Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (5): 156-166.DOI: 10.13304/j.nykjdb.2023.0878
• ANIMAL AND PLANT HEALTH • Previous Articles
Siqi GAO1(), Xinjian YANG2(
), Deqi ZHU1, Mingwei GUAN1, Yunting KOU1, Cheng MAN1, Jian JIAO1(
)
Received:
2023-11-30
Accepted:
2024-01-18
Online:
2024-05-15
Published:
2024-05-14
Contact:
Jian JIAO
高思琦1(), 杨新建2(
), 朱德琪1, 关明玮1, 寇云婷1, 满程1, 焦健1(
)
通讯作者:
焦健
作者简介:
高思琦 E-mail:18910325896@163.com基金资助:
CLC Number:
Siqi GAO, Xinjian YANG, Deqi ZHU, Mingwei GUAN, Yunting KOU, Cheng MAN, Jian JIAO. Bactericidal Mechanism of Antimicrobial Peptide PAJE Against Staphylococcus aureus and SCVs[J]. Journal of Agricultural Science and Technology, 2024, 26(5): 156-166.
高思琦, 杨新建, 朱德琪, 关明玮, 寇云婷, 满程, 焦健. 抗菌肽PAJE对金黄色葡萄球菌及其SCVs的杀菌作用机制研究[J]. 中国农业科技导报, 2024, 26(5): 156-166.
引物名称 Primer name | 引物序列 Primer sequence(5’-3’) | 类别 Category |
---|---|---|
agrA-F | AAGCATGACCCAGTTGGTAACA | Agr调控系统相关基因 Agr regulatory system genes[ |
agrA-R | ATCCATCGCTGCAACTTTGTAGA | |
agrB-F | CCCATTCCTGTGCGACTTAT | |
agrB-R | TTGAATGAATTGGGCAAATG | |
agrC-F | TAGTGACCATGATCATAATGTATTTGAG | |
agrC-R | CTTCTTGATTTCGTTTGTATTTCATCTC | |
agrD-F | AACATVGCAGCTTATAG | |
agrD-R | TTCGTGTAATTGTGTTA | |
RNAIII-F | GCATGTAAGCTATCGTAAACAACA | |
RNAIII-R | AGGGGCTCACGACCATATAC | |
sigB-F | GGTGCCATAAATAGATTCGATATGTCCTT | SigB调控系统相关基因 SigB regulatory system genes[ |
sigB-R | CTTTTGATTTCACCGATTACAGTAGGTACT | |
rsbV-F | ACGAAGTTAAAGTCGGTGGAGA | |
rsbV-R | ATTCGACCTCCGTTCCTTCA | |
rsbU-F | CGCGTGAAGATGTGTTCAAGAC | |
rsbU-R | CTATCTCTTTATCGTGAACTTGAAG | |
rsbW-F | GCGAAGGTGGCCTAGGTTTA | |
rsbW-R | GCCATTATTTCGCACCTGCT | |
relQ-F | AGAAAGTGGTTACCGCTCGT | 生物膜相关基因 Biofilm related genes[ |
relQ-R | TCATCCGGATAAGCACCATCA | |
relP-F | TTGCCGGAATTCGCGTAGTA | |
relP-R | CGCGTTCTGCTAAAAAGACTGG | |
rsh-F | TACATCGCACTGATTGCCCA | |
rsh-R | TTAAATTGCCGGCTGTCGAG | |
ccp-F | ATGATGTAGCAAGAGAAGCGCG | |
ccp-R | TAACTGATGCTATATGTGCATCC | |
luxS -F | GTCATTCACAAATACGACATTCG | |
luxS -R | CCTGTACCGAAAACATCATGCC | |
eno-F | ACGTGCAGCAGCTGACT | |
eno-R | CAACAGCATCTTCAGTACCTTC | |
clfA-F | ATTGGCGTGGCTTCAGTGCT | |
clfA-R | CGTTTCTTCCGTAGTTGCATTTG | |
codY-F | AGTCGATGAGTCTGGGACATAATT | |
codY-R | TGTGAAATATCAATTTGATTG | |
16s RNA-F | GCTGCCCTTTGTATTGTC | 内参基因 Reference gene |
16s RNA-R | AGATGTTGGGTTAAGTCCC |
Table1 Amplification primers of Agr, SigB regulatory system and biofilm related genes
引物名称 Primer name | 引物序列 Primer sequence(5’-3’) | 类别 Category |
---|---|---|
agrA-F | AAGCATGACCCAGTTGGTAACA | Agr调控系统相关基因 Agr regulatory system genes[ |
agrA-R | ATCCATCGCTGCAACTTTGTAGA | |
agrB-F | CCCATTCCTGTGCGACTTAT | |
agrB-R | TTGAATGAATTGGGCAAATG | |
agrC-F | TAGTGACCATGATCATAATGTATTTGAG | |
agrC-R | CTTCTTGATTTCGTTTGTATTTCATCTC | |
agrD-F | AACATVGCAGCTTATAG | |
agrD-R | TTCGTGTAATTGTGTTA | |
RNAIII-F | GCATGTAAGCTATCGTAAACAACA | |
RNAIII-R | AGGGGCTCACGACCATATAC | |
