 Stomatal conductance | 3 | TM-1×NM24016 | 97 | RIL | 2.43~3.05 | 9.43~12.43 |
地上部干重 Shoot dry weight | 8 | CRI-12×AD3-00 | 188 | F2:3 | 2.80~3.10 | 3.54~15.16 |
6 | TM-1×NM24016 | 97 | RIL | 3.09~6.99 | 11.34~15.79 | |
地上部鲜重 Shoot fresh weight | 2 | CRI-12×AD3-00 | 188 | F2:3 | 2.70~2.90 | 2.35~3.43 |
6 | TM-1×NM24016 | 97 | RIL | 2.90~5.43 | 7.87~17.32 | |
茎长 Stem length | 15 | CCRI35×NH | 277 | F2:3 | 2.54~4.26 | 0.03~7.53 |
饱和叶重 Saturated leaf weight | 15 | CCRI35×NH | 277 | F2:3 | 2.53~5.12 | 0.01~7.60 |
蒸腾作用 Transpiration | 3 | TM-1×NM24016 | 97 | RIL | 3.08~4.65 | 9.05~11.45 |
Table 1 Integration of QTLs data for the salt tolerance related trait at seeding stage in cotton
性状 Trait | QTL数量 QTL number | 作图群体 Mapping population | 群体大小 Population size | 群体类型 Population type | 置信度 Logarithm of odds | 贡献率 R2/% |
---|---|---|---|---|---|---|
叶绿素含量 Chlorophyll content | 2 | CRI-12×AD3-00 | 188 | F2:3 | 2.80 | 11.60~13.40 |
7 | TM-1×NM24016 | 97 | RIL | 2.54~6.43 | 11.32~20.54 | |
10 | CCRI35×NH | 277 | F2:3 | 2.56~3.97 | 0.02~6.84 | |
电导率 Electrical conductivity | 14 | CCRI35×NH | 277 | F2:3 | 2.51~4.58 | 0.32~8.29 |
鲜重 Fresh weight | 23 | CCRI35×NH | 277 | F2:3 | 2.51~6.05 | 0.01~9.87 |
发芽率 Germination rate | 6 | CCRI35×NH | 277 | F2:3 | 2.54~3.06 | 0.67~5.78 |
叶干重 Leaf dry weight | 13 | CCRI35×NH | 277 | F2:3 | 2.65~4.21 | 0.66~10.50 |
叶鲜重 Leaf fresh weight | 5 | CCRI35×NH | 277 | F2:3 | 2.61~3.25 | 3.09~4.97 |
丙二醛含量 Malondialdehyde content | 11 | CCRI35×NH | 277 | F2:3 | 2.65~5.13 | 0.09~8.41 |
株高 Plant height | 4 | CRI-12×AD3-00 | 188 | F2:3 | 2.80~3.00 | 7.05~13.30 |
6 | TM-1×NM24016 | 97 | RIL | 2.59~5.60 | 11.43~16.54 | |
光合速率 Photosynthetic rate | 3 | TM-1×NM24016 | 97 | RIL | 3.09~4.71 | 9.43~11.21 |
根干重 Root dry weight | 5 | TM-1×NM24016 | 97 | RIL | 2.78~4.65 | 9.54~14.32 |
根鲜重 Root fresh weight | 4 | CRI-12×AD3-00 | 188 | F2:3 | 2.90~3.10 | 5.80~9.58 |
8 | TM-1×NM24016 | 97 | RIL | 2.55~6.53 | 11.32~20.43 | |
主根长Root length | 4 | CRI-12×AD3-00 | 188 | F2:3 | 2.70~2.90 | 2.50~18.44 |
相对含水量 Relative water content | 11 | CCRI35×NH | 277 | F2:3 | 2.58~4.05 | 0.01~4.13 |
气孔导度 Stomatal conductance | 3 | TM-1×NM24016 | 97 | RIL | 2.43~3.05 | 9.43~12.43 |
地上部干重 Shoot dry weight | 8 | CRI-12×AD3-00 | 188 | F2:3 | 2.80~3.10 | 3.54~15.16 |
6 | TM-1×NM24016 | 97 | RIL | 3.09~6.99 | 11.34~15.79 | |
地上部鲜重 Shoot fresh weight | 2 | CRI-12×AD3-00 | 188 | F2:3 | 2.70~2.90 | 2.35~3.43 |
6 | TM-1×NM24016 | 97 | RIL | 2.90~5.43 | 7.87~17.32 | |
茎长 Stem length | 15 | CCRI35×NH | 277 | F2:3 | 2.54~4.26 | 0.03~7.53 |
饱和叶重 Saturated leaf weight | 15 | CCRI35×NH | 277 | F2:3 | 2.53~5.12 | 0.01~7.60 |
蒸腾作用 Transpiration | 3 | TM-1×NM24016 | 97 | RIL | 3.08~4.65 | 9.05~11.45 |
编号 Code | 染色体 Chromosome | 原始性状(数量) Original trait(amount) | AIC值 AIC value | 位置 Position/cM | 置信区间 Confidence interval/cM | 图距 Map distance/cM | 侧翼标记 Flanking marker |
---|---|---|---|---|---|---|---|
MQTL1 | A03 | EC, SFW(2) | 46.26 | 203.90 | 198.84~208.97 | 10.13 | mk11960~mk2075 |
MQTL2 | A06 | SFW(3), SL, SLW(2) | 46.26 | 34.55 | 34.00~35.11 | 1.11 | mk4998_A06~mk5000_A06 |
