Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (12): 39-47.DOI: 10.13304/j.nykjdb.2022.0979
• INNOVATION BASIS • Previous Articles Next Articles
Wenyue WANG1(), Xiaoyu MI2, Kangtai SUN1, Yichao DAI1, Zhipeng YAO3, Yuanpeng GAO2, Jun LIU2, Yiqiang GE1, Songmei ZHANG1, Xiaoming DENG1(
), Yong ZHANG2(
)
Received:
2022-11-11
Accepted:
2022-11-24
Online:
2022-12-15
Published:
2023-02-06
Contact:
Xiaoming DENG,Yong ZHANG
王文月1(), 米晓钰2, 孙康泰1, 戴翊超1, 姚志鹏3, 高元鹏2, 刘军2, 葛毅强1, 张松梅1, 邓小明1(
), 张涌2(
)
通讯作者:
邓小明,张涌
作者简介:
王文月 E-mail: sweety8815@163.com
基金资助:
CLC Number:
Wenyue WANG, Xiaoyu MI, Kangtai SUN, Yichao DAI, Zhipeng YAO, Yuanpeng GAO, Jun LIU, Yiqiang GE, Songmei ZHANG, Xiaoming DENG, Yong ZHANG. Genetic Regulation Mechanisms of Important Traits and Molecular Design Breeding in Livestock and Poultry[J]. Journal of Agricultural Science and Technology, 2022, 24(12): 39-47.
王文月, 米晓钰, 孙康泰, 戴翊超, 姚志鹏, 高元鹏, 刘军, 葛毅强, 张松梅, 邓小明, 张涌. 畜禽重要性状遗传调控机制与分子设计育种[J]. 中国农业科技导报, 2022, 24(12): 39-47.
1 | ZhOU R, LI S T, YAO W Y, et al.. The Meishan pig genome reveals structural variation-mediated gene expression and phenotypic divergence underlying Asian pig domestication [J]. Mol. Ecol. Resour., 2021,21: 2077-2092. |
2 | TIAN X M, LI R, FU WW, et al.. Building a sequence map of the pig pan-genome from multiple de novo assemblies and Hi-C data [J]. Sci. China Life Sci., 2019, 63(5): 750-763. |
3 | FU Y, XU J, TANG Z, et al.. A gene prioritization method based on a swine multi-omics knowledgebase and a deep learning model [J/OL]. Commun. Biol., 2020, 3(1): 502 [2022-11-22]. . |
4 | YU J, ZHAO P, ZHENG X, et al.. Genome-wide detection of selection signatures in duroc revealed candidate genes relating to growth and meat quality [J]. G3 (Bethesda), 2020, 10(10): 3765-3773. |
5 | WANG X, RAN X, NIU X, et al.. Whole-genome sequence analysis reveals selection signatures for important economic traits in Xiang pigs [J/OL]. Sci. Rep., 2022, 12: 11823 [2022-11-22]. . |
6 | XU J, FU Y, HU Y, et al.. Whole genome variants across 57 pig breeds enable comprehensive identification of genetic signatures that underlie breed features [J/OL]. J. Anim. Sci. Biotechnol., 2020, 11(1): 115 [2022-11-22]. . |
7 | GUO X, SU G, CHRISTENSEN O F, et al.. Genome-wide association analyses using a Bayesian approach for litter size and piglet mortality in Danish Landrace and Yorkshire pigs [J/OL]. BMC Genomics, 2016, 17(1): 468 [2022-11-23]. . |
8 | YANG H, WU J, HUANG X, et al.. ABO genotype alters the gut microbiota by regulating GalNAc levels in pigs [J]. Nature., 2022, 606(4):358-367. |
9 | ZHAO Y, HOU Y, XU Y, et al.. A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome [J/OL]. Nat. Commun., 2021,12:2217 [2022-11-22]. . |
10 | YANG Y L, FAN X H, YAN J Y, et al.. A comprehensive epigenome atlas reveals DNA methylation regulating skeletal muscle development [J]. Nucleic Acids Res., 2021, 49(3): 1313-1329. |
11 | PEDROSA V B, SCHENKEL F S, CHEN S, et al.. Genomewide association analyses of lactation persistency and milk production traits in Holstein cattle based on imputed whole-genome sequence data [J/OL]. Genes, 2021, 12(11): 1830 [2022-11-23]. . |
