1 |
于晓燕,汪星,吕雯,等.黄土丘陵区带状柠条锦鸡儿林地深层土壤干化及根系分布[J].干旱区地理,2023,46(5):753-762.
|
|
YU X Y, WANG X, LYU W, et al.. Deep soil desiccation and root distribution of belted Caragana korshinskii forest in loess hilly region [J]. Arid Land Geogr., 2023, 46(5):753-762.
|
2 |
张力斌,何明珠,张珂.柠条锦鸡儿生物量分配规律与异速生长对氮、磷添加的响应[J].生态学报,2023,43(16):6627-6636.
|
|
ZHANG L B, HE M Z, ZHANG K. Response of biomass allocation and allometric growth of Caragana korshinsküi to nitrogen and phosphorus addition [J]. Acta Ecol. Sin., 2023,43(16):6627-6636.
|
3 |
刘婧,缑倩倩,王国华,等.晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J].植物生态学报,2023,47(4):546-558.
|
|
LIU J, HOU Q Q, WANG G H, et al.. Leaf and soil ecological stoichiometry of Caragana korshinskii in windy and sandy hilly region of northwest Shanxi, China [J]. Chin. J. Plant Ecol., 2023, 47(4):546-558.
|
4 |
杜雨佳,赵勇钢,刘小芳,等.黄土丘陵区柠条种植带状结构对坡面土壤水分的影响[J].水土保持研究,2020,27(6):52-59.
|
|
DU Y J, ZHAO Y G, LIU X F, et al.. Effects of strip Caragana korshinskii plantation on soil moisture at hillslope scale in the Loess Hilly region [J]. Res. Soil Water Conserv., 2020, 7(6):52-59.
|
5 |
王震.不同留茬高度对四合木生长及生理生化特性的影响研究[D].北京:中国林业科学研究院,2013.
|
|
WANG Z. Effects of different stubble height on growth and physiologicalbiochemical characteristics of Tetraena mongolica Maxim [D]. Beijing: Chinese Academy of Forestry Sciences, 2013.
|
6 |
WANG X, QI W, GUO Y F, et al.. Effects of stumping on fine root architecture, growth, and physiology of Hippophae rhamnoides [J/OL]. PeerJ, 2023, 11:e14978 [2023-09-30]. .
|
7 |
刘晓宇,郭月峰,姚云峰,等.砒砂岩区不同留茬高度及坡向下沙棘根系分形特征[J].生态环境学报,2021,30(1): 100-107.
|
|
LIU X Y, GUO Y F, YAO Y F, et al.. Fractal features of Hippophae rhamnoides roots under different stubble height and slopes in soft sandstone area [J]. Ecol. Environ. Sci., 2021, 30(1): 100-107.
|
8 |
王丹,李熙颜,颜廷雨,等.不同季节平茬对云南松生物量分配与异速生长的影响[J].西南农业学报,2023,36(1): 47-52.
|
|
WANG D, LI X Y, YAN T Y, et al.. Effects of flat stubble in different seasons on biomass allocation and allometric growth of Pinus yunnanensis [J]. Southwest China J. Agric. Sci., 2023, 36(1):47-52.
|
9 |
王震,张利文,虞毅,等.平茬高度对四合木生长及生理特性的影响[J].生态学报,2013,33(22): 7078-7087.
|
|
WANG Z, ZHANG L W, YU Y, et al.. Effect of different stubble height treatments on the annual growth index and physiological characteristics of Tetraena mongolica in two growing seasons [J]. Acta Ecol. Sin., 2013,33(22):7078-7087.
|
10 |
HANDAVU F. The influence of stump diameter and height on coppicing ability of selected key Miombo woodland tree species of Zambia: a guide for harvesting for charcoal production [J]. J. Ecol. Nat. Environ., 2011, 3(14):461-468.
|
11 |
胡小龙,薛博,袁立敏,等.科尔沁沙地人工黄柳林平茬复壮技术研究[J].干旱区资源与环境,2012,26(5):135-139.
|
|
HU X L, XUE B, YUAN L M, et al.. Techniques of stumping and rejuvenating of Salix gordejevii plantation in Kerqin sandy land [J]. J. Arid Land Res. Environ., 2012, 26(5):135-139.
|
12 |
姚建成,梁海荣,张松林,等.沙柳不同平茬高度对比试验[J].内蒙古林业科技,2009,35(4):35-36.
|
|
YAO J C, LIANG H R, ZHANG S L, et al.. Comparison on different stubble height after stumping for Salix psammophila [J]. J. Inner Mongolia For. Sci. Technol., 2009, 35(4):35-36.
|
13 |
赵菊英,武志博,谢宗才,等.平茬高度对柽柳萌条生长影响的研究[J].内蒙古林业科技,2013,39(1):27-30.
|
|
ZHAO J Y, WU Z B, XIE Z C, et al.. Influence of stumping height on growth of sprout of Tamarix chinensis [J]. J. Inner Mongolia For. Sci. Technol., 2013, 39(1):27-30.
|
14 |
REICH P, WRIGHT I J, CAVENDER-BARES J, et al.. The evolution of plant functional variation: traits, spectra, and strategies [J]. Int. J. Plant Sci., 2003, 164:143-164.
|
15 |
ACKERLY D D, KNIGHT C A, WEISS B, et al.. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses [J]. Oecologia, 2002, 130(3):449-457.
|
16 |
CUI E Q, LU R L, XU X N, et al.. Soil phosphorus drives plant trait variations in a mature subtropical forest [J]. Global Change Biol., 2002, 28:3310-3320.