MQTL3 | A11 | PH, SFW, SL | 40.90 | 36.19 | 35.52~36.86 | 1.34 | DPL0209(b)~mk7803_A11 |
MQTL4 | A12 | EC, FW, SL | 95.89 | 128.66 | 125.17~132.17 | 7.03 | MON_CGR5815~mk9166_A12 |
MQTL5 | A13 | GR, MDA, RWC | 95.89 | 113.94 | 109.27~118.61 | 9.34 | mk10274_A13~HAU3159 |
MQTL6 | D01 | FW(2), SLW | 54.64 | 111.16 | 109.00~113.32 | 4.32 | mk10917_D01~mk10911_D01 |
MQTL7 | D01 | FW(2), SLW(2) | 54.64 | 139.25 | 135.85~142.65 | 6.80 | mk10884_D01~mk10753_D01 |
MQTL8 | D03 | LDW, LFW(2), SLW(2) | 185.41 | 219.66 | 217.89~221.41 | 3.53 | mk12142_D03~mk12152_D03 |
MQTL9 | D06 | LDW(2), LFW, SL, SLW | 31.16 | 136.04 | 129.70~142.39 | 12.69 | mk13562_D09~mk13549_D09 |
MQTL10 | D07 | CHL(2), RFW | 64.74 | 31.89 | 31.43~32.35 | 0.92 | MUSB0921~mk14878_D07 |
MQTL11 | D08 | FW(3). SLW | 55.18 | 268.62 | 263.66~273.59 | 9.93 | MulMa514_D08~MulMa185-m |
Table 2 Meta-analysis of QTL for salt tolerance-related traits at seedlings stage of cotton
编号 Code | 染色体 Chromosome | 原始性状(数量) Original trait(amount) | AIC值 AIC value | 位置 Position/cM | 置信区间 Confidence interval/cM | 图距 Map distance/cM | 侧翼标记 Flanking marker |
---|---|---|---|---|---|---|---|
MQTL1 | A03 | EC, SFW(2) | 46.26 | 203.90 | 198.84~208.97 | 10.13 | mk11960~mk2075 |
MQTL2 | A06 | SFW(3), SL, SLW(2) | 46.26 | 34.55 | 34.00~35.11 | 1.11 | mk4998_A06~mk5000_A06 |
MQTL3 | A11 | PH, SFW, SL | 40.90 | 36.19 | 35.52~36.86 | 1.34 | DPL0209(b)~mk7803_A11 |
MQTL4 | A12 | EC, FW, SL | 95.89 | 128.66 | 125.17~132.17 | 7.03 | MON_CGR5815~mk9166_A12 |
MQTL5 | A13 | GR, MDA, RWC | 95.89 | 113.94 | 109.27~118.61 | 9.34 | mk10274_A13~HAU3159 |
MQTL6 | D01 | FW(2), SLW | 54.64 | 111.16 | 109.00~113.32 | 4.32 | mk10917_D01~mk10911_D01 |
MQTL7 | D01 | FW(2), SLW(2) | 54.64 | 139.25 | 135.85~142.65 | 6.80 | mk10884_D01~mk10753_D01 |
MQTL8 | D03 | LDW, LFW(2), SLW(2) | 185.41 | 219.66 | 217.89~221.41 | 3.53 | mk12142_D03~mk12152_D03 |
MQTL9 | D06 | LDW(2), LFW, SL, SLW | 31.16 | 136.04 | 129.70~142.39 | 12.69 | mk13562_D09~mk13549_D09 |
MQTL10 | D07 | CHL(2), RFW | 64.74 | 31.89 | 31.43~32.35 | 0.92 | MUSB0921~mk14878_D07 |
MQTL11 | D08 | FW(3). SLW | 55.18 | 268.62 | 263.66~273.59 | 9.93 | MulMa514_D08~MulMa185-m |
MQTL | 基因序列号Gene ID | 注释信息Annotation information | |
---|---|---|---|
棉花 Gossypium hirsutum | 拟南芥 Arabidopsis thaliana | ||
MQTL3 | Ghi_A11G02286 | AT5G61790 | 钙离子结合、碳水化合物结合 Calcium ion binding, carbohydrate binding |
Ghi_A11G02291 | AT5G07350 | mRNA分解代谢过程 mRNA catabolic process | |
Ghi_A11G02376 | AT1G74920 | 乙醛脱氢酶(NAD+)活性、甜菜碱醛脱氢酶活性 Aldehyde dehydrogenase (NAD+) activity, betaine-aldehyde dehydrogenase activity | |
Ghi_A11G02386 | AT3G51370 | 金属离子结合 Metal ion binding | |
Ghi_A11G02401 | AT1G19910 | 质子转运ATPase活性 Proton-transporting ATPase activity | |
Ghi_A11G02416 | AT4G36130 | mRNA结合 mRNA binding | |
Ghi_A11G02421 | AT1G19835 | 微管聚合、毛状体形态发生 Microtubule polymerization, brichome morphogenesis | |
Ghi_A11G02456 | AT2G17820 | 磷酸酯酶传感器激酶活性、组氨酸磷酸转移激酶活性、渗透传感器活性 Phosphorelay sensor kinase activity, histidine phosphotransfer kinase activity, osmosensor activity | |