12 | LU X, ABDALLA I M, NAZAR M, et al.. Genome-wide association study on reproduction-related body-shape traits of Chinese Holstein cows [J/OL]. Animals, 2021, 11(7):1927 [2022-11-23]. . |
13 | MEIER S, ARENDS D, KORKUC P, et al.. A genome-wide association study for clinical mastitis in the dual-purpose German Black Pied cattle breed [J]. J. Dairy Sci., 2020,103(11): 10289-10298. |
14 | ZHENG L, XU J, LIU X, et al.. The copy number variation of DMBT1 gene effects body traits in two Chinese cattle breeds [J]. 3 Biotech., 2022, 12:93 [2022-11-23]. . |
15 | LIANG J, LIU X, YANG P, et al.. Copy number variation of GAL3ST1 gene is associated with growth traits of Chinese cattle [J/OL]. Anim. Biotechnol., 2022 [2022-11-23]. . |
16 | YAO Z, LI J, ZHANG Z, et al.. The relationship between MFN1 copy number variation and growth traits of beef cattle [J/OL]. Genes, 2022, 2: 811 [2022-11-23]. . |
17 | BEDHANE M, VAN DER WERF J, GONDRO C, et al.. Genome-wide association study of meat quality traits in Hanwoo Beef cattle using imputed whole-genome sequence data [J/OL]. Front. Genet., 2019, 11: 1235 [2022-11-23]. . |
18 | LIU D, CHEN Z, ZHAO W, et al.. Genome-wide selection signatures detection in Shanghai Holstein cattle population identified genes related to adaption, health and reproduction traits [J/OL]. BMC Genomics, 2021, 22(1): 747 [2022-11-22]. . |
19 | 吕小青, 杨宇泽, 赵凤, 等. 中国荷斯坦奶牛RPL23A、ACACB 基因3个SNPs检测及其与产奶性状的关联分析[J]. 畜牧兽医学报, 2022,53(10): 3712-3720. |
LYU X Q, YANG Y Z, ZHAO F, et al.. Detection of three SNPs in the RPL23A and ACACB genes in chinese holstein cows and their association with milk production traits [J]. J. Anim. Husbandry Veter. Med., 2022,53(10): 3712-3720. | |
20 | JOHNSTON D, MUKIIBI R, WATERS S M, et al.. Genome wide association study of passive immunity and disease traits in beef-suckler and dairy calves on Irish farms [J/OL]. Sci. Rep., 2020, 10(1): 18998 [2022-11-23]. . |
21 | 马丽娜,刘永进,王锦,等.芯片技术在畜禽育种中的应用研究进展[J].中国畜牧兽医, 2020,47(1): 98-106. |
MA L N, LIU Y J, WANG J, et al.. Research progress on the application of microarray technology in livestock breeding [J]. China Veter. Anim. Husbandry, 2020, 47(1): 98-106. | |
22 | TATIANA E D, SERGEY N P, ALEXANDER A S, et al.. Genome-wide association studies for growth and carcass traits in Russian sheep [J]. J. Anim. Sci.e, 2020,98(4): 449-449. |
23 | ESMAEILIFARD S M, GHOLIZADEH M, HAFEZIAN S H, et al.. Genome-wide association study and pathway analysis identify NTRK2 as a novel candidate gene for litter size in sheep [J/OL]. PloS One, 2021, 16(1): 0244408 [2022-11-23]. . |
24 | ZHAO H, GUO T, LU Z, et al.. Genome-wide association studies detects candidate genes for wool traits by resequencing in Chinese fine-wool sheep [J/OL]. BMC Genomics, 2021, 22(1):127. [2022-11-23]. . |
25 | PICKERING N K, AUVRAY B, DODDS K G, et al.. Genomic prediction and genome-wide association study for dagginess and host internal parasite resistance in New Zealand sheep [J/OL]. BMC Genomics, 2015, 16(1):958 [2022-11-23]. . |