|
17 |
HOSSEINI A, HOSSEINI S M, LINARES J C. Linking morphological and ecophysiological leaf traits to canopy dieback in Persian oak trees from central Zagros [J]. J. For. Res., 2019, 30:1755-1764.
|
18 |
NING Z, LI Y, ZHAO X, et al.. Comparison of leaf and fine root traits between annuals and perennials, implicating the mechanism of species changes in desertified grasslands [J/OL]. Front. Plant Sci., 2022, 12:778547 [2023-09-30]. .
|
19 |
JIANG X, JIA X, GAO S, et al.. Plant nutrient contents rather than physical traits are coordinated between leaves and roots in a desert shrubland [J/OL]. Front. Plant Sci., 2021, 12:734775 [2023-09-30]. .
|
20 |
YANG J, CI X Q, LU M M, et al.. Functional traits of tree species with phylogenetic signal covary with environmental niches in two large forest dynamics plots [J]. J. Plant Ecol., 2014, 7:110-125.
|
21 |
LAUGHLIN D C, MOMMER L, SABATINI F M, et al.. Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs [J]. Nat. Ecol. Evol., 2021, 5:1-12.
|
22 |
YUAN J H, LI H Y, YANG Y F. The compensatory tillering in the forage grass Hordeum brevisubulatum after simulated grazing of different severity [J/OL]. Front. Plant Sci., 2020, 11:792 [2023-09-30]. .
|
23 |
XU B, XU W, WANG Z. Accumulation of N and P in the legume Lespedeza davurica in controlled mixtures with the grass Bothriochloa ischaemum under varying water and fertilization conditions [J/OL]. Front. Plant Sci., 2018, 9:165 [2023-09-30]. .
|
24 |
MORALES J, SQUEO F A, TRACOL Y, et al.. Resource economics and coordination among above-and below-ground functional traits of three dominant shrubs from the Chilean coastal desert [J]. J. Plant Ecol., 2015, 8:70-78.
|
25 |
HU M Y, MA Z L, CHEN H Y H. Intensive plantations decouple fine root C:N:P in subtropical forests [J/OL]. For. Ecol. Manage., 2022, 505:119901 [2023-09-30]. .
|
26 |
WANG X X, LI H B, CHU Q, et al.. Mycorrhizal impacts on root trait plasticity of six maize varieties along a phosphorus supply gradient [J]. Plant Soil, 2022, 448:71-86.
|
27 |
GU J. Effects of root diameter, branch order, soil depth and season of birth on fine root life span in five temperate tree species [J]. Eur. J. For. Res., 2017, 136(4):1-12.
|
28 |
周晓红,王国祥,杨飞,等.刈割对生态浮床植物黑麦草光合作用及其对氮磷等净化效果的影响[J].环境科学,2008,29(12):3393-3399.
|
|
ZHOU X H, WANG G X, YANG F, et al.. Effects of cutting on photosynthesis and purification efficiencies on nitrogen and phosphorus of the Lolium multiflorum [J]. Environ. Sci., 2008,29(12): 3393-3399.
|
29 |
董雪.沙冬青平茬技术及刈割后生理生化特性研究[D].呼和浩特:内蒙古农业大学,2013.
|
|
DONG X. Studies on stumping technology of Ammopiptanthus mongolicus and physio-biochemical characteristic to clipping [D]. Hohhot: Inner Mongolia Agricultural University, 2013.
|
30 |
GAO Y B, REN A Z, WANG W,et al.. A comparative study on photosynthesis and morphological characteristics of Salix gordejevii between regenerated shoots and standing shoots [J]. Acta Ecol. Sin., 2002, 22(10):1758-1764.
|
31 |
解婷婷,张希明,梁少民,等.不同灌溉量对塔克拉玛干沙漠腹地梭梭水分生理特性的影响[J].应用生态学报,2008,19(4):711-716.
|
|
XIE T T, ZHANG X M, LIANG S M, et al.. Effects of different irrigation rates on water physiological characteristics of Haloxylon in the hinterland of Taklimakan desert [J]. J. Appl. Ecol., 2008,19(4):711-716.
|
32 |
MARECHAUX I, SAINT-ANDRE L, BARTLETT M K, et al.. Leaf drought tolerance cannot be inferred from classic leaf traits in a tropical rainforest [J]. J. Ecol., 2020, 108: 1030-1045.
|
33 |
YANG Z P, MINGGAGUD H, BAOYIN T G T, et al.. Plant production decreases whereas nutrients concentration increases in response to the decrease of mowing stubble height [J/OL]. J. Environ. Manage., 2020, 253:109745 [2023-09-30]. .
|
34 |
WRIGHT I J, REICH P B, WESTOBY M, et al.. The worldwide leaf economics spectrum [J]. Nature, 2004, 428: 821-827.
|
35 |
CHEMG J, CHU P, CHEN D, et al.. Functional correlations between specific leaf area and specific root length along a regional environmental gradient in Inner Mongolia grasslands [J]. Funct. Ecol., 2016, 30: 985-997.
|
36 |
肖以华,付志高,许涵,等.城市化对珠江三角洲不同功能群植物叶片功能性状的影响[J].生态环境学报,2022,31(9):1783-1793.
|
|
XIAO Y H, FU Z G, XU H, et al.. Effects of urbanization on leaf functional traits of different functional groups in Pearl River Delta [J]. Ecol. Environ. Sci., 2022, 31(9):1783-1793.
|