Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (4): 97-105.DOI: 10.13304/j.nykjdb.2023.0570
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Mingbo LI1(), Yule LIU1(
), Zhimin MU2, Junwang GUO1, Yong WEI1, Dongyue REN1, Jishen JIA1, Zezhong WEI1, Yuhong LI3
Received:
2023-07-31
Accepted:
2023-10-28
Online:
2024-04-15
Published:
2024-04-23
Contact:
Yule LIU
李名博1(), 刘玉乐1(
), 穆志民2, 郭俊旺1, 卫勇1, 任东悦1, 贾济深1, 卫泽中1, 栗宇红3
通讯作者:
刘玉乐
作者简介:
李名博E-mail:1634221386@qq.com;
基金资助:
CLC Number:
Mingbo LI, Yule LIU, Zhimin MU, Junwang GUO, Yong WEI, Dongyue REN, Jishen JIA, Zezhong WEI, Yuhong LI. Tomato Fruit Recognition Based on YOLOX-L-TN Model[J]. Journal of Agricultural Science and Technology, 2024, 26(4): 97-105.
李名博, 刘玉乐, 穆志民, 郭俊旺, 卫勇, 任东悦, 贾济深, 卫泽中, 栗宇红. 基于YOLOX-L-TN模型的番茄果实识别[J]. 中国农业科技导报, 2024, 26(4): 97-105.
模型Model | F1得分 F1 score | 平均精度 AP/% | 预加载模型识别速度 Preloaded model Recognition speed/s | 未预加载模型识别速度 Unpreloaded model Recognition speed /s | 可学习参数 Learnable parameter /Mb | 模型大小 Model size/Mb |
---|---|---|---|---|---|---|
YOLOX-L-TN | 0.525 1 | 58.82 | 0.445 4 | 3.711 2 | 62.2 | 219.41 |
YOLOX-L-Upsample | 0.505 6 | 55.49 | 0.573 3 | 3.934 2 | 76.7 | 270.44 |
YOLOX-L-Spp | 0.490 1 | 54.48 | 0.563 3 | 4.060 9 | 122.8 | 433.14 |
YOLOX-L | 0.499 5 | 54.01 | 0.587 1 | 3.932 8 | 62.0 | 218.66 |
YOLOX-L-Connect | 0.499 9 | 53.57 | 0.648 7 | 4.441 9 | 123.9 | 437.06 |
Table1 Performance comparison of different models
模型Model | F1得分 F1 score | 平均精度 AP/% | 预加载模型识别速度 Preloaded model Recognition speed/s | 未预加载模型识别速度 Unpreloaded model Recognition speed /s | 可学习参数 Learnable parameter /Mb | 模型大小 Model size/Mb |
---|---|---|---|---|---|---|
YOLOX-L-TN | 0.525 1 | 58.82 | 0.445 4 | 3.711 2 | 62.2 | 219.41 |
YOLOX-L-Upsample | 0.505 6 | 55.49 | 0.573 3 | 3.934 2 | 76.7 | 270.44 |
YOLOX-L-Spp | 0.490 1 | 54.48 | 0.563 3 | 4.060 9 | 122.8 | 433.14 |
YOLOX-L | 0.499 5 | 54.01 | 0.587 1 | 3.932 8 | 62.0 | 218.66 |
YOLOX-L-Connect | 0.499 9 | 53.57 | 0.648 7 | 4.441 9 | 123.9 | 437.06 |
模型Model | F1得分 F1 score | 平均精度AP /% | 预加载模型 识别速度 Preloaded model Recognition speed/s | 未预加载模型 识别速度 Unpreloaded model Recognition speed/s | 可学习参数 Learnable parameter/Mb | 模型大小Model size /Mb |
---|---|---|---|---|---|---|
YOLOX-L-TN | 0.525 1 | 58.82 | 0.445 4 | 3.711 2 | 62.2 | 219.41 |
YOLOX-L-SENet | 0.523 5 | 58.29 | 0.464 5 | 3.808 1 | 62.1 | 218.66 |
YOLOX-L-CAM | 0.501 4 | 54.63 | 0.470 4 | 3.946 0 | 62.1 | 218.79 |
YOLOX-L-CBAM | 0.494 6 | 52.70 | 0.466 5 | 3.860 9 | 62.1 | 218.82 |
YOLOX-L-SAM | 0.488 7 | 52.48 | 0.464 3 | 3.907 1 | 62.1 | 218.69 |
Table2 Performance comparison of different models
模型Model | F1得分 F1 score | 平均精度AP /% | 预加载模型 识别速度 Preloaded model Recognition speed/s | 未预加载模型 识别速度 Unpreloaded model Recognition speed/s | 可学习参数 Learnable parameter/Mb | 模型大小Model size /Mb |
---|---|---|---|---|---|---|
