Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (1): 24-30.DOI: 10.13304/j.nykjdb.2021.0490
• AGRICULTURAL INNOVATION FORUM • Previous Articles Next Articles
Xiaoqian MA1(), Tao YANG2, Quan ZHANG2, Hongliang ZHANG2()
Received:
2021-06-15
Accepted:
2021-08-23
Online:
2022-01-15
Published:
2022-01-25
Contact:
Hongliang ZHANG
通讯作者:
张洪亮
作者简介:
马小倩 E-mail:maxq@cau.edu.cn;
基金资助:
CLC Number:
Xiaoqian MA, Tao YANG, Quan ZHANG, Hongliang ZHANG. Development Status and Prospect of Rice New Breeding Technology[J]. Journal of Agricultural Science and Technology, 2022, 24(1): 24-30.
马小倩, 杨涛, 张全, 张洪亮. 水稻新型育种技术研究现状与展望[J]. 中国农业科技导报, 2022, 24(1): 24-30.
编辑系统 Editing system | ZFN | TALENs | CRISPR |
---|---|---|---|
识别模式 Pattern of recognition | 蛋白质-DNA Protein-DNA | 蛋白质-DNA Protein-DNA | RNA-DNA |
靶向元件 Targeted element | ZF array 蛋白 ZF array protein | TALE array 蛋白 TALE array protein | sgRNA 蛋白 sgRNA protein |
切割元件 Cutting element | FokI 蛋白 FokI protein | FokI 蛋白 FokI protein | Cas9 蛋白 Cas9 protein |
识别长度 Length of recognition/bp | 18~36 | 24~40 | 20 |
识别序列特点Characteristics of recognition sequence | 以3 bp为单位 Units of 3 bp | 5’前一位为T The front base of 5’ is T | 3’ 序列为NGC The end sequence of 3’ is NGG |
优点 Advantage | 技术成熟,效率高 Technology mature, high efficiency | 设计较ZFN简单、特异性高Simpler than ZFN in design,more specific | 靶向精确、脱靶率低、较廉价、细胞 毒性低 Accurate targeting,low miss rate, low cost,low cytotoxicity |
缺点 Disadvantage | 设计依赖上下游序列、脱靶率高、具有细胞毒性 Design dependent,high miss rate,cytotoxicity | 具有细胞毒性,过程繁琐, 成本高 Cytotoxicity complicated process high cost | 靶点前无PAM不能进行切割,特异性不高 PAM recognition sites,low specificity |
RNA编辑 RNA editing | 不可以 No | 不可以 No | 可以 Yes |
Table 1 Comparison of three gene-editing techniques
编辑系统 Editing system | ZFN | TALENs | CRISPR |
---|---|---|---|
识别模式 Pattern of recognition | 蛋白质-DNA Protein-DNA | 蛋白质-DNA Protein-DNA | RNA-DNA |
靶向元件 Targeted element | ZF array 蛋白 ZF array protein | TALE array 蛋白 TALE array protein | sgRNA 蛋白 sgRNA protein |
切割元件 Cutting element | FokI 蛋白 FokI protein | FokI 蛋白 FokI protein | Cas9 蛋白 Cas9 protein |
识别长度 Length of recognition/bp | 18~36 | 24~40 | 20 |
识别序列特点Characteristics of recognition sequence | 以3 bp为单位 Units of 3 bp | 5’前一位为T The front base of 5’ is T | 3’ 序列为NGC The end sequence of 3’ is NGG |
优点 Advantage | 技术成熟,效率高 Technology mature, high efficiency | 设计较ZFN简单、特异性高Simpler than ZFN in design,more specific | 靶向精确、脱靶率低、较廉价、细胞 毒性低 Accurate targeting,low miss rate, low cost,low cytotoxicity |
缺点 Disadvantage | 设计依赖上下游序列、脱靶率高、具有细胞毒性 Design dependent,high miss rate,cytotoxicity | 具有细胞毒性,过程繁琐, 成本高 Cytotoxicity complicated process high cost | 靶点前无PAM不能进行切割,特异性不高 PAM recognition sites,low specificity |
RNA编辑 RNA editing | 不可以 No | 不可以 No | 可以 Yes |
性状 Trait | 基因名称 Gene name | 突变体表型 Phenotype of mutant | 编辑系统 Editing system | 参考文献 Reference |
---|---|---|---|---|
抗性 Resistance | Pita | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ |
Pi21 | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ | |
ERF922 | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ | |
bsr-d1 | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ | |
EPSPS | 抗草甘膦Resistance to glyphosate | CRISPR/Cas9 | [ | |
ALS | 抗除草剂Herbicide resistance | CRISPR/Cas9 | [ | |
品质 Quality | Wx | 糯性提高Glutinous improve | CRISPR/Cas9 | [ |
Badh2 | 香味增加Fragrance increases | CRISPR/Cas9 | [ | |
SBEIIb | 直链淀粉含量升高Amylose content increased | CRISPR/Cas9 | [ | |
产量 Yield | OsCKX2 | 大穗Big panicle | TALENs | [ |
GS3 | 粒长增加Increase grain length | CRISPR/Cas9 | [ | |
IPA1 | 分蘖增多/减少Tiller increase/decrease | CRISPR/Cas9 | [ | |
Gn1a | 穗粒数增多Grain number per panicle increase | CRISPR/Cas9 | [ | |
DEP1 | 穗子直立变密Erect and denser | CRISPR/Cas9 | [ | |
GS9 | 粒长增加Grain length increase | CRISPR/Cas9 | [ | |
抽穗期 Heading stage | Hd2 | 开花提前Flowering in advance | CRISPR/Cas9 | [ |
Hd4 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Hd5 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Hd6 | 开花延迟Flowering delay | CRISPR/Cas9 | [ | |
Hd16 | 开花延迟Flowering delay | CRISPR/Cas9 | [ | |
Hd17 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Hd18 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Dth2 | 开花提前Flowering in advance | CRISPR/Cas9 | [ |
Table 2 Related genes in rice breeding using gene editing
性状 Trait | 基因名称 Gene name | 突变体表型 Phenotype of mutant | 编辑系统 Editing system | 参考文献 Reference |
---|---|---|---|---|
抗性 Resistance | Pita | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ |
Pi21 | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ | |
ERF922 | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ | |
bsr-d1 | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ | |
EPSPS | 抗草甘膦Resistance to glyphosate | CRISPR/Cas9 | [ | |
ALS | 抗除草剂Herbicide resistance | CRISPR/Cas9 | [ | |
品质 Quality | Wx | 糯性提高Glutinous improve | CRISPR/Cas9 | [ |
Badh2 | 香味增加Fragrance increases | CRISPR/Cas9 | [ | |
SBEIIb | 直链淀粉含量升高Amylose content increased | CRISPR/Cas9 | [ | |
产量 Yield | OsCKX2 | 大穗Big panicle | TALENs | [ |
GS3 | 粒长增加Increase grain length | CRISPR/Cas9 | [ | |
IPA1 | 分蘖增多/减少Tiller increase/decrease | CRISPR/Cas9 | [ | |
Gn1a | 穗粒数增多Grain number per panicle increase | CRISPR/Cas9 | [ | |
DEP1 | 穗子直立变密Erect and denser | CRISPR/Cas9 | [ | |
GS9 | 粒长增加Grain length increase | CRISPR/Cas9 | [ | |
抽穗期 Heading stage | Hd2 | 开花提前Flowering in advance | CRISPR/Cas9 | [ |
Hd4 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Hd5 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Hd6 | 开花延迟Flowering delay | CRISPR/Cas9 | [ | |
Hd16 | 开花延迟Flowering delay | CRISPR/Cas9 | [ | |
Hd17 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Hd18 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Dth2 | 开花提前Flowering in advance | CRISPR/Cas9 | [ |
1 | 王健康,李慧慧,张学才,等.中国作物分子设计育种[J].作物学报,2011,37(2):191-201. |
WANG J K, LI H H, ZHANG X C, et al.. Molecular design breeding in crops in China [J]. Acta. Agron Sin., 2011, 37(2):191-201. | |
2 | 陈欢,张文英,樊龙江.作物育种方法研究进展与展望[J].科技通报,2011,27(1):61-65. |
CHEN H, ZHANG W Y, FAN L J. Methodology of crop breeding: progress and prospect [J]. Bull. Sci. Technol., 2011, 27(1):61-65. | |
