Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (12): 48-58.DOI: 10.13304/j.nykjdb.2022.0943
• INNOVATION BASIS • Previous Articles Next Articles
Received:
2022-11-02
Accepted:
2022-11-11
Online:
2022-12-15
Published:
2023-02-06
作者简介:
张守攻 E-mail:sgzhang@caf.ac.cn
基金资助:
CLC Number:
Shougong ZHANG. Research Progress on Molecular Basis of Tree Traits Formation[J]. Journal of Agricultural Science and Technology, 2022, 24(12): 48-58.
张守攻. 林木重要性状形成的分子基础研究进展[J]. 中国农业科技导报, 2022, 24(12): 48-58.
1 | 崔海鸥,刘珉.我国第九次森林资源清查中的资源动态研究[J].西部林业科学, 2020, 49(5):90-95. |
CUI H O, LIU M. Analysis on the results of the 9th national forest inventory [J]. J. West China For. Sci., 2020, 49(5):90-95. | |
2 | 陈志林,傅峰,叶克林.我国木材资源利用现状和木材回收利用技术措施[J].中国人造板, 2007, 14(5):1-3. |
CHEN Z L, FU F, YE K L. Present condition of wood resources utilization in China and technical measures of wood recycle [J]. China Wood-Based Panels, 2007, 14(5):1-3. | |
3 | 赵桂玲,李响,曾庆银,等.基于需求导向的林学基础研究关键科学问题[J].中国科学基金, 2019,33(4):394-402 . |
ZHAO G L, LI X, ZENG Q Y, et al.. The key scientific questions for demand-oriented basic researches in forestry [J]. Bull. National Nat. Sci. Found., 2019,33(4):394-402 . | |
4 | DU J, GROOVER A. Transcriptional regulation of secondary growth and wood formation [J]. J. Integr. Plant Biol., 2010, 52(1): 17-27. |
5 | FISCHER U, KUCUKOGLU M, HELARIUTTA Y, et al.. The dynamics of cambial stem cell activity [J]. Annu. Rev. Plant Biol., 2019, 70(1):293-319. |
6 | 韩晓宁,马婧怡,郭惠红.植物干细胞功能的分子调控研究进展[J].中国科学:生命科学, 2020, 50(2):187-195. |
HAN X N, MA J Y, GUO H H. Molecular regulation of plant stem cell function [J]. Sci. Sin. Vitae, 2020, 50(2):187-195. | |
7 | WANG H. Regulation of vascular cambium activity [J/OL]. Plant Sci., 2020, 291:110322 [2022-10-09]. . |
8 | LI W F, KANG Y, ZHANG Y, et al.. Concerted control of the LaRAV1-LaCDKB1;3 module by temperature during dormancy release and reactivation of larch [J]. Tree Physiol., 2021, 41(10):1918-1937. |
9 | JOKIPII-LUKKARI S, DELHOMME N, SCHIFFTHALER B, et al.. Transcriptional roadmap to seasonal variation in wood formation of Norway spruce [J]. Plant Physiol., 2018, 176(4):2851-2870. |
10 | QIU Z, LI X, ZHAO Y, et al.. Genome-wide analysis reveals dynamic changes in expression of microRNAs during vascular cambium development in Chinese fir, Cunninghamia lanceolata [J]. J. Exp. Bot., 2015, 66(11):3041-3054. |
11 | LI W F, DING Q, CHEN J J, et al.. Induction of PtoCDKB and PtoCYCB transcription by temperature during cambium reactivation in Populus tomentosa Carr. [J]. J. Exp. Bot., 2009, 60(9):2621-2630. |
12 | MWANGE K N, WANG X W, CUI K M. Mechanism of dormancy in the buds and cambium of Eucommia ulmoides [J]. Acta Bot. Sin., 2003, 45(6):698-704. |
13 | LITTLE C, BONGA J M. Rest in the cambium of Abies balsamea [J]. Can. J. Bot., 1974, 52(7):1723-1730. |
14 | SCHRADER J, BABA K, MAY S T, et al.. Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals [J]. Proc. Natl. Acad. Sci. USA, 2003, 100(17):10096-10101. |
15 | MOYLE R, SCHRADER J, STENBERG A, et al.. Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen [J]. Plant J., 2002, 31(6):675-685. |
16 | BABA K, KARLBERG A, SCHMIDT J, et al.. Activity-dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen [J]. Proc. Natl. Acad. Sci. USA, 2011, 108(8):3418-3423. |
17 | SORCE C, GIOVANNELLI A, SEBASTIANI L, et al.. Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees [J]. Plant Cell Rep., 2013, 32(6SI):885-898. |
18 | HU J, SU H, CAO H, et al.. AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar [J]. Plant Cell, 2022, 34(7):2688-2707. |
