Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (7): 183-188.DOI: 10.13304/j.nykjdb.2023.0309
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Shifang WANG1(), Haiyan SONG2(
)
Received:
2023-04-19
Accepted:
2023-08-28
Online:
2024-07-15
Published:
2024-07-12
Contact:
Haiyan SONG
通讯作者:
宋海燕
作者简介:
王世芳 E-mail: wangshifang1302@126.com;
基金资助:
CLC Number:
Shifang WANG, Haiyan SONG. Study on Characteristics of Visible and Near Infrared Reflectance Spectra of Soil Organic Matter[J]. Journal of Agricultural Science and Technology, 2024, 26(7): 183-188.
王世芳, 宋海燕. 土壤有机质可见-近红外反射光谱特性研究[J]. 中国农业科技导报, 2024, 26(7): 183-188.
Fig. 2 Pearson correlation coefficient between soil reflectance spectrum and SOM contentNote: Dashed lines represent the vertical coordinates 0.7 and -0.7, the significant correlation bands are in the range of 0.7~1.0 and -1.0~-0.7.
Fig. 3 Pearson correlation coefficient between different pretreatment spectra and SOM contentA: Ref, Abs,SNV,baseline offset; B: FD; C: SD. Dashes lines represent the vertical coordinates 0.7 and -0.7, the significant correlation bands are in the range of 0.7~1.0 and -1.0~-0.7.
光谱预处理 Pretreatment | 显著相关波段 Significant bands/nm | 正负相关性 Positive and negative correlation (+/-) | 相关系数 (绝对值的最大值) Correlation coefficient (maximum absolute value) |
---|---|---|---|
光谱反射率 Ref | 400~662 [601 (0.759)] | - | 0.827 |
吸光度 Abs | 400~670 [601 (0.784)] | + | 0.847 |
标准正态变量变换 SNV | 400~518, 1 142~1 900[1 411 (0.923), 1 880 (0.835)] | - | 0.992 |
558~893 [597 (0.985)], 2 081~2 158 [2 138 (0.793)] | + | 0.985 | |
基线校正 Baseline offset | 400~1 081 | + | 0.935 |
1 384~1 901 [1 413 (0.861), 1 886 (0.893)], 2 001~2 071, 2 106~2 121 [2 119 (0.849)], 2 215~2 249 [2 236 (0.902)] | - | 0.902 | |
一阶导数 FD | 550 (0.994), 1 655 (0.986), 1 435 (0.957) | + | 0.994 |
2 192 (0.959) | - | 0.959 | |
二阶导数 SD | 647 (0.934), 1 221 (0.873) | + | 0.883 |
Table 1 Correlation features of SOM concent and reflectance from soil samples with different pretreatment methods
光谱预处理 Pretreatment | 显著相关波段 Significant bands/nm | 正负相关性 Positive and negative correlation (+/-) | 相关系数 (绝对值的最大值) Correlation coefficient (maximum absolute value) |
---|---|---|---|
光谱反射率 Ref | 400~662 [601 (0.759)] | - | 0.827 |
吸光度 Abs | 400~670 [601 (0.784)] | + | 0.847 |
标准正态变量变换 SNV | 400~518, 1 142~1 900[1 411 (0.923), 1 880 (0.835)] | - | 0.992 |
558~893 [597 (0.985)], 2 081~2 158 [2 138 (0.793)] | + | 0.985 | |
基线校正 Baseline offset | 400~1 081 | + | 0.935 |
1 384~1 901 [1 413 (0.861), 1 886 (0.893)], 2 001~2 071, 2 106~2 121 [2 119 (0.849)], 2 215~2 249 [2 236 (0.902)] | - | 0.902 | |
一阶导数 FD | 550 (0.994), 1 655 (0.986), 1 435 (0.957) | + | 0.994 |
2 192 (0.959) | - | 0.959 | |
二阶导数 SD | 647 (0.934), 1 221 (0.873) | + | 0.883 |
Fig. 4 Pearson correlation coefficient between different moisture content spectra and SOM contentNote: Dashed lines represent the vertical coordinates 0.7 and -0.7, the significant correlation bands are in the range of 0.7~1.0 and -1.0~-0.7.