3 | 陈文艺.作物育种方法研究进展与展望[J].科技展望,2015,13. |
4 | 贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1995,29(4):1-10. |
JIA J Z. Molecular germplasm diagnostics and molecular marker assisted breeding [J]. Sci. Agric. Sin., 1995, 29(4):1-10. | |
5 | 王亚琦,孙子淇,郑峥,等.作物分子标记辅助选择育种的现状与展望[J].江苏农业科学,2018,46(5):6-12. |
6 | HUANG X H, WEI X H, SANG T, et al.. Genome-wide association studies of 14 agronomic traits in rice landraces [J]. Nat. Genet., 2010, 42(11):961-967. |
7 | 吴俊,庄文,熊跃东,等.导入野生稻增产QTL育成优质高产杂交稻新组合Y两优7号[J].杂交水稻, 2010, 25(4):20-22. |
WU J, ZHUANG W, XIONG Y D, et al.. Breeding of new hybrid rice combination Y liangyou 7 with high yield and good quality by introducing yield-increase QTLs of wild rice [J]. Hybrid Rice, 2010, 25(4):20-22. | |
8 | 周屹峰,赵霏,任三娟,等.具中等支链淀粉含量的籼型优质不育系浙农3A的选育[J]. 杂交水稻,2010,25(4):14-17. |
ZHOU Y F, ZHAO F, REN S J, et al.. Breeding of good quality indica CMS line Zhenong 3A with intermediate amylose content [J]. Hybrid Rice, 2010, 25(4):14-17. | |
9 | 王岩,付新民,高冠军,等.分子标记辅助选择改良优质水稻恢复系明恢63的稻米品质[J].分子植物育种,2009,7(4):661-665. |
WANG Y, FU X J, GAO G J, et al.. Improving the grain quality of Minghui63, a restorer line of rice with good quality through marker-assisted selection [J]. Mol. Plant Breed., 2009, 7(4):661-665. | |
10 | 刘巧泉,蔡秀玲,李钱峰,等.分子标记辅助选择改良特青及其杂交稻米的蒸煮与食味品质[J].作物学报,2006,32(1):64-69. |
LIU Q Q, CAI X L, LI Q F, et al.. Molecular marker-assisted selection for improving cooking and eating quality in Teqing and its hybrid rice [J]. Acta. Agron. Sin., 2006, 32(1):64-69. | |
11 | LIU S P, LI X, WANG C Y, et al.. Improvement of resistance to rice blast in Zhenshan97 by molecular marker-aided selection [J]. Acta Botan. Sin., 2003, 45(11):1346-1350. |
12 | 杨子贤,姜恭好,徐才国,等.利用分子标记辅助选择改良93-11对白叶枯病和螟虫抗性[J].分子植物育种,2004,2(4):473-480. |
YANG Z X, JIANG G H, XU C G, et al.. Simultaneously improvement of resistance to bacterial blight and stem borer of 93-11 by molecular marker-assisted selection [J]. Mol. Plant Breed., 2004, 2(4):473-480. | |
13 | 陈学伟,李仕贵,马玉清,等.水稻抗稻瘟病基因Pi-d(t)1、Pi-b、Pi-ta2的聚合及分子标记选择[J].生物工程学报,2004,20(5):708-714. |
CHEN X W, LI S G, MA Y Q, et al.. Marker-assisted selection and pyramiding for three blast resistance genes, Pi-d(t)1, Pi-b, Pi-ta2, in rice [J]. Chin. J. Biotech., 2004, 20(5):708-714. | |
14 | 倪大虎,易成新,李莉,等.利用分子标记辅助选择聚合水稻基因Xa21和Pi9(t)[J].分子植物育种,2005,3(3):329-334. |
NI D H, YI C X, LI L, et al.. Pyramiding Xa21 and Pi9(t) in rice by marker-assisted selection [J]. Mol. Plant Breed., 2005, 3(3):329-334. | |
15 | 官华忠,陈志伟,潘润森,等.通过标记辅助回交育种改良优质水稻保持系金山B-1的稻瘟病抗性[J].分子植物育种,2006,4(1):49-53. |
GUAN H Z, CHEN Z W, PAN R S, et al.. Improving the resistance of Jinshan B-1, a male sterile persistence line of rice with good quality, to rice blast via marker-assisted backcross breeding [J]. Mol. Plant Breed., 2006, 4(1):49-53. | |
16 | 董巍,李信,晏斌,等.利用分子标记辅助选择改良培矮64S的稻瘟病抗性[J].分子植物育种,2010,8(5):853-860. |
DONG W, LI X, YAN B, et al.. Improving the blast resistance of Peiai64S through marker-assisted selection [J]. Mol. Plant Breed., 2010, 8(5):853-860. | |