26 | LADEIRA G C, PILONETTO F, FERNANDES A C, et al.. CNV detection and their association with growth, efficiency and carcass traits in Santa Inês sheep [J]. J. Anim. Breeding Genetics, 2022, 139(4): 476-487. |
27 | ROVADOSCKI G A, PERTILE S, ALVARENGA A B, et al.. Estimates of genomic heritability and genome-wide association study for fatty acids profile in Santa Inês sheep [J/OL]. BMC Genomics, 2018, 19(1): 375 [2022-11-23]. . |
28 | BAI Y, LI J, ZHU H, et al.. Deletion mutation within the goat PPP3CA gene identified by GWAS significantly affects litter size [J]. Reprod. Fertil. Dev., 2021, 33(7):476-483. |
29 | GRZEGORZ S, ARTUR G, IGOR J, et al.. A genome-wide association study for prolificacy in three Polish sheep breeds [J]. J. Appl. Genet., 2021, 62(2): 323-326. |
30 | LIU M, CHENG J, CHEN Y, et al.. Distribution of DGAT1 copy number variation in Chinese goats and its associations with milk production traits [J/OL]. Anim. Biotechnol., 2021 [2022-11-23]. . |
31 | BECKER G M, DAVENPORT K M, BURKE J M, et al.. Genome-wide association study to identify genetic loci associated with gastrointestinal nematode resistance in Katahdin sheep [J]. Anim. Genet., 2020, 51(2): 330-335. |
32 | 张海亮,常瑶,娄文琦,等.奶牛育种中关注的新性状[J].畜牧兽医学报,2021,52(10): 2687-2697. |
ZHANG H L, CHANG Y, LOU W Q, et al.. New traits of interest in dairy cattle breeding[J]. J. Anim. Husbandry Veter. Med., 2021,52(10): 2687-2697. | |
33 | 姜宏正,荀文娟,侯冠彧,等.家禽重要性状全基因组关联分析研究进展[J].黑龙江畜牧兽医, 2022(6): 32-38. |
JIANG H Z, XUN W J, HOU G Y, et al.. Progress in genome-wide association analysis of important traits in poultry [J]. Heilongjiang Anim. Husbandry Veter. Med., 2022(6): 32-38. | |
34 | ALEXANDRE R, ANNE-LYSE D. Genetics of colouration in birds [J]. Semin. Cell Dev. Biol., 2013, 24(6-7): 594-608. |
35 | TSANG T F, CHAN B, TAI W. C T, et al.. Gynostemma pentaphyllum saponins induce melanogenesis and activate cAMP/PKA and Wnt/β-catenin signaling pathways [J/OL]. Phytomedicine, 2019, 60(9): 153008 [2022-11-23]. . |
36 | 吴日富, 瞿浩, 严霞, 等. 家鸡羽色性状遗传调控机制研究进展[J].中国畜牧兽医, 2022,49(5): 1806-1816. |
WU R F, QU H, YAN X, et al.. Progress in the genetic regulation of plumage colour traits in domestic chickens [J]. Chin. Veter. Anim. Husbandry, 2022, 49(5): 1806-1816. | |
37 | ZHANG D, RAN J, LI J, et al.. miR-21-5p regulates the proliferation and differentiation of skeletal muscle satellite cells by targeting KLF3 in chicken [J/OL]. Genes, 2021, 12(6):814 [2022-11-23]. . |
38 | LIU L, CUI H X, XIANG S Y, et al.. Effect of divergent selection for intramuscular fat content on muscle lipid metabolism in chickens [J/OL]. Animals, 2019,10(1):4 [2022-11-23]. . |
39 | LIAO R, ZHANG X, CHEN Q, et al.. Genome-wide association study reveals novel variants for growth and egg traits in Dongxiang blue-shelled and white Leghorn chickens [J]. Anim. Genetics, 2016, 47(5): 588-596. |
40 | ZHOU Z, LI M, CHENG H, et al.. An intercross population study reveals genes associated with body size and plumage color in ducks [J/OL]. Nat. Commun., 2018, 9(1):2648 [2022-11-23]. . |