含水率 Moisture content/% | 显著相关波段 Significant bands/nm | 正负相关性 Positive and negative correlation (+/-) | 相关系数(绝对值的最大值) Correlation coefficient (maximum absolute value) |
---|---|---|---|
烘干 Oven-dry | 400~662 [601 (0.759)] | - | 0.827 |
5 | / | / | / |
10 | 400~515, 1 155~1 170, 1 373~1 584, 1 850~2 450 1 416 (0.761), 1 931 (0.867), 2 210 (0.744) | + | 0.867 |
15 | 400~559, 716~2 450 1 448 (0.867), 1 930 (0.927), 2 210 (0.874) | + | 0.927 |
17 | 400~530, 772~2 450 1 452 (0.850), 1 927 (0.914), 2 211 (0.854) | + | 0.914 |
Table 2 Correlation features of SOM concentrations and reflectance from soil samples with different moisture
含水率 Moisture content/% | 显著相关波段 Significant bands/nm | 正负相关性 Positive and negative correlation (+/-) | 相关系数(绝对值的最大值) Correlation coefficient (maximum absolute value) |
---|---|---|---|
烘干 Oven-dry | 400~662 [601 (0.759)] | - | 0.827 |
5 | / | / | / |
10 | 400~515, 1 155~1 170, 1 373~1 584, 1 850~2 450 1 416 (0.761), 1 931 (0.867), 2 210 (0.744) | + | 0.867 |
15 | 400~559, 716~2 450 1 448 (0.867), 1 930 (0.927), 2 210 (0.874) | + | 0.927 |
17 | 400~530, 772~2 450 1 452 (0.850), 1 927 (0.914), 2 211 (0.854) | + | 0.914 |
1 | 刘雪梅.近红外漫反射光谱检测土壤有机质和速效N的研究[J].中国农机化学报,2013,34(2):202-206. |
LIU X M. Near infrared diffuse reflectance spectra detection of soil organic matter and available N [J]. J. Chin. Agric. Mech.,2013,34(2):202-206. | |
2 | 刘振尧,温江北,高洪智,等.基于随机森林方法在土壤有机质近红外建模中的研究[J].现代农业装备,2017(6):37-41, 54. |
LIU Z Y, WEN J B, GAO H Z, et al.. Study of dimension-reducing optimization for near-infrared modeling on soil using random forest regression with Gini [J]. Mod. Agric. Equip., 2017(6):37-41, 54. | |
3 | 冉思,丁建丽,葛翔宇,等.基于稀疏网络的可见光/近红外反射光谱土壤有机质含量估算[J].激光与光电子学进展,2020,57(24):389-397. |
RAN S, DING J L, GE X Y, et al.. Estimation method of VIS-NIR spectroscopy for soil organic matter based on sparse networks [J]. Laser Optoelectr. Pro., 2020,57(24):389-397. | |
4 | KIRSHNAN P, ALEXANDER J D, BUTLER B J, et al.. Reflectance technique for predicting soil organic matter [J/OL]. Soil Sci. Soc. Am. J., 1980, 44(6), 1282 [2023-03-19]. . |
5 | WU C Y, JACOBSON A R, LABA M, et al.. Alleviating moisture content effects on the visible near-infrared diffuse-reflectance sensing of soils [J]. Soil Sci., 2009, 174(8), 456-465. |
6 | WANG S F, CHENG X, ZHENG D C, et al.. Prediction of the soil organic matter (SOM) content from moist soil using synchronous two-dimensional correlation spectroscopy (2D-COS) analysis [J/OL]. Sensors, 2020, 20(17): 4822 [2023-03-19]. . |
7 | 李阳,刘新路,彭杰,等.基于可见光近红外光谱的南疆荒漠土壤有机质反演研究[J].土壤通报,2018,49(4):767-772. |
LI Y, LIU X L, PENG J, et al.. Inversion of desert soil organic matter content using visiable-infrared spectrum in southern Xinjiang [J]. Chin. J. Soil Sci., 2018,49(4):767-772. | |
8 | 谭洋,姜琦刚,刘骅欣,等.基于多尺度SNV-CWT特征的黑土有机质、水分、总铁及pH值估测[J].光谱学与光谱分析,2021,41(11):3424-3430. |