17 | 陈英之,陈乔,孙荣科,等.改良水稻对稻褐飞虱的抗性研究[J].西南农业学报,2010,23(4):1099-2007. |
CHEN Y Z, CHEN Q, SUN R K, et al.. Improvement of rice resistance to brown planthoppers [J]. S.W. Chin. J. Agric. Sci., 2010, 23(4):1099-2007. | |
18 | 刘斌.紧跟世界科技发展前沿,水稻分子育种初见成效——广东省农业科学院水稻分子育种进展[J].广东农业科学,2020,47(12):12-23. |
LIU B. Following the frontier of scientific and technological development, significant progress has been made in molecular rice breeding—a brief introduction to the work in molecular rice breeding of rice research institute of Guangdong academy of agricultural sciences [J]. Guangdong Agric. Sci., 2020, 47(12):12-23. | |
19 | 黎裕,王健康,邱丽娟,等.中国作物分子育种现状与发展前景[J].作物学报,2010,36(9):1425-1430. |
LI Y, WANG J K, QIU L J, et al.. Crop molecular breeding in China: current status and perspectives [J]. Acta. Agron. Sin., 2010, 36(9):1425-1430. | |
20 | 于志晶,张文娟,李淑芳,等.水稻抗虫转基因研究进展[J].吉林农业科学,2010,35(6):16-20. |
YU Z J, ZHANG W J, LI S F, et al.. Advances in studies on insect resistant transgenic rice [J]. J. Jilin Agric. Sci., 2010, 35(6):16-20. | |
21 | 冯道荣,许新萍,卫剑文,等.使用双抗真菌蛋白基因提高水稻抗病性的研究[J].植物学报,1999,41(11):1187-1191. |
FENG D R, XU X P, WEI J W, et al.. Enhancement of rice disease resistance by two antifungal protein genes [J]. Acta Botan. Sin., 1999, 41(11):1187-1191. | |
22 | 翟文学,李晓兵,田文忠,等.由农杆菌介导将白叶枯病抗性基因Xa21转入我国的5个水稻品种[J].中国科学,2000,30(2):200-207. |
23 | 刘利丹,于磊,赵明杰.扑朔迷离的转基因安全之争[J].医学与哲学,2014,35(11A):13-18. |
LIU L D, YU L, ZHAO M J. The bewildering dispute about safety of transgenically modified foods [J]. Med. Phil., 2014, 35(11A):13-18. | |
24 | 玛丽莲,郭龙彪,钱前.转基因水稻安全性评价的内容[J].中国稻米,2004,5. |
25 | 张白雪,孙其信,李海峰.基因修饰技术研究进展[J].生物工程学报,2015,31(8):1162-1174. |
ZHANG B X, SUN Q X, LI H F. Advances in genetic modification technologies [J]. Chin. J. Biotech., 2015, 31(8):1162-1174. | |
26 | 刘浩,张国良,许仁良,等.基因编辑技术在水稻分子育种上的应用[J].淮阴工学院学报,2018,27(5):31-37. |
LIU H, ZHANG G L, XU R L, et al.. Application of gene editing technology in rice molecular breeding [J]. J. Huaiyin Inst. Technol., 2018, 27(5):31-37. | |
27 | CAO H X, WANG W, LE H T, et al.. The power of CRISPR-Cas9-induced genome editing to speed up plant breeding [J/OL]. Int. J. Genomics, 2016, 2016:5078796 [2021-06-26]. . |
28 | SHAN Q W, WANG Y P, CHEN K L, et al.. Rapid and efficient gene modification in rice and brachypodium using TALENs [J]. Mol. Plant, 2013, 6(4):1365-1368. |
29 | GAO C. Genome editing in crops: from bench to field [J]. Natl. Sci. Rev., 2015, 2(1):13-15. |
30 | 徐鹏,王宏,涂燃冉,等.利用CRISPR/Cas9系统定向改良水稻稻瘟病抗性[J].中国水稻科学,2019,33(4):313-322. |
XU P, WANG H, TU R R, et al.. Orientation improvement of blast resistance in rice via CRISPR/Cas9 system [J]. Chin. J. Rice. Sci., 2019, 33(4):313-322. | |
31 | LI W T, ZHU Z W, CHERN M S, et al.. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance [J]. Cell, 2017, 170(1):114-126. |
32 | 刘畅媛,孙一丁,马继琼,等.水稻抗稻瘟病基因Bsr-d1的SNP区域在地方品种中的变异分析[J].分子植物育种,2021,19(7):2097-2102. |
LIU C Y, SUN Y D, MA J Q, et al.. SNP fragment variations analysis of resistant gene Bsr-d1 to rice blast in rice landraces [J]. Mol. Plant Breed., 2021, 19(7):2097-2102. | |