19 | KUCUKOGLU M, NILSSON J, ZHENG B, et al.. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees [J]. New Phytol., 2017, 215(2):642-657. |
20 | XU C, SHEN Y, HE F, et al.. Auxin-mediated Aux/IAA-ARF-HB signaling cascade regulates secondary xylem development in Populus [J]. New Phytol., 2019, 222(2): 752-767. |
21 | NIEMINEN K, IMMANEN J, LAXELL M, et al.. Cytokinin signaling regulates cambial development in poplar [J]. Proc. Natl. Acad. Sci. USA, 2008, 105(50): 20032-20037. |
22 | CHEN J J, WANG L Y, IMMANEN J, et al.. Differential regulation of auxin and cytokinin during the secondary vascular tissue regeneration in Populus trees [J]. New Phytol., 2019, 224(1): 188-201. |
23 | LOVE J, BJÖRKLUND S, VAHALA J, et al.. Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus [J]. Proc. Natl. Acad. Sci. USA, 2009, 106(14): 5984-5989. |
24 | YAMAGUCHI Y L, ISHIDA T, SAWA S. CLE peptides and their signaling pathways in plant development [J]. J. Exp. Bot., 2016, 67(16): 4813-4826. |
25 | GUO X, WANG J, GARDNER M, et al.. Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation [J/OL]. PLoS Pathog., 2017, 13(2): e1006142 [2022-10-09]. . |
26 | CARLSBECKER A, HELARIUTTA Y. Phloem and xylem specification: pieces of the puzzle emerge [J]. Curr. Opin. Plant Biol., 2005, 8(5): 512-517. |
27 | ILEGEMS M, DOUET V, MEYLAN-BETTEX M, et al.. Interplay of auxin, KANADI and Class ⅢHD-ZIP transcription factors in vascular tissue formation [J]. Development, 2010, 137(6): 975-984. |
28 | ZHU Y, SONG D, XU P, et al.. A HD-ZIP Ⅲgene, PtrHB4, is required for interfascicular cambium development in Populus [J]. Plant Biotechnol. J., 2018, 16(3): 808-817. |
29 | CHAI G, WANG Z, TANG X, et al.. R2R3-MYB gene pairs in Populus: evolution and contribution to secondary wall formation and flowering time [J]. J. Exp. Bot., 2014, 65(15): 4255-4269. |
30 | SUNDELL D, STREET NR, KUMAR M, et al.. AspWood: high-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula [J]. Plant Cell, 2017, 29(7): 1585-1604. |
31 | HOU J, XU H, FAN D, et al.. MiR319a-targeted PtoTCP20 regulates secondary growth via interactions with PtoWOX4 and PtoWND6 in Populus tomentosa [J]. New Phytol., 2020, 228(4): 1354-1368. |
32 | KURIYAMA H, FUKUDA H. Developmental programmed cell death in plants [J]. Curr. Opin. Plant Biol., 2002, 5(6): 568-573. |
33 | WANG H Z, DIXON R A. On-off switches for secondary cell wall biosynthesis [J]. Mol. Plant, 2012, 5(2):297-303. |
34 | ZHONG R, YE Z H. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation [J]. Plant Cell Physiol., 2015, 56(2):195-214. |
35 | WANG J P, MATTHEWS M L, WILLIAMS C M, et al.. Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis [J/OL]. Nat. Commun., 2018, 9(1):1579 [2022-10-09]. . |
36 | WANG J P, MATTHEWS M L, NAIK P P, et al.. Flux modeling for monolignol biosynthesis [J]. Curr. Opin. Biotechnol., 2019, 56:187-192. |
37 | YAN X, LIU J, KIM H, et al.. CAD1 and CCR2 protein complex formation in monolignol biosynthesis in Populus trichocarpa [J]. New Phytol., 2019, 222(1):244-260. |
38 | XU W, CHENG H, ZHU S, et al.. Functional understanding of secondary cell wall cellulose synthases in Populus trichocarpa via the Cas9/gRNA-induced gene knockouts [J]. New Phytol., 2021, 231(4):1478-1495. |
39 | ZHONG R, LEE C, YE Z H. Functional characterization of poplar wood-associated NAC domain transcription factors [J]. Plant Physiol., 2010, 152(2):1044-1055. |