YOLOX-L-TN | 0.525 1 | 58.82 | 0.445 4 | 3.711 2 | 62.2 | 219.41 |
YOLOX-L-SENet | 0.523 5 | 58.29 | 0.464 5 | 3.808 1 | 62.1 | 218.66 |
YOLOX-L-CAM | 0.501 4 | 54.63 | 0.470 4 | 3.946 0 | 62.1 | 218.79 |
YOLOX-L-CBAM | 0.494 6 | 52.70 | 0.466 5 | 3.860 9 | 62.1 | 218.82 |
YOLOX-L-SAM | 0.488 7 | 52.48 | 0.464 3 | 3.907 1 | 62.1 | 218.69 |
1 | 李君明,项朝阳,王孝宣,等.“十三五”我国番茄产业现状及展望[J].中国蔬菜,2021(2):13-20. |
LI J M, XIANG Z Y, WANG X X, et al.. Current situation and prospect of tomato industry in China during the 13th Five-Year Plan [J]. Chin. Veg., 2021(2):13-20. | |
2 | 刘继展. 温室采摘机器人技术研究进展分析[J].农业机械学报,2017.48(12):1-18. |
LIU J Z. Research progress analysis of robotic harvesting technologies in greenhouse [J]. Trans. Chin. Soc. Agric. Mach., 2017,48(12):1-18. | |
3 | KONDO N, YATA K, IIDA M, et al. Development of an end-effector for a tomato cluster harvesting robot [J]. Eng. Agric. Environ. Food., 2010,3(1):20-24. |
4 | XIE H, KONG D, SHAN J, et al.. Study the parametric effect of pulling pattern on cherry tomato harvesting using RSM-BBD techniques [J/OL]. Agriculture, 2021,11(9):815 [2024-02-24]. . |
5 | 李寒,陶涵虓,崔立昊,等.基于SOM-K-means算法的番茄果实识别与定位方法[J].农业机械学报,2021,52(1):23-29. |
LI H, TAO H X, CUI L H, et al.. Tomato fruit recognition and location method based on SOM-K-means algorithm [J]. Trans. Chin. Soc. Agric. Mach., 2021,52(1):23-29. | |
6 | 王海楠,弋景刚,张秀花.番茄采摘机器人识别与定位技术研究进展[J].中国农机化学报,2020,41(5):188-196. |
WANG H N, GE J G, ZHANG X H. Research progress on identification and localization technology of tomato picking robot [J]. J. Chin. Agric. Mech., 2020,41(5):188-196. | |
7 | 刘俊明,孟卫华.基于深度学习的单阶段目标检测算法研究综述[J].航空兵器,2020,27(3):44-53. |
LIU J M, MENG W H. A review of single-stage object detection algorithms based on deep learning [J]. Aero Weap., 2020,27(3):44-53. | |
8 | 张境锋,陈伟,魏庆宇,等.基于Des-YOLO v4的复杂环境下苹果检测方法[J].农机化研究,2023,45(5):20-25. |
ZHANG J F, CHEN W, WEI Q Y, et al.. Apple detection method in complex environment based on Des-YOLOv4 [J]. J. Agric. Mech. Res., 2023,45(5):20-25. | |
9 | 张俊宁,毕泽洋,闫英,等.基于注意力机制与改进YOLO的温室番茄快速识别[J].农业机械学报,2023,54(5):236-243. |
ZHANG J N, BI Z X, YAN Y, et al.. Rapid recognition of greenhouse tomatoes based on attention mechanism and improved YOLO [J]. Trans. Chin. Soc. Agric. Mach., 2023,54(5):236-243. | |
10 | ZENG T H, LI S Y, SONG Q M, et al.. Lightweight tomato real-time detection method based on improved YOLO and mobile deployment [J]. Comput. Electron. Agric., 2023,205:107625. |
11 | QI J T, LIU X N, LIU K, et al.. An improved YOLOv5 model based on visual attention mechanism: application to recognition of tomato virus disease [J]. Comput. Electron. Agric., 2022,194:106780. |
12 | 张立杰,周舒骅,李娜,等.基于改进SSD卷积神经网络的苹果定位与分级方法[J].农业机械学报,2023,54(6):223-232. |
ZHANG L J, ZHOU S H, LI N, et al.. Apple localization and grading method based on improved SSD convolutional neural network [J]. Trans. Chin. Soc. Agric. Mach., 2023,54(6):223-232. | |