33 | LI J, MENG X B, YUAN Z, et al.. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9 [J]. Nat. Plants, 2016, 2(10):16139-16148. |
34 | 戴焱,赵德刚.抗草甘膦水稻突变体osgr-1EPSPS基因克隆及生物信息学分析[J].种子,2018,37(3):1-7. |
DAI Y, ZHAO D G. Bioinformatic analysis of EPSPS gene from the rice resistant mutant osgr-1 of glyphosate [J]. Seed, 2018, 37(3):1-7. | |
35 | SUN Y W, ZHANG X, WU C Y, et al.. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase [J]. Mol. Plant, 2016, 9(4):628-631. |
36 | LI H, LI X F, XU Y, et al.. High-efficiency reduction of rice amylose content via CRISPR/Cas9-mediated base editing [J]. Rice Sci., 2020, 27(6):445-448. |
37 | 范美英,梅法庭,朱义旺,等.利用CRISPR/Cas9技术创制糯稻新材料[J].福建农业学报,2019,34(5):503-508. |
FAN M Y, MEI F T, ZHU Y W, et al.. Greating new glutinous rice by CRISPR/Cas9-targeted mutagenesis in rice [J]. J. Fujian Agric. Sci., 2019, 34(5):503-508. | |
38 | 邵高能,谢黎虹,焦桂爱,等.利用CRISPR/Cas9技术编辑水稻香味基因Badh2 [J].中国水稻科学,2017,31(2):216-222. |
SHAO G N, XIE L H, JIAO G A, et al.. CRISPR/Cas9-mediated editing of the fragrant gene Badh2 in rice [J]. Chin. J. Rice. Sci., 2017, 31(2):216-222. | |
39 | 祁永斌,张礼霞,王林友,等.利用CRISPR/Cas9技术编辑水稻香味基因Badh2 [J].中国农业科学,2020,53(8):1501-1509. |
QI Y B, ZHANG L X, WANG L Y, et al.. CRISPR/Cas9 targeted editing for the fragrant gene Badh2 in rice [J]. Sci. Agric. Sin., 2020, 53(8):1501-1509. | |
40 | SUN Y W, JIAO G A, LIU Z, et al.. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes [J]. Front. Plant Sci., 2017, 8:298-313. |
41 | SHEN L, WANG C, FU Y P, et al.. QTL editing confers opposing yield performance in different rice varieties [J]. J. Integr. Plant Biol., 2018, 60(2):89-93. |
42 | LI M R, LI X X, ZHOU Z J, et al.. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system [J]. Front. Plant Sci., 2016, 7:377-390. |
43 | ZHAO D S, LI Q F, ZHANG C Q, et al.. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality [J]. Nat. Commun., 2018, 9(1):1240-1254. |
44 | 周文甲,田晓杰,任月坤,等.利用CRISPR/Cas9创造早熟香味水稻[J].土壤与作物,2017,6(2):146-152. |
ZHOU W J, TIAN X J, REN Y K, et al.. Breeding of early maturatity and fragrant rice via CRISPR/Cas9 mediated genome editing [J]. Soils Crops, 2017, 6(2):146-152. | |
45 | LI X F, SUN Y Q, TIAN X J, et al.. Comprehensive identification of major flowering time genes and their combinations, which determined rice distribution in Northeast China [J]. Plant Growth Regul., 2018, 84(3):593-602. |
46 | 范守山,邹德堂.水稻抽穗期的光周期调控[J].遗传育种,2011,2:12-15. |
47 | HORI K, OGISO TANAKA E, MATSUBARA K, et al.. Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response [J]. Plant J., 2013, 76(1):36-46. |
48 | MATSUBARA K, OGISO TANAKA E, HORI K, et al.. Natural variation in Hd17, a homolog of ArabidopsisELF3 that is involved in rice photoperiodic flowering [J]. Plant Cell Physiol., 2012, 53(4):709-716. |
49 | SHIBAYA T, HORI K, OGISO TANAKA E, et al.. Hd18, encoding histone acetylase related to Arabidopsis FLOWERING LOCUS D, is involved in the control of flowering time in Rice [J]. Plant Cell Physiol., 2016, 57(9):1828-1838. |