40 | ZHONG R, LEE C, YE Z H. Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis [J]. Trends Plant Sci., 2010, 15(11):625-632. |
41 | LIN Y J, CHEN H, LI Q, et al.. Reciprocal cross-regulation of VND and SND multigene TF families for wood formation in Populus trichocarpa [J]. Proc. Natl. Acad. Sci. USA, 2017, 114(45):E9722-E9729. |
42 | ZHAO Y, SONG X, ZHOU H, et al.. KNAT2/6b, a class Ⅰ KNOX gene, impedes xylem differentiation by regulating NAC domain transcription factors in poplar [J]. New Phytol., 2020, 225(4):1531-1544. |
43 | GOICOECHEA M, LACOMBE E, LEGAY S, et al.. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis [J]. Plant J., 2005, 43(4):553-567. |
44 | HU P, ZHANG K, YANG C. BpNAC012 positively regulates abiotic stress responses and secondary wall biosynthesis [J]. Plant Physiol., 2019, 179(2):700-717. |
45 | ESCAMEZ S, TUOMINEN H. Programmes of cell death and autolysis in tracheary elements: when a suicidal cell arranges its own corpse removal [J]. J. Exp. Bot., 2014, 65(5):1313-1321. |
46 | TURNER S, GALLOIS P, BROWN D. Tracheary element differentiation [J]. Annu. Rev. Plant Biol., 2007, 58:407-433. |
47 | ZHANG J, LIU Y, LI C, et al.. PtomtAPX is an autonomous lignification peroxidase during the earliest stage of secondary wall formation in Populus tomentosa Carr. [J]. Nat. Plants, 2022, 8(7):828-839. |
48 | CHEN H M, PANG Y, ZENG J, et al.. The Ca2+-dependent DNases are involved in secondary xylem development in Eucommia ulmoides [J]. J. Integr. Plant Biol., 2012, 54(7):456-470. |
49 | WILKIE J D, SEDGLEY M, OLESEN T. Regulation of floral initiation in horticultural trees [J]. J. Exp. Bot., 2008, 59(12):3215-3228. |
50 | CALLE Z, SCHLUMPBERGER B O, PIEDRAHITA L, et al.. Seasonal variation in daily insolation induces synchronous bud break and flowering in the tropics [J]. Trees, 2010, 24(5):865-877. |
51 | HSU C Y, ADAMS J P, KIM H, et al.. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar [J]. Proc. Natl. Acad. Sci. USA, 2011, 108(26):10756-10761. |
52 | HSU C Y, LIU Y, LUTHE D S, et al.. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering [J]. Plant Cell, 2006, 18(8):1846-1861. |
53 | MAURYA J P, BHALERAO R P. Photoperiod-and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective [J]. Ann. Bot., 2017, 120(3):351-360. |
54 | TYLEWICZ S, PETTERLE A, MARTTILA S, et al.. Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication [J]. Science, 2018, 360(6385):212-215. |
55 | BUSOV V B. Plant development: dual roles of poplar SVL in vegetative bud dormancy [J]. Curr. Biol., 2019, 29(2):R68- R70. |
56 | AZEEZ A, ZHAO Y C, SINGH R K, et al.. EARLY BUD-BREAK 1 and EARLY BUD-BREAK 3 control resumption of poplar growth after winter dormancy [J/OL]. Nat. Commun., 2021, 12(1): 1123 [2022-10-09]. . |
57 | RENNER S S, MÜLLER N A. Plant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degeneration [J]. Nat. Plants, 2021, 7(4):392-402. |
58 | CHARLESWORTH D. Plant sex chromosomes [J]. Annu. Rev. Plant Biol., 2016, 67(1):397-420. |
59 | MÜLLER N A, KERSTEN B, LEITE MONTALVÃO A P, et al.. A single gene underlies the dynamic evolution of poplar sex determination [J]. Nat. Plants, 2020, 6(6):630-637. |
60 | XUE L, WU H, CHEN Y, et al.. Evidences for a role of two Y-specific genes in sex determination in Populus deltoides [J/OL]. Nat. Commun., 2020, 11(1): 5893 [2022-10-09]. . |
61 | AKAGI T, HENRY I M, TAO R, et al.. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons [J]. Science, 2014, 346(6209):646-650. |