41 | YAN Y, YANG N, CHENG H H, et al.. Genome-wide identification of copy number variations between two chicken lines that differ in genetic resistance to Marek’s disease [J/OL]. BMC Genomics, 2015, 16(1):843 [2022-11-23]. . |
42 | BAI H, HE Y, DING Y, et al.. Genome-wide characterization of copy number variations in the host genome in genetic resistance to Marek’s disease using next generation sequencing [J/OL]. BMC Genetics, 2020, 21(1):77 [2022-11-23]. . |
43 | 欧阳清渊,胡深强,王继文.家禽重要性状的基因组学研究与应用现状[J].畜牧兽医学报, 2022, 53(3): 663-679. |
OUYANG Q Y, HU S Q, WANG J W. Current status of genomics research and application of important traits in poultry [J]. J. Anim. Husbandry Veter. Med., 2022, 53(3): 663-679. | |
44 | PANCOTTI C, BIROLO G, ROLLO C, et al.. Deep learning methods to predict amyotrophic lateral sclerosis disease progression [J/OL]. Sci. Rep., 2022, 12: 13738 [2022-11-23]. . |
45 | FUENTES S, GONZALEZ V C, NGSON ETO, et al.. The livestock farming digital transformation: implementation of new and emerging technologies using artificial intelligence [J]. Anim. Health Res. Rev., 2022, 23(1):59-71. |
46 | ZHANG H, YIN L, WANG M, et al.. Factors affecting the accuracy of genomic selection for agricultural economic traits in maize, cattle, and pig populations [J/OL]. Frontiers in Genetics, 2019, 10:189 [2022-11-23]. . |
47 | 马宇浩,高爽,董向会,等.基因编辑在农业动物中的应用进展[J].农业生物技术学报, 2020,28(12):2230-2239. |
MA Y H, GAO S, DONG X H, et al.. Advances in the application of gene editing in agricultural animals [J]. J. Agric. Biotechnol., 2020, 28(12): 2230-2239. | |
48 | PASCHON D E, LUSSIER S, WANGZOR T, et al.. Diversifying the structure of zinc finger nucleases for high-precision genome editing [J/OL]. Nat. Commun., 2019, 10:1133 [2022-11-23]. . |
49 | AMANDA N M, PHILIP B, RAUL A C, et al.. The crystal structure of TAL effector PthXo1 bound to its DNA target [J]. Science, 2012, 335(6069):716-719. |
50 | 王彤,高元鹏,韩静,等. CRISPR/Cas9基因编辑技术在家畜中的应用研究进展[J].动物医学进展, 2021, 42(11): 78-84. |
WANG T, GAO Y P, HAN J, et al.. Advances in the application of CRISPR/Cas9 gene editing technology in domestic animals[J]. Adv. Anim. Med., 2021, 42(11): 78-84. | |
51 | WANG S, QU Z, HUANG Q, et al.. Application of gene editing technology in resistance breeding of livestock [J/OL]. Life, 2022, 12(7) 10:1133 [2022-11-23]. . |
52 | 夏训明.美国FDA批准首种转基因家猪或可用于人类治疗疾病[J].广东药科大学学报, 2020, 36(6): 869. |
XIA X M. First genetically modified domestic pig approved by US FDA may be used to treat diseases in humans [J]. J. Guangdong Univ. Pharm. Sci., 2020, 36(6): 869. | |
53 | YULIA Y S, MARINA V K, ALEXANDRA V B, et al.. Gene editing CRISPR/Cas9 system for producing cows with hypoallergenic milk on the background of a beta-lactoglobulin gene knockout [C]//RASHED G I, KHESHTI M. Proceedings of E3S Web of Conferences. China: Wuhan, 2021: 176. |
54 | LI X C, HAO F, HU X, et al.. Generation of Tbeta4 knock-in Cashmere goat using CRISPR/Cas9 [J]. Int. J. Biol. Sci., 2019, 15(8): 1743-1754. |
55 | DING Y, ZHOU S, DING Q, et al.. The CRISPR/Cas9 induces large genomic fragment deletions of MSTN and phenotypic changes in sheep [J]. J. Int. Agric., 2020, 19(4): 1065-1073. |