50 | WU W X, ZHENG X M, LU G W, et al.. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia [J]. Proc. Natl. Acad. Sci. USA, 2013, 110(8):2775-2780. |
51 | LI X F, ZHOU W J, REN Y, et al.. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing [J]. J. Genet. Genomics, 2017, 44(3):175-178. |
52 | 刘欣欣,李赫,卜庆云,等.CRISPR/Cas9系统在水稻分子育种中的应用[J].土壤与作物,2021,10(1):18-26. |
LIU X X, LI H, BU Q Y, et al.. Application of CRISPR/Cas9 system in rice molecular breeding [J]. Soils Crops, 2021, 10(1):18-26. | |
53 | JAGANATHAN D, BOHRA A, THUDI M, et al.. Fine mapping and gene cloning in the post-NGS era: advances and prospects [J]. Theor. Appl. Genet., 2020, 133(5):1791-1810. |
54 | 万建民.作物分子设计育种[J].作物学报,2006,32(3):455-462. |
WAN J M. Perspectives of molecular design breeding in crops [J]. Acta. Agron. Sin., 2006, 32(3):455-462. | |
55 | WANG J K, WAN X Y, LI H H, et al.. Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach [J]. Theor. Appl. Genet., 2007, 115(1):87-100. |
56 | BAI S W, YU H, WANG B, et al.. Retrospective and perspective of rice breeding in China [J]. J. Genet Genomics, 2018, 45(11):603-612. |
57 | WANG J K, WAN X Y, LI H H, et al.. Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach [J]. Theor. Appl. Genet., 2007, 115(1):87-100. |
58 | 顾铭洪,刘巧泉.作物分子设计育种及其发展前景分析[J].扬州大学学报,2009,30(1):64-68. |
GU M H, LIU Q Q. Prospects of crop breeding by molecular design [J]. J. Yangzhou Univ., 2009, 30(1):64-68. | |
59 | TIAN Z X, QIAN Q, LIU Q Q, et al.. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities [J]. Proc. Natl. Acad. Sci. USA, 2009, 106(51):21760-21765. |
60 | ZENG D L, TIAN Z X, RAO Y, et al.. Rational design of high-yield and superior-quality rice [J/OL]. Nat. Plants, 2017, 3(4):17031 [2020-06-15]. . |
[1] | XI Min, XU Youzun, SUN Xueyuan, WU Wenge, ZHOU Yongjin. Effects of Nitrogen Fertilizer Topdressing on Grain Filling and Milling Quality of the Rice with High Grain Chalkiness [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 144-151. |
[2] | WU Zishuai, LI Hu, HUANG Qiuyao, CHEN Chuanhua, LUO Qunchang, ZHOU Xinmin, WU Jiaju, LIU Guanglin. Influences of Nitrogen Fertilizer Application Rate and Planting Density on the Yield and Rice Quality of Guiyu 11 [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 154-162. |
[3] | WENG Wenan, CHENG Shuang, LI Shaoping, TIAN Jinyu, TAO Yu, HU Qun, HU Yajie, GUO Baowei, WEI Haiyan, XING Zhipeng, ZHANG Hongcheng. Effects of One-off Nitrogen Basal Fertilization on Yield of Direct Seeding Conventional Japonica Rice Under Different Panicle Formation Types [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 163-172. |
[4] | JIANG Xuehai, LUO Deqiang, LI Min, JI Guangmei, JIANG Mingjin, LI Lijiang, Li Ganghua, ZHOU Weijia, ZHANG Jiafeng. Influences of Planting Density on Yield and Nitrogen Use Efficiency in New Indica Hybrid Rice Varieties by Bowl-Seedling-Mechanical-Transplanting [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 173-184. |