62 | AKAGI T, SHIRASAWA K, NAGASAKI H, et al.. The persimmon genome reveals clues to the evolution of a lineage-specific sex determination system in plants [J/OL]. PLoS Genetics, 2020, 16(2):e1008566 [2022-10-09]. . |
63 | QI X, LIU C, SONG L, et al.. PaCYP 78A9, Pacytochrome450, regulates fruit size in sweet cherry (Prunus avium L.) [J/OL]. Front. Plant Sci., 2017, 8: 2076 [2022-10-09]. . |
64 | WANG L, LI Q, LEI Q, et al.. Ectopically expressing MdPIP1;3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes [J/OL]. BMC Plant Biol., 2017, 17(1) : 246 [2022-10-09]. . |
65 | LIU X, LI J, HUANG M, et al.. Mechanisms for the influence of citrus rootstocks on fruit size [J]. J. Agric. Food Chem., 2015, 63(10): 2618-2627. |
66 | XIE X, LI S, ZHANG R, et al.. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples [J]. Plant Cell Environ., 2012, 35(11): 1884-1897. |
67 | HUANG Q, LIU J, HU C, et al.. Integrative analyses of transcriptome and carotenoids profiling revealed molecular insight into variations in fruits color of Citrus reticulata Blanco induced by transplantation [J/OL]. Genomics, 2022, 114(2): 110291 [2022-10-09]. . |
68 | LIU C, LI D, HUANG X, et al.. Manual thinning increases fruit size and sugar content of Citrus reticulata Blanco and affects hormone synthesis and sugar transporter activity [J]. J. Integr. Agric., 2022, 21(3): 725-735. |
69 | HU D G, YU J Q, HAN P L, et al.. The regulatory module MdPUB29-MdbHLH3 connects ethylene biosynthesis with fruit quality in apple [J]. New Phytol., 2018, 221(4): 1966-1982. |
70 | LIU Q, SUN Y, CHEN J, et al.. Transcriptome analysis revealed the dynamic oil accumulation in Symplocos paniculata fruit [J/OL]. BMC Genomics, 2016, 17(1): 929 [2022-10-09]. . |
71 | 蒋霞,赵佳平,刘朋,等.木本油料脂肪酸组成、提纯及其应用研究进展[J].生物质化学工程, 2022, 6(2): 60-68. |
JIANG X, ZHAO J P, LIU P, et al.. Research progress of fatty acid composition, purification and application of woody oil [J]. Biomass Chem. Eng., 2022, 6(2): 60-68. | |
72 | THANGARAJ B, SOLOMON P R. Scope of biodiesel from oils of woody plants: a review [J]. Clean Energy, 2020, 4(2):89-106. |
73 | 柏杨,章文华.二酰甘油从头合成途径的关键酶及其功能[J].植物生理学报, 2018, 54(12): 1763-1773. |
BAI Y, ZHANG W H. Key enzymes for de novo synthesis of diacylglycerol in plant cells [J]. Plant Physiol. J., 2018, 54(12): 1763-1773. | |
74 | HE M, QIN C X, WANG X, et al.. Plant unsaturated fatty acids: biosynthesis and regulation [J/OL]. Front. Plant Sci., 2020, 11:309 [2022-10-09]. . |
75 | 陈文玲,张晴晴,唐韶华,等.甘油-3-磷酸酰基转移酶在植物脂质代谢生长及逆境反应中的作用[J].植物生理学报, 2018, 54(5): 725-735. |
CHEN W L, ZHANG Q Q, TANG S H, et al.. Glycerol-3-phosphate acyltransferase in lipid metabolism, growth and response to stresses in plants [J]. Plant Physiol. J., 2018, 54(5): 725-735. | |
76 | ARROYO-CARO J, CHILEH T, KAZACHKOV M, et al.. The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis cloning and molecular characterization of two LPAT genes that are expressed in castor seeds [J]. Plant Sci., 2013, 199-200: 29-40. |
77 | KONG Q, YANG Y, GUO L, et al.. Molecular basis of plant oil biosynthesis: insights gained from studying the WRINKLED1 transcription factor [J/OL]. Front. Plant Sci., 2020, 11:24 [2022-10-09]. . |
78 | KUMAR N, CHAUDHARY A, SINGH D, et al.. Transcriptional regulation of seed oil accumulation in Arabidopsis thaliana: role of transcription factors and chromatin remodelers [J]. J. Plant Biochem. Biotechnol., 2020, 29(4): 754-768. |
79 | RAO G D, ZHANG J G, LIU X X, et al.. De novo assembly of a new Olea europaea genome accession using nanopore sequencing [J/OL]. Hortic. Res., 2021, 8:64 [2022-10-09]. . |