56 | SERVIN B, MARTIN O C, MEZARD M, et al.. Toward a theory of marker-assisted gene pyramiding [J]. Genetics, 2004, 168(1):513-523. |
57 | 杨新月.山羊繁殖性状的多基因聚合效应分析[D]. 广州:华南农业大学, 2018. |
YANG X Y. Analysis of multi-gene aggregation effects on reproductive traits in goats [D]. Guangzhou: South China Agricultural University, 2018. | |
58 | PATEL R A, MUSHAROFF S A, SPENCE J P, et al.. Genetic interactions drive heterogeneity in causal variant effect sizes for gene expression and complex traits [J]. Am. J. Hum. Genet., 2022, 109(7) :1286-1297. |
59 | FU Y, LIU H, DOU J, et al.. IAnimal: a cross-species omics knowledgebase for animals [J/OL]. Nucleic Acids Res., 2022: gkac936 [2022-11-23]. . |
60 | ZHOU X X, WEI Y Y, ZHAN Q M, et al.. CRISPR/Cas9-mediated biallelic knockout of IRX3 reduces the production and survival of somatic Cell-Cloned bama minipigs [J/OL]. Animals, 2020, 10(3): 501 [2022-11-23]. . |
61 | HARDIE L C, HAAGEN I W, HEINS B J, et al.. Genetic parameters and association of national evaluations with breeding values for health traits in US organic Holstein cows [J]. J. Dairy Sci., 2021, 105(1): 495-508. |
62 | OLIVIER D, MERYEM E, SAID M, et al.. Farm animals’ behaviors and welfare analysis with IA Algorithms: a review [J]. Revue D Intell. Artificielle, 2021, 35(3): 243-253. |
63 | EVAN A B, YANG I L, JONATHAN K P. An expanded view of complex traits: from polygenic to Omnigenic [J]. Cell, 2017, 169(7): 1177-1186. |
64 | GUY S, NICHOLAS H B. Thinking about the evolution of complex traits in the era of genome-wide association studies [J]. Annu. Rev. Genomics Hum. Genet., 2019, 20(1): 461-493. |
65 | MATHIESON I. The omnigenic model and polygenic prediction of complex traits [J]. Am. J. Hum. Genet., 2021, 108(9): 1558-1563. |
66 | XIANG R, BREEN E J, BOLORMAA S, et al.. Mutant alleles differentially shape fitness and other complex traits in cattle [J/OL]. Commun. Biol., 2021, 4:1353 [2022-11-23]. . |
[1] | Zhengwen SUN, Qishen GU, Yan ZHANG, Xingfen WANG, Zhiying MA. Research Progress on Cotton Gene Discovery and Molecular Breeding [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 32-38. |
[2] | Junhui WANG. Research Progress on Development of New Germplasm of Forest Trees [J]. Journal of Agricultural Science and Technology, 2022, 24(12): 129-141. |
[3] | Shougong ZHANG. Research Progress on Molecular Basis of Tree Traits Formation [J]. Journal of Agricultural Science and Technology, 2022, 24(12): 48-58. |
[4] | Xiaoqian MA, Tao YANG, Quan ZHANG, Hongliang ZHANG. Development Status and Prospect of Rice New Breeding Technology [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 24-30. |
[5] | HUANG Jiazhang1, LU Shijun1, YAO Yuan2, WU Ming3, SUN Junmao1*. Visualization Analysis of Research Progress of International Nutrition-Sensitive Agriculture Based on Bibliometrics [J]. Journal of Agricultural Science and Technology, 2020, 22(9): 11-21. |
[6] |
YANG Feifei, LI Shijuan*, LIU Shengping, LYU Chunyang, LIU Dazhong, XIAO Shunfu, LIU Hang.