TAN Y, JIANG Q G, LIU H X, et al.. Estimation of organic matter, moisture, total iron and pH from back soil based on multi scales SNV-CWT transformation [J]. Spectrosc. Spectral Anal., 2021,41(11):3424-3430. | |
9 | 曹永研,杨玮,王懂,等.基于水分和粒度的土壤有机质特征波长提取与预测模型[J].农业机械学报,2022,53():241-248. |
CAO Y Y, YANG W, WANG D, et al.. Soil organic matter characteristic wavelength extraction and prediction model based on moisture and particle size [J]. Trans. Chin. Soc. Agric. Mach., 2022,53(S1):241-248. | |
10 | 张笑寒,孟祥添,唐海涛,等.优化光谱输入量的土壤有机质随机森林预测模型[J].农业工程学报,2023,39(2):90-99. |
ZHANG X H, MENG X T, TANG H T, et al.. Random forest prediction model for the soil organic matter with optimized spectral inputs [J]. Trans. Chin. Soc. Agric. Eng., 2023,39(2):90-99. | |
11 | 张俊华,尚天浩,陈睿华,等.基于光谱FOD与优化指数的银川平原土壤有机质含量反演[J].农业机械学报,2022,53(11):379-387. |
ZHANG J H, SHANG T H, CHEN R H, et al.. Inversion of soil organic matter content in Yinchuan plain using field spectral fractional-order derivatives combined with spectral optimization index [J]. Trans. Chin. Soc. Agric. Mach., 2022,53(11):379-387. | |
12 | 任意,辛景树,田有国,等. 土壤检测 第6部分:土壤有机质的测定: [S]. 北京:中国标准出版社, 2006. |
13 | 丁海泉,卢启鹏,朴仁官,等.土壤有机质近红外光谱分析组合波长的优选[J].光学精密工程,2007,15(12):1946-1951. |
DING H Q, LU Q P, PIAO R G, et al.. Optimum choice of combination wavelengths in near infrared analysis for soil organic matter [J]. Opt. Precis. Eng., 2007,15(12):1946-1951. | |
14 | 程航,万远,陈奕云,等.部分土壤重金属可见-近红外反射光谱特征及机理研究[J].光谱学与光谱分析,2018,38(3):771-778. |
CHENG H, WAN Y, CHEN Y Y, et al.. Study on the characteristic and mechanism of visible and near infrared reflectance spectra of soil heavy metals [J]. Spectrosc. Spectral Anal., 2018,38(3):771-778. | |
15 | 曾静,李光林,周胜灵.水分对近红外光谱检测紫色土有机质含量影响的研究[J].西南大学学报(自然科学版),2015,37(10):167-173. |
ZENG J, LI G L, ZHOU S L. A research of the effects of soil moisture on NIR spectroscopic detection of organic matter content in purple soil [J]. J. Southwest Univ.,2015,37(10):167-173. | |
16 | 宋海燕,程旭.水分对土壤近红外光谱检测影响的二维相关光谱解析[J].光谱学与光谱分析,2014,34(5):1240-1243. |
SONG H Y, CHENG X. Analysis of the effect of moisture on soil spectra detection by using two-dimensional correlation near infrared spectroscopy [J]. Spectrosc. Spectral Anal.,2014,34(5):1240-1243. |
[1] | Wei LIU, Yuanyuan ZHAO, Xiaolong CHEN, Hongzhi SHI. Effects of Soil Moisture Content on Microbial Community Diversity and Abundance of Nitrogen Cycling Genes in Central Henan Tobacco-growing Soil [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 214-225. |
[2] | Xuting HAO, Yaru HUANG, Yingbin MA, Shuai ZHANG, Chunxia HAN, Jiacheng PANG, Guangfu XU, Huizhong HAO, Yajing LIU. Study on Soil Moisture Dynamics in Growing Season of Sand-fixing Haloxylonammodendron Forest in Ulan Buhe Desert [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 187-196. |