80 | HUANG R M, ZHOU Y, ZHANG J P, et al.. Transcriptome analysis of walnut (Juglans regia L.) embryos reveals key developmental stages and genes involved in lipid biosynthesis and polyunsaturated fatty acid metabolism [J]. J. Agric. Food Chem., 2021, 69(1): 377-396. |
81 | LIN P, WANG K L, WANG Y P, et al.. The genome of oil-Camellia and population genomics analysis provide insights into seed oil domestication [J/OL]. Genome Biol., 2022, 23: 14 [2022-10-09]. . |
82 | FERNIE A R, TOHGE T. The genetics of plant metabolism [J]. Annu. Rev. Genet., 2017, 51: 287-310. |
83 | AN Y, HAN X, TANG S, et al.. Poplar GATA transcription factor PdGNC is capable of regulating chloroplast ultrastructure, photosynthesis, and vegetative growth in Arabidopsis under varying nitrogen levels[J]. Plant Cell Tiss. Organ Culture, 2014, 119(2): 313-327. |
84 | MA D, REICHELT M, YOSHIDA K, et al.. Two R2R3-MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar [J]. Plant J., 2018, 96(5): 949-965. |
85 | HU Y, CHENG H, ZHANG Y, et al.. The MdMYB16/MdMYB1‐miR7125‐MdCCR module regulates the homeostasis between anthocyanin and lignin biosynthesis during light induction in apple [J]. New Phytol., 2021, 231(3): 1105-1122. |
86 | WANG X, YAO S, HTET W, et al.. MicroRNA828 negatively regulates lignin biosynthesis in stem of Populus tomentosa through MYB targets [J]. Tree Physiol., 2022. |
87 | ZHANG G, CHEN D, ZHANG T, et al.. Transcriptomic and functional analyses unveil the role of long non-coding RNAs in anthocyanin biosynthesis during sea buckthorn fruit ripening [J]. DNA Res., 2018, 25(5): 465-476. |
88 | MA H, YANG T, LI Y, et al.. The long noncoding RNA MdLNC499 bridges MdWRKY1 and MdERF109 function to regulate early-stage light-induced anthocyanin accumulation in apple fruit [J]. Plant Cell, 2021, 33(10): 3309-3330. |
89 | 赵宝泉,邢锦城,温祝桂,等.林木盐胁迫响应机制研究进展[J].现代农业科技, 2020, (21):159-165. |
ZHAO B Q, XING J C, WEN Z G, et al.. Research progress on salt stress response mechanism of forest trees [J]. Modern Agric. Sci. Technol., 2020, (21):159-165. | |
90 | HE F, WANG H L, LI H G, et al.. PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus [J]. Plant Biotechnol. J., 2018, 16(8): 1514-1528. |
91 | WANG L Q, WEN S S, WANG R, et al.. PagWOX11/12a activates PagCYP736A12 gene that facilitates salt tolerance in poplar [J]. Plant Biotechnol. J., 2021, 19(11): 2249-2260. |
92 | LIU G T, WANG J F, CRAMER G, et al.. Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress [J/OL]. BMC Plant Biol., 2012, 12(1):174 [2022-10-09]. . |
93 | DU W, RUAN C, LI J, et al.. Quantitative proteomic analysis of Xanthoceras sorbifolium Bunge seedlings in response to drought and heat stress [J]. Plant Physiol. Biochem., 2021, 160:8-17. |
94 | LIU Z W, WU Z J, LI X H, et al.. Identification, classification, and expression profiles of heat shock transcription factors in tea plant (Camellia sinensis) under temperature stress [J]. Gene, 2016, 576(1): 52-59. |
95 | MA Y H, MA F W, ZHANG J K, et al.. Effects of high temperature on activities and gene expression of enzymes involved in ascorbate-glutathione cycle in apple leaves [J]. Plant Sci., 2008, 175(6):761-766. |
96 | 曹宁,张启翔,郝瑞杰,等.梅花PmICE1基因的克隆及低温条件下的表达[J].东北林业大学学报, 2014, 42(4): 21-25. |
CAO N, ZHANG Q X, HAO R J, et al.. Molecular cloning and expression analysis of cold resistant transcription factor PmICE1 from Prunus mume [J]. J. Northeast Forestry Univ., 2014, 42(4): 21-25. | |