Ghi_A11G02496 | AT2G18170 | MAP激酶活性、丝氨酸/苏氨酸激酶活性、ATP结合 MAP kinase activity, protein serine/threonine kinase activity, ATP binding | |
Ghi_A11G02546 | AT4G36740 | DNA结合转录因子活性 DNA-binding transcription factor activity | |
Ghi_A11G02611 | AT5G66960 | 苏氨酸类内肽酶活性 Serine-type endopeptidase activity | |
Ghi_A11G02631 | AT5G66880 | 蛋白激酶活性、ATP结合、丝氨酸激酶活性 Protein kinase activity, ATP binding, protein serine kinase activity | |
Ghi_A11G02636 | AT4G37180 | DNA结合转录因子活性、基因表达的负调控 DNA-binding transcription factor activity, negative regulation of gene expression | |
Ghi_A11G02641 | AT5G66850 | MAP激酶激酶激酶活性 MAP kinase kinase kinase activity |
Table 3 Candidate genes within the MQTL interval of salt tolerance-related traits at seeding stage in cotton
MQTL | 基因序列号Gene ID | 注释信息Annotation information | |
---|---|---|---|
棉花 Gossypium hirsutum | 拟南芥 Arabidopsis thaliana | ||
MQTL3 | Ghi_A11G02286 | AT5G61790 | 钙离子结合、碳水化合物结合 Calcium ion binding, carbohydrate binding |
Ghi_A11G02291 | AT5G07350 | mRNA分解代谢过程 mRNA catabolic process | |
Ghi_A11G02376 | AT1G74920 | 乙醛脱氢酶(NAD+)活性、甜菜碱醛脱氢酶活性 Aldehyde dehydrogenase (NAD+) activity, betaine-aldehyde dehydrogenase activity | |
Ghi_A11G02386 | AT3G51370 | 金属离子结合 Metal ion binding | |
Ghi_A11G02401 | AT1G19910 | 质子转运ATPase活性 Proton-transporting ATPase activity | |
Ghi_A11G02416 | AT4G36130 | mRNA结合 mRNA binding | |
Ghi_A11G02421 | AT1G19835 | 微管聚合、毛状体形态发生 Microtubule polymerization, brichome morphogenesis | |
Ghi_A11G02456 | AT2G17820 | 磷酸酯酶传感器激酶活性、组氨酸磷酸转移激酶活性、渗透传感器活性 Phosphorelay sensor kinase activity, histidine phosphotransfer kinase activity, osmosensor activity | |
Ghi_A11G02496 | AT2G18170 | MAP激酶活性、丝氨酸/苏氨酸激酶活性、ATP结合 MAP kinase activity, protein serine/threonine kinase activity, ATP binding | |
Ghi_A11G02546 | AT4G36740 | DNA结合转录因子活性 DNA-binding transcription factor activity | |
Ghi_A11G02611 | AT5G66960 | 苏氨酸类内肽酶活性 Serine-type endopeptidase activity | |
Ghi_A11G02631 | AT5G66880 | 蛋白激酶活性、ATP结合、丝氨酸激酶活性 Protein kinase activity, ATP binding, protein serine kinase activity | |
Ghi_A11G02636 | AT4G37180 | DNA结合转录因子活性、基因表达的负调控 DNA-binding transcription factor activity, negative regulation of gene expression | |
Ghi_A11G02641 | AT5G66850 | MAP激酶激酶激酶活性 MAP kinase kinase kinase activity |
1 | 苏莹,郭安慧,华金平.棉花耐盐性鉴定方法探讨[J].中国农业大学学报,2021,26(12):11-19. |
SU Y, GUO A H, HUA J P. Stratrgies for evaluation the salt tolerance in cotton [J]. J. China Agric. Univ., 2021, 26(12):11-19. | |
2 | 联合国粮食和农业组织.世界盐渍土壤分布图发布[EB/OL].(2021-10-20)[2022-03-05]. . |
3 | 杨真,王宝山.中国盐渍土资源现状及改良利用对策[J].山东农业科学,2015,47(4):125-130. |
YANG Z, WANG B S. Present status of saline soil resources and countermeasures for improvement and utilization in China [J]. Shandong Agric. Sci., 2015, 47(4):125-130. | |
4 | SHARIF I, ALEEM S, FAROOQ J, et al.. Salinity stress in cotton: effects, mechanism of tolerance and its management strategies [J]. Physiol. Mol. Biol. Plant, 2019, 25(4):807-820. |
5 | 彭振,何守朴,孙君灵,等.陆地棉苗期耐盐性的高效鉴定方法[J].作物学报,2014,40(3):476-486. |
PENG Z, HE S P, SUN J L, et al.. An efficient approach to identify salt tolerance of upland cotton at seedling stage [J]. Acta Agron. Sin., 2014, 40(3):476-486. | |