Research Progress on Hyperspectral Remote Sensing Monitoring of Crop Environmental Stress
[J]. Journal of Agricultural Science and Technology, 2020, 22(4): 85-93.
|
[7] | ZHOU Miaoyi, REN Wen, ZHAO Bingbing, LI Hanshuai, LIU Ya*. Advances on the MAPK Cascade Pathway in Response to Abiotic Stress in Plant [J]. Journal of Agricultural Science and Technology, 2020, 22(2): 22-29. |
[8] | BAI Hao1, YANG Baolong2, DONG Zhaoqi2, LI Xiaofan2, JIANG Yong2, CHANG Guobin1,2, CHEN Guohong1,2*. Research Progress of miRNA Regulating Residual Feed Intake of Livestock and Poultry [J]. Journal of Agricultural Science and Technology, 2020, 22(11): 63-68. |
[9] | QIAO Yan1,2, SUN Jiaqing1,2, WEI Ruqian2, LIU Yue1,2,3*. Research Progress of GBS Technology in Plant [J]. Journal of Agricultural Science and Technology, 2019, 21(8): 47-55. |
[10] | HUANG Shenghai1, LU Junxian1, ZHANG Xiaoyan1, CHEN Dawei1, TANG Xiujun1, TANG Mengjun1, JIA Xiaoxu1, ZHOU Qian1, GAO Yushi1*, LI Baodong2. Research Progress on Traceability System of Livestock and Poultry Products in China [J]. Journal of Agricultural Science and Technology, 2018, 20(9): 23-31. |
[11] | MA Xiaohan1, GONG Zhixiang1, WANG Lin1, YANG Lijun2, HUANG Haitang2, XU Zicheng1*. Research Advance on β-aminobutyric Acidinduced to Stress Resistance In Tobacco [J]. Journal of Agricultural Science and Technology, 2018, 20(5): 47-53. |
[12] | ZHANG Lilan, CHEN Liang, ZHANG Hongfu*. Research Progress in Unintended Effects of Genetically Modified Crops on Intestinal Tract of Livestock and Poultrys [J]. Journal of Agricultural Science and Technology, 2018, 20(11): 1-13. |
[13] | ZHAO Ying, WEI Yue*, YE Hongyan, MA Jingjun*, CHENG Bingxiao. Research Progress on Residue Analysis of Organic Arsenic [J]. Journal of Agricultural Science and Technology, 2018, 20(10): 115-122. |
[14] | WEI Xun1§, GE Qun2§, HONG Dengfeng3, HU Han4*, GE Yiqiang1*. Research Progress of Modern Agricultural Technology in China During “12th Five Year” Plan Period [J]. Journal of Agricultural Science and Technology, 2018, 20(1): 1-13. |
[15] | CHANG Baiyang1, WANG Tongtong2, WANG Jianming1*, WANG Min2*. Research Progress on Application of Fumagillin in Agriculture Field [J]. Journal of Agricultural Science and Technology, 2017, 19(9): 57-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||