97 | JIN C, HUANG X S, LI K Q, et al.. Overexpression of a bHLH1 transcription factor of Pyrus ussuriensis confers enhanced cold tolerance and increases expression of stress-responsive genes [J/OL]. Front. Plant Sci., 2016, 7:441 [2022-10-09]. . |
98 | AN J P, LI R, QU F J, et al.. R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple [J]. Plant J., 2018, 96(3): 562-577. |
99 | XU W, JIAO Y, LI R, et al.. Chinese wild-growing Vitis amurensis ICE1 and ICE2 encode MYC-Type bHLH transcription activators that regulate cold tolerance in Arabidopsis [J/OL]. PLoS One, 2014, 9(7): e102303 [2022-10-09]. . |
100 | WANG M, DAI W, DU J, et al.. ERF 109 of trifoliate orange (Poncirus trifoliata (L.) Raf.) contributes to cold tolerance by directly regulating expression of Prx1 involved in antioxidative process [J]. Plant Biotechnol. J., 2019, 17(7): 1316-1332. |
101 | HE F, LI H G, WANG J J, et al.. PeSTZ1, a C2H2-type zinc finger transcription factor from Populus euphratica, enhances freezing tolerance through modulation of ROS scavenging by directly regulating PeAPX2 [J]. Plant Biotechnol. J., 2019, 17(11): 2169-2183. |
102 | CHENG H, CHEN X, FANG J, et al.. Comparative transcriptome analysis reveals an early gene expression profile that contributes to cold resistance in Hevea brasiliensis (the Para rubber tree) [J]. Tree Physiol., 2018, 38(9): 1409-1423. |
103 | CHEN J, YANG X, HUANG X, et al.. Leaf transcriptome analysis of a subtropical evergreen broadleaf plant, wild oil-tea camellia ( Camellia oleifera ), revealing candidate genes for cold acclimation [J/OL]. BMC Genomics, 2017, 18(1):211 [2022-10-09]. . |
104 | CAO P, SONG J, ZHOU C, et al.. Characterization of multiple cold induced genes from Ammopiptanthus mongolicus and functional analyses of gene AmEBP1 [J]. Plant Mol. Biol., 2009, 69(5):529-539. |
105 | 曾文丹,罗兴录,郭雅静,等.木薯可溶性淀粉合成酶基因SSII克隆及生物学分析[J].北方园艺, 2014(2):99-103. |
ZENG W D, LUO X L, GUO Y J, et al.. Cloning and sequence analysis of SSII gene in Manihot esculenta Crantz [J]. Northern Hortic., 2014(2):99-103. | |
106 | SHI W G, LIU W, YU W, et al.. Abscisic acid enhances lead translocation from the roots to the leaves and alleviates its toxicity in Populus×canescens [J]. J. Hazardous Materials, 2019, 362: 275-285. |
107 | ROMÈ C, HUANG X Y, DANKU J, et al.. Expression of specific genes involved in Cd uptake, translocation, vacuolar compartmentalisation and recycling in Populus alba Villafrancaclone [J]. J. Plant Physiol., 2016, 202: 83-91. |
108 | HE J, LI H, MA C, et al.. Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar [J]. New Phytol., 2015, 205(1): 240-254. |
109 | ZHANG H, YANG J, LI W, et al.. PuHSFA4a enhances tolerance to excess zinc by regulating reactive oxygen species production and root development in Populus [J]. Plant Physiol., 2019, 180(4): 2254-2271. |
110 | HAN X, ZHANG Y, YU M, et al.. Transporters and ascorbate-glutathione metabolism for differential cadmium accumulation and tolerance in two contrasting willow genotypes [J]. Tree Physiol., 2020, 40(8): 1126-1142. |
111 | XU Z, GE Y, ZHANG W, et al.. The walnut JrVHAG1 gene is involved in cadmium stress response through ABA-signal pathway and MYB transcription regulation [J/OL]. BMC Plant Biol., 2018, 18: 19 [2022-10-09]. . |
112 | 冯丹丹,邓蕾,汪祖鹏,等.寄主诱导的基因沉默在增强植物真菌病害抗性方面的研究进展[J]. 植物科学学报, 2021, 39(3):316-323. |
FENG D D, DENG L, WANG Z P, et al.. Research progress on host-induced gene silencing to promote plant resis tance against fungal disease [J]. Plant Sci. J., 2021, 39(3):316-323. | |
113 | SOLLARS E S, HARPER A L, KELLY L J, et al.. Genome sequence and genetic diversity of European ash trees [J]. Nature, 2017, 541(7636): 212-216. |