13 | 毛锐,张宇晨,王泽玺,等.利用改进Faster-RCNN识别小麦条锈病和黄矮病[J].农业工程学报,2022,38(17):176-185. |
MAO R, ZHANG Y C, WANG Z X, et al.. Identification of wheat stripe rust and yellow dwarf by improved Faster-RCNN [J]. Trans. Chin. Soc. Agric. Eng., 2022,38(17):176-185. | |
14 | 梁喜凤,章鑫宇,王永维.基于改进Mask R-CNN的番茄侧枝修剪点识别方法[J].农业工程学报,2022,38(23):112-121. |
LIANG X F, ZHANG X Y, WANG Y W. Identification method of tomato lateral branch pruning points based on improved Mask R-CNN [J]. Trans. Chin. Soc. Agric. Eng., 2022,38(23):112-121. | |
15 | LIU G, NOUAZE J C, TOUKO MBOUEMBE P L, et al.. YOLO-tomato: a robust algorithm for tomato detection based on YOLOv3 [J/OL]. Sensors, 2020,20(7):2145 [2024-02-24]. . |
16 | 龙洁花,赵春江,林森,等.改进Mask R-CNN的温室环境下不同成熟度番茄果实分割方法[J].农业工程学报,2021,37(18):100-108. |
LONG J H, ZHAO C J, LIN S, et al. Improved segmentation method of tomato fruit with different ripeness in greenhouse environment by Mask R-CNN [J]. Trans. Chin. Soc. Agric. Eng., 2021,37(18):100-108. | |
17 | AFONSO M, FONTEJIN H, FIORENTIN F S, et al.. Tomato fruit detection and counting in greenhouses using deep learning [J/OL]. Front. Plant Sci., 2020,11:571299 [2024-02-24]. . |
18 | 刘之瑜,张淑芬,刘洋,等.基于图像梯度的数据增广方法[J].应用科学学报,2021,39(2):302-311. |
LIU Z Y, ZHANG S F, LIU Y, et al.. Data augmentation method based on image gradient [J]. J. Appl. Sci., 2021,39(2):302-311. | |
19 | 赵越,卫勇,单慧勇,等.基于深度学习的高分辨率麦穗图像检测方法[J].中国农业科技导报,2022,24(9):96-105. |
ZHAO Y, WEI Y, SHAN H Y, et al.. High resolution wheat image detection method based on deep learning [J]. J. Agric. Sci. Technol., 2022,24(9):96-105. | |
20 | 杨坚,钱振,张燕军,等.采用改进YOLOv4-tiny的复杂环境下番茄实时识别[J].农业工程学报,2022,38(9):215-221. |
YANG J, QIAN Z, ZHANG Y J, et al.. Tomato real-time recognition in complex environment using improved YOLOv4-tiny [J]. Trans. Chin. Soc. Agric. Eng., 2022,38(9):215-221. | |
21 | XU P H, FANG N, LIU N, et al.. Visual recognition of cherry tomatoes in plant factory based on improved deep instance segmentation [J]. Comput. Electron. Agric., 2022,197:106991. |
22 | ANANDHAKRISHNAN T, JAISAKTHI S M. Deep convolutional neural networks for image based tomato leaf disease detection [J]. Sustain. Chem. Pharm., 2022,30:100793. |
23 | 刘芳,刘玉坤,林森,等.基于改进型YOLO的复杂环境下番茄果实快速识别方法[J].农业机械学报,2020,51(6):229-237. |
LIU F, LIU Y K, LIN S, et al.. Rapid identification method of tomato fruit in complex environment based on improved YOLO [J]. Trans. Chin. Soc. Agric. Mach. 2020,51(6):229-237. | |
24 | 成伟,张文爱,冯青春,等.基于改进YOLOv3的温室番茄果实识别估产方法[J].中国农机化学报,2021,42(4):176-182. |
CHENG W, ZHANG W A, FENG Q C, et al.. Fruit recognition and yield estimation method of greenhouse tomato based on improved YOLOv3 [J]. J. Chin. Agric. Mech., 2021,42(4):176-182. | |
25 | LI H P, LI C Y, LI G B, et al.. A real-time table grape detection method based on improved YOLOv4-tiny network in complex background [J]. Biosyst. Eng., 2021,212:347-359. |