6 | ASHRAF M. Salt tolerance of cotton: some new advances [J]. Crit. Rev. Plant Sci., 2002, 21(1):1-30. |
7 | 刘晨晨.陆地棉重组自交系群体耐盐性鉴评及QTL定位[D].保定:河北农业大学,2021. |
LIU C C. Salt tolerance evaluation and QTL mapping of recombinant upland cotton inbred lines [J]. Baoding: Hebei Agricultural University, 2021. | |
8 | IQBAL M S.陆地棉耐盐性的QTL定位和候选基因鉴定[D].北京:中国农业科学院,2019. |
IQBAL M S. MUHAMMAD S I. QTL mapping and candidate genes conferring to salinity tolerance in upland cotton [J]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | |
9 | 朱协飞,司占峰.棉花导入系耐盐性鉴定及耐盐基因QTL定位[J].棉花学报,2019,31(1):23-30. |
ZHU X F, SI Z F. Evaluation and QTL mapping of tolerance to salinity using interspecific introgression lines from Gossypium barbadense in G. hirsutum [J]. Cott. Sci., 2019, 31(1):23-30. | |
10 | 王鹏,田甜,张沛沛, 等.小麦粒形QTL元分析及候选基因预测[J].麦类作物学报,2021,41(9):1090-1098. |
WANG P, TIAN T, ZHANG P P, et al.. Mete-analysis of quantitative trait loci and prediction of candidate genes for kernel morphology in wheat [J]. J. Triticeae Crops, 2021, 41(9):1090-1098. | |
11 | ARCADE A, LABOURDETTE A, FALQUE M, et al.. BioMercator: integrating genetic maps and QTL towards discovery of candidate genes [J]. Bioinformatics, 2004, 20(14):2324-2326. |
12 | 冯世超,赵宏伟,王敬国, 等.水稻耐盐QTL图谱整合[J].东北农业大学学报,2013,44(4):24-29. |
FEN S C, ZHAO H W, WANG J G, et al.. Inegrated map of rice salt tolerance QTL [J]. J. Northeast Agric. Univ., 2013, 44(4):24-29. | |
13 | 王晓丽,李新海,王振华.玉米产量因子QTL整合图谱构建与“一致性”QTL确定[J].核农学报,2008,22(6):756-761, 838. |
WANG X L, LI X H, WANG Z H. Construction of integration map and consensus QTL identification for grain yield components in maize [J]. J. Nucl. Agric. Sci., 2008, 22(6):756-761, 838. | |
14 | 杨鑫雷.四倍体棉花纤维品质相关性状QTL定位及元分析[D].保定:河北农业大学,2013. |
YANG X L. Traits in tetraploid cotton QTL mapping and meta-analysis for fiber quality [J]. Baoding: Hebei Agricultural University, 2013. | |
15 | SAID J I, LIN Z, ZHANG X, et al.. A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton [J/OL]. BMC Genomics, 2013, 14(1):776 [2022-03005]. . |
16 | ZHANG J, YU J, PEI W, et al.. Genetic analysis of Verticillium wilt resistance in a backcross inbred line population and a meta-analysis of quantitative trait loci for disease resistance in cotton [J/OL]. BMC Genomics, 2015, 16(1):577 [2022-03-05]. . |
17 | DARVASI A, SOLLER M. A simple method to calculate resolving power and confidence interval of QTL map location [J]. Behav. Genet., 1997, 27(2):125-132. |
18 | DIOUF L, PAN Z, HE S P, et al.. High-density linkage map construction and mapping of salt-tolerant QTLs at seedling stage in upland cotton using genotyping by sequencing (GBS) [J]. Int. J. Mol. Sci., 2017, 18(12):2622-2632. |
19 | OLUOCH G, ZHENG J, WANG X, et al.. QTL mapping for salt tolerance at seedling stage in the interspecific cross of Gossypium tomentosum with Gossypium hirsutum [J]. Euphytica, 2016, 209(1):223-235. |