114 | 武帅,姜礅,马庆辉,等. 丛枝菌根真菌对银中杨叶片物质代谢及化学防御的影响[J].北京林业大学学报,2021, 43(5): 86-92. |
WU S, JIANG D, MA Q H, et al.. Effects of arbuscular mycorrhizal fungi on metabolism and chemical defense of Populus alba × P. berolinensis leaves [J]. J. Beijing For. Univ., 2021, 43(5): 86-92. | |
115 | TRUJILLO-MOYA C, GANTHALER A, STOGGL W, et al.. RNA-Seq and secondary metabolite analyses reveal a putative defence-transcriptome in Norway spruce (Picea abies) against needle bladder rust (Chrysomyxa rhododendri) infection [J/OL]. BMC Genomics, 2020, 21(1):336 [2022-10-09]. . |
116 | 许秀玉,张勇,甘先华,等.木麻黄青枯病抗性与EST-SSR标记的关联分析[J].林业与环境科学, 2020, 36(3):10-17. |
XU X Y, ZHANG Y, GAN X H, et al.. Correlation analysis of bacterial wilt resistance and EST-SSR markers in Casuarina [J]. For. Environ. Sci., 2020, 36(3):10-17. | |
117 | 郭占魁. 现代分子育种技术在林木育种中的应用[J].青海农林科技,2017(2):51-54. |
GUO Z K. Application of modern molecular breeding technology in forest tree breeding [J]. Sci. Technol. Qinghai Agric. Forestry, 2017(2):51-54. | |
118 | 王京兆,卞学瑜,韩一凡,等.筛选与杨树抗云斑天牛基因连锁的RAPD标记[J].林业科学,1996,32(4):382-384. |
WANG J Z, BIAN X Y, HAN Y F, et al.. Selection of the rapd markers linked to insect-resist gene(s) in poplar hybrids [J]. Sci. Silvae Sin., 1996,32(4):382-384. | |
119 | 胡建军,王克胜,韩一凡.林木抗虫育种研究进展[J].世界林业研究,1998(3):16-22. |
HU J J, WANG K S, HAN Y F. Advance in the study of tree breeding for insect resistance [J]. World Forestry Res., 1998(3):16-22. | |
120 | ZHAO W, SUN YQ, PAN J, et al.. Effects of landscapes and range expansion on population structure and local adaptation [J]. New Phytol., 2020, 228(1):330-343. |
121 | JI F, MA Q, ZHANG W, et al.. A genome variation map provides insights into the genetics of walnut adaptation and agronomic traits [J/OL]. Genome Biol., 2021, 22(1):300 [2022-10-09]. . |
122 | HOWE G T, AITKEN S N, NEALE D B, et al.. From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees [J]. Can. J. Bot., 2003, 81(12): 1247-1266. |
123 | 陈雅如,赵金成.碳达峰, 碳中和目标下全球气候治理新格局与林草发展机遇[J].世界林业研究, 2021, 34(6):1-5. |
CHEN Y R, ZHAO J C. New pattern of global climate governance and opportunities for forest and grassland development under the targets of carbon emission peak and carbon neutrality [J]. World For. Res., 2021, 34(6):1-5. | |
124 | GREEN J K, KEENAN T F. The limits of forest carbon sequestration [J]. Science, 2022, 376 (6594): 692-693. |
125 | DUSENGEM E, DUARTEA G, WAYD A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration [J]. New Phytol., 2019, 221(1):32-49. |
126 | ERMAKOVA M, DANILA F R, FURBANK R T, et al.. On the road to C4 rice: advances and perspectives [J]. Plant J., 2020, 101(4):940-950. |
127 | LUEDELING E, KINDT R, HUTH NI, et al.. Agroforestry systems in a changing climate-challenges in projecting future performance [J/OL]. Curr. Opin. Environ. Sustain., 2014,6:1-7 [2022-10-09]. . |
128 | GROSSIORD C, BUCKLEY TN, LACERNUSAK, et al.. Plant responses to rising vapor pressure deficit [J]. New Phytol., 2020, 226(6):1550-1566. |
129 | 朱嵊,黄敏仁.基因组选择在林木遗传育种研究中的进展与展望[J].林业科学, 2020, 56(11):176-186. |
ZHU S, HUANG M R. Recent advances and prospect of the genomic selection in forest genetics and tree breeding [J]. Sci. Silvae Sin., 2020, 56(11):176-186. | |
130 | GROßKINSKY D K, SVENSGAARD J, CHRISTENSEN S, et al.. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap [J]. J. Exp. Bot., 2015, 66(18):5429-5240. |
[1] | Junhui WANG. Research Progress on Development of New Germplasm of Forest Trees [J]. Journal of Agricultural Science and Technology, 2022, 24(12): 129-141. |