26 | ZHANG Y C, ZHANG W B, YU J Y, et al.. Complete and accurate holly fruits counting using YOLOX object detection [J/OL]. Comput. Electron. Agric., 2022,198: 107062 [2024-02-26]. . |
27 | ZHANG Y J, MA B X, HU Y T, et al.. Accurate cotton diseases and pests detection in complex background based on an improved YOLOX model [J/OL]. Comput. Electron. Agric., 2022,203:107484 [2024-02-26]. . |
28 | 何斌,张亦博,龚健林,等.基于改进YOLOv5的夜间温室番茄果实快速识别[J].农业机械学报,2022,53(5):201-208. |
HE B, ZHANG Y B, GONG J L, et al.. Rapid identification of greenhouse tomato fruits at night based on improved YOLOv5 [J]. Trans. Chin. Soc. Agric. Mach., 2022,53(5):201-208. | |
29 | 李柯泉,陈燕,刘佳晨,等.基于深度学习的目标检测算法综述[J].计算机工程,2022,48(7):1-12. |
LI K Q, CHEN Y, LIU J C, et al. An overview of object detection algorithms based on deep learning [J]. Comput. Eng., 2022,48(7):1-12. | |
30 | 岳有军,孙碧玉,王红君,等.基于级联卷积神经网络的番茄果实目标检测[J].科学技术与工程,2021,21(6):2387-2391. |
YUE Y J, SUN B Y, WANG H J, et al. Tomato fruit target detection based on cascaded convolutional neural network [J]. Sci. Technol. Eng., 2021,21(6):2387-2391. |
[1] | Dejun ZHANG, Xiaoming ZHANG, Di WU, Shuyun LIN, Taihua ZHANG, Weiping XU. Simulation of Pepper Cleaning Based on DEM-CFD Coupling [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 87-96. |
[2] | Fengguang HE, Ganran DENG, Zhende CUI, Shuang ZHENG, Guojie LI, Ling LI, Shuangmei QIN. Operating Performance of Self-propelled Silage Cassava Stem and Leaf Harvester [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 109-115. |
[3] | Qi LIU, Bin CHEN, Songlin SUN, Mingtao XIAO, Chaoran SUN. Research on Mechanical Characteristics of Clamping Conveyor for Leafy Vegetables [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 116-125. |
[4] | Yiping DUAN, Mingliang WU, Jiangnan LYU, Wei XIANG, Bo YAN, Lan MA, Jiajie LIU. Research Status and Development Suggestions of No-tillage Seeding Anti-blocking Technology [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 124-135. |
[5] | ZHANG Fengkui, ZHANG Hong, LAN Haipeng, YU Fufeng, LI Zhongjie, LI Ping. Simulation Analysis of Pneumatic Conveying Device of Air-suction Jujube Picker Based on CFD-EDM Coupling [J]. Journal of Agricultural Science and Technology, 2021, 23(7): 107-116. |
[6] | CHEN Qing-wen, HAN Zeng-de*, CUI Jun-wei, WANG Guo-xin, QIAO Xiao-dong, ZHANG Zi. Development Status and Trend Current Situation of Self-propelled Combine Harvester [J]. , 2015, 17(1): 109-114. |
[7] | CHEN Hai-feng§, ZHANG Shi-xi§, YAN Yi-ye, CHEN Hao, XIE Qiang. Studies on Harvesting Ship of Water Chestnuts Based on Soil Liquefaction Principle [J]. , 2013, 15(2): 120-124. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 58
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 208
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||