[5] | ZHOU Xuan, KANG Xingrong, PENG Jianwei, YANG Xiangdong, ZHONG Xuemei, HU Wenfeng, LONG Junyou. Effects of Reduction Application of Polyurethane Coated Urea on Growth, Yield and Economic Benefit of Double-cropping Early Rice [J]. Journal of Agricultural Science and Technology, 2021, 23(7): 153-161. |
[6] | LUO Youyi, WANG Weiqin, ZHENG Huabin, LIU Gongyi, CHAO Ying, XU Cai, ZHENG Zhigang, LI Xueqian, WEI Yinlan, TANG Qiyuan. Influences of Different Mechanical and Orderly Planting Methods on Growth Characteristics and Yield of rice [J]. Journal of Agricultural Science and Technology, 2021, 23(7): 162-171. |
[7] | LIU Yuan, ZHANG Xiuyan, XU Miaoyun, ZHENG Hongyan, ZOU Junjie, ZHANG Lan, WANG Lei. Global Small RNA Transcriptome Profiling of Rice Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2021, 23(6): 23-32. |
[8] | LIU Dezhu, ZHOU Yong, ZHANG Guozhong, ZHANG Mengyue, KE Huibin, YANG Quanjun. Design and Experiment of Pneumatic Double-side Fertilizer Devices for Ratoon Rice [J]. Journal of Agricultural Science and Technology, 2021, 23(6): 77-85. |
[9] | JIANG Shukun, WANG Lizhi, YANG Xianli, CHI liyong, LI Zhongjie, LI Mingxian, ZHANG Xijuan, ZHAO Qian, LI Rui, JIANG Hui, LI Wenhua . Effect of Increasing Temperature in Different Growth Stages on Rice Yield and Quality in Cold Regions [J]. Journal of Agricultural Science and Technology, 2021, 23(6): 130-139. |
[10] | HUO Chuan, WANG Shiquan, SHEN Junhong, ZENG Hongyan. Morphological Characteristics and Its Hereditary Behavior of High-nodal-positionTillering in Rice#br# [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 35-43. |
[11] | RUAN Xinmin, SHI Fuzhi, CONG Xihan, DU Hongyang, ZHAN Xinchun, WANG Yuanlei, XIA Jiafa, LUO Zhixiang. Comprehensive Quality Evaluation and Impact Factor Analysis of Medium Indica Hybrid Rice in Anhui Province from 2009 to 2019 [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 108-115. |
[12] | FU Rongtao, CHEN Cheng, WANG Jian, CHEN Xuejuan, LU Daihua*. Control Conditions and Effects of Plant Protection Unmanned Aerial Vehicle (UAV) on Diseases and Insect Pests of Rice#br# [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 103-109. |
[13] | YIN Chunyuan, WANG Shuyu*, LIU Hemei, SUN Jianquan, HU Xiuming, WANG Hele, TIAN Fanghui, MA Chaoyang, ZHANG Xu, ZHANG Ruiping. Correlation Analysis of Rice Taste Quality Characteristics and Their Relationship with Leaf Photosynthesis [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 119-127. |
[14] | WANG Wenyu, WAN Siyu, ZHANG Xuesong, WANG Xu, LI Jiashuo, ZHENG Guiping*. Effects of Silicon Fertilizer on Lodging Resistance of Kenjing 7 Under Different Tillage Modes [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 145-153. |
[15] | LIU Fang1, WANG Moyun1, YANG Ruiqi1, YANG Zhaonan1, ZHANG Ping2, YAO Yan1*. Relationship Between Oxalate Content and Thallium Absorption in Rice(Oryza sativa L.)Roots Under Thallium Stress [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 34-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||