[2] | Wenyue WANG, Xiaoyu MI, Kangtai SUN, Yichao DAI, Zhipeng YAO, Yuanpeng GAO, Jun LIU, Yiqiang GE, Songmei ZHANG, Xiaoming DENG, Yong ZHANG. Genetic Regulation Mechanisms of Important Traits and Molecular Design Breeding in Livestock and Poultry [J]. Journal of Agricultural Science and Technology, 2022, 24(12): 39-47. |
[3] | YE Linwei, TANG Rongnian, LI Chuang. Qualitative Study on Phosphorus Content in Rubber Leaves Based on AE-FFNN Neural Network [J]. Journal of Agricultural Science and Technology, 2021, 23(7): 117-124. |
[4] | TIAN Yi, FENG Zhongke, CHANG Chen. Research and Experiment of Dendrometer with Walking Stick [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 78-85. |
[5] | HUANG Jiazhang1, LU Shijun1, YAO Yuan2, WU Ming3, SUN Junmao1*. Visualization Analysis of Research Progress of International Nutrition-Sensitive Agriculture Based on Bibliometrics [J]. Journal of Agricultural Science and Technology, 2020, 22(9): 11-21. |
[6] | ZHAO Hu1,2, WANG Haibin2,3*, CHEN Xiaoting2,3, WANG Yuhua2, ZHANG Huabin2, DING Li2, KONG Xianghai2, SHI Guiying1*. Analysis of Nitrogen Composition and its Absorption and Utilization Efficiency in Rhizosphere Soil of Tea Tree [J]. Journal of Agricultural Science and Technology, 2020, 22(7): 148-153. |
[7] |
LI Xiaowei1,WU Baoguo1*,SU Xiaohui1,CHEN Yuling1,PENG Yiqin2,YU Yonghui2, FAN Xiaohu2.
Study on Estimation Model of Eucalyptus Accumulation in Guangxi Based on Decision Tree Integrated Learning
[J]. Journal of Agricultural Science and Technology, 2020, 22(6): 81-90.
|
[8] |
YANG Feifei, LI Shijuan*, LIU Shengping, LYU Chunyang, LIU Dazhong, XIAO Shunfu, LIU Hang.
Research Progress on Hyperspectral Remote Sensing Monitoring of Crop Environmental Stress
[J]. Journal of Agricultural Science and Technology, 2020, 22(4): 85-93.
|
[9] |
WANG Yuan1, WANG Xiulan1*, FENG Zhongke1, SUN Sufen2, ZHANG Lang3,4, LIU Peibin5.
Study on Crown Prediction Model of Main Tree Species in Songshan Nature Reserve in Beijing
[J]. Journal of Agricultural Science and Technology, 2020, 22(4): 94-101.
|
[10] | ZHOU Miaoyi, REN Wen, ZHAO Bingbing, LI Hanshuai, LIU Ya*. Advances on the MAPK Cascade Pathway in Response to Abiotic Stress in Plant [J]. Journal of Agricultural Science and Technology, 2020, 22(2): 22-29. |
[11] | JI Kaikai1, SONG Xiqiang1, CHEN Chunguo2, LI Ge2, XIE Shangqian1*. Codon Usage Profiling of Chloroplast Genome in Magnoliaceae [J]. Journal of Agricultural Science and Technology, 2020, 22(11): 52-62. |
[12] | YUAN Shuna, PAN Jian, HUANG Jianxiong, ZHENG Dinghua, GUI Qing, WANG Jun, ZHOU Lijun*. Influence of Sowing Date on Yield and Quality of Knojac (Amorphophallus virosus) Intercropping in Rubber Plantation#br# [J]. Journal of Agricultural Science and Technology, 2020, 22(11): 124-132. |
[13] | QIAO Yan1,2, SUN Jiaqing1,2, WEI Ruqian2, LIU Yue1,2,3*. Research Progress of GBS Technology in Plant [J]. Journal of Agricultural Science and Technology, 2019, 21(8): 47-55. |
[14] | WEI Pengfei1,2,3, XU Xingang2,3, YANG Guijun2,3, LI Zhongyuan1, WANG Jianwen2,3, CHEN Guo1,2,3. Remote Sensing Classification of Crops Based on the Change Characteristics of Multi-phase Vegetation Index [J]. Journal of Agricultural Science and Technology, 2019, 21(2): 54-61. |
[15] | PENG Yingshu, GAO Handong*, YUAN Zhaohe*. Impact of Global Climate Change on Temperate Fruit Tree [J]. Journal of Agricultural Science and Technology, 2018, 20(7): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||