20 | ABDELRAHEEM A, FANG D D, ZHANG J. Quantitative trait locus mapping of drought and salt tolerance in an introgressed recombinant inbred line population of upland cotton under the greenhouse and field conditions [J]. Euphytica, 2018, 214(1):1-20. |
21 | CHARDON F, VIRLON B, MOREAU L, et al.. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome [J]. Genetics, 2004, 168(4):2169-2185. |
22 | 杨鑫雷,周晓栋,王省芬, 等.棉花纤维品质性状QTL的元分析[J].棉花学报,2013,25(6):503-509. |
YANG X L, ZHOU X D, WANG S F, et al.. Quantitative traits locus meta-analysis of fiber quality traits in cotton [J]. Cott. Sci., 2013, 25(6):503-509. | |
23 | GILLANI S F, RASHEED A, YUHONG G, et al.. Assessment of cold stress tolerance in maize through quantitative trait locus, genome-wide association study and transcriptome analysis [J]. Not. Bot. Hortic. Agrobo., 2021, 49(4):12525-12525. |
24 | HUANG G, WU Z, PERCY R G, et al.. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution [J]. Nat. Genet., 2020, 52(5):516-524. |
25 | URAO T, YAKUBOV B, SATOH R, et al.. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor [J]. Plant Cell, 1999, 11(9):1743-1754. |
26 | TRAN L P, URAO T, QIN F, et al.. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis [J]. Proc. Natl. Acad. Sci. USA, 2007, 104(51):20623-20628. |
27 | WOHLBACH D J, QUIRINO B F, SUSSMAN M R. Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation [J/OL]. Plant Cell, 2008: 055871 [2022-03-05]. . |
28 | DÓCZI R, BRADER G, PETTKÓ-SZANDTNER A, et al.. The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling [J]. Plant Cell, 2007, 19(10):3266-3279. |
29 | YAMADA K, YAMAGUCHI K, SHIRAKAWA T, et al.. The Arabidopsis CERK 1‐associated kinase PBL 27 connects chitin perception to MAPK activation [J]. EMBO J., 2016, 35(22):2468-2483. |
30 | GUTIERREZ B E, MOSCHOU P N, SMERTENKO A P, et al.. Tudor staphylococcal nuclease links formation of stress granules and processing bodies with mRNA catabolism in Arabidopsis [J]. Plant Cell, 2015, 27(3):926-943. |
31 | ZAREI A, TROBACHER C P, SHELP B J. Arabidopsis aldehyde dehydrogenase 10 family members confer salt tolerance through putrescine-derived 4-aminobutyrate (GABA) production [J]. Sci. Rep., 2016, 6(1):1-11. |
32 | SEIDEL T, SCHNITZER D, GOLLDACK D, et al.. Organelle-specific isoenzymes of plant V-ATPase as revealed by in vivo-FRET analysis [J]. BMC Cell Biol., 2008, 9(1):1-14. |
33 | KAWA D, MEYER A J, DEKKER H L, et al.. SnRK2 protein kinases and mRNA decapping machinery control root development and response to salt [J]. Plant Physiol., 2020, 182(1):361-377. |
[1] | Jing GAO, Minggang XU, Ran LI, Zejiang CAI, Nan SUN, Qiang ZHANG, Lei ZHENG. Effects of Biochar Application on Soil pH: A Meta-Analysis [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 186-196. |
[2] | Wei WANG, Qiang ZHAO, Abuduaini Munire·, Alimu·Amuli, Xinxin LI, Yangqing TIAN. Effects of Different Exogenous Substances on Chemical Capping and Yield and Quality of Cotton [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 57-68. |
[3] | Chenyang ZHANG, Minggang XU, Fei WANG, Ran LI, Nan SUN. Effects of Manure Application on Soybean Yield and Soil Nutrients in China [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 148-156. |