[3] | Shijiang ZHU, Hu LI, Wen XU, Yating FENG. Effects of Soil Moisture Content on Fruit Quality in Citrus Orchards Within Three Gorges Reservoir Area [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 201-207. |
[4] | Hongyuan LIU, Zhihua ZHOU, Guangxin ZHAO, Yanjun WANG, Nana WANG. Effects of Modified Cellulose on Germination and Dryland Soil Physicochemical Properties of Upland Rice [J]. Journal of Agricultural Science and Technology, 2023, 25(5): 168-175. |
[5] | GAO Riping, §, LIU Xiaoyue, §, DU Erxiao, HAN Yunfei, REN Yongfeng, GAO Yu, ZHAO Peiyi, LI Huanchun, ZHANG Peng, . Influences of Ridge Film and Furrow Sowing and Straw Returning on Soil Moisture, Enzyme Activity and Yield of Maize in Loess Plateau of Inner Mongolia [J]. Journal of Agricultural Science and Technology, 2021, 23(11): 181-190. |
[6] |
GUO Han1, ZHANG Xu1*, LU Zhou2, TIAN Ting3, XU Feifei2,LUO Ming2, WU Zhenggui3, SUN Zhenjun5.
Estimation of Organic Matter Content in Southern Paddy Soil Based on Airborne Hyperspectral Images
[J]. Journal of Agricultural Science and Technology, 2020, 22(6): 60-71.
|
[7] | ZHU Guolong, WANG Zhuan, LONG Huaiyu*, ZHANG Renlian, YU Kefan. Effect of Soil Moisture on Growth and Water Use Efficiency of Cherry Radish Under Negative Pressure Irrigation [J]. Journal of Agricultural Science and Technology, 2020, 22(12): 127-136. |
[8] | WANG Zhuan, ZHU Guolong, LONG Huaiyu*, ZHANG Renlian, SHEN Zhe, QU Xiaolin, YU Kefan. Effects of Temporal Variation of Soil Moisture on the Growth and Water Use Efficiency of Maize [J]. Journal of Agricultural Science and Technology, 2020, 22(11): 153-164. |
[9] | CHENG Jiehong1, CHEN Zhengguang1*, ZHANG Qinghua2. Comparison of Different Wavelength Selection Methods in SOM Content Detection [J]. Journal of Agricultural Science and Technology, 2020, 22(1): 162-170. |
[10] | ZHU Xi1, LIN Jie2*. Soil Erosion and Soil Nutrients Response to Erosion Based on 137Cs in Southern Hilly Area [J]. Journal of Agricultural Science and Technology, 2018, 20(8): 134-141. |
[11] | LIU Long, YAO Yunfeng, GUO Yuefeng*, QI Wei, GAO Yuhan, HAN Zhaomin, YUCHI Wensi. Studies on Spatial Relationship between Caragana korshinskii Kom. Root and Soil Water Content in Agriculture-pasture Transition Zone [J]. Journal of Agricultural Science and Technology, 2017, 19(7): 101-107. |
[12] | TANG Jie, WANG Changquan*, LI Bing, ZENG Jian, LI Qiquan, XU Qiang, LI Yiding, LI Shan. Spatial Variability and Its influencing Factors of Soil Organic Matter and Alkaline Nitrogen in Central Hilly Area of Sichuan [J]. Journal of Agricultural Science and Technology, 2017, 19(6): 124-130. |
[13] | CHENG Hongsheng1, SHEN Yujun1, MENG Haibo1*,ZHAN Shijie1,2. Effects of Biochar-based Super Absorbent on Soil Moisture and Rape Growth [J]. Journal of Agricultural Science and Technology, 2017, 19(2): 86-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||