[4] | Pengfei LIU, Xiaoshuang LU, Dilimurat Reheman, Tangnur Slay, Yanying QU, Quanjia CHEN, Xiaojuan DENG. Genetic Variation Analysis of Main Quality Traits and Agronomic Traits in Upland Cotton Seed [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 22-32. |
[5] | Yaqian SUN, Shiliang CHEN, Jiahao CHU, Xihuan LI, Caiying ZHANG. Mining of QTLs and Candidate Genes for Pod and Seed Traits via Combining BSA-seq and Linkage Mapping in Soybean [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 29-42. |
[6] | Liting CHEN, Yuanyuan YAN. Investigation of Regulatory Mechanism of Floral Integrators in Upland Cotton [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 11-21. |
[7] | Zhengran SUN, Cuiping ZHANG, Jinli ZHANG, Hao WU, Xiuyan LIU, Zhenkai WANG, Yuzhen YANG, Daohua HE. Effects of Chemical Detopping on Cotton Plant Growth in Guanzhong Cotton Region [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 167-177. |
[8] | Da CHEN, Jisheng JU, Qi MA, Shouzhen XU, Juanjuan LIU, Wenmin YUAN, Jilian LI, Caixiang WANG, Junji SU. Effects of FeNPs on Cotton Roots Growth and Its Response to Drought Stress at Seedling Stage [J]. Journal of Agricultural Science and Technology, 2023, 25(11): 49-57. |
[9] | Yunxin SHEN, Zhufeng SHI, Tianhua HAN, Xudong ZHOU, Biao HE, Wenshan ZHAO, Qiang HE, Bin MA, Qibin CHEN, Peiwen YANG. Responses of Soil Microbial Diversity to Input of Organic Carbon Source Materials [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 221-233. |
[10] | Man ZHANG, Jin ZHANG, Xinyu ZHANG, Guoning WANG, Xingfen WANG, Yan ZHANG. Cloning and Functional Analysis of GhNAC1 in Upland Cotton Involved in Verticillium Wilt Resistance [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 35-44. |
[11] | Guoqing LU, Caixia MA, Guoqing SUN, Huiming GUO, Hongmei CHENG. Molecular Characterization and Inheritance Stability Analysis of Herbicide-resistant Cotton GV-2 [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 42-49. |
[12] | Yan LIU, Hongshuai BAO, Hongyan SHANG, Guoning WANG, Yan ZHANG, Xingfen WANG, Zhiying MA, Jinhua WU. Selection of Cotton Fusarium Wilt and Culture Conditions [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 124-132. |
[13] | Ling LI, Helin DONG, Pengcheng LI, Liwen TIAN, Chunmei LI, Yunzhen MA, Na ZHANG, Fang WANG, Wenxiu XU. Effects of Machine Harvesting Planting Methods on Photosynthetic Characteristics and Dry Matter Accumulation of Different Plant Types of Cotton [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 172-181. |
[14] | Zhengwen SUN, Qishen GU, Yan ZHANG, Xingfen WANG, Zhiying MA. Research Progress on Cotton Gene Discovery and Molecular Breeding [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 32-38. |
[15] | Chengchuan YAN, Qingtao ZENG, Qin CHEN, Jincheng FU, Tingwei WANG, Quanjia CHEN, Yanying QU. Screening and Evaluation of Drought Resistance Indicators at Flowering and Boll Stage of Upland Cotton [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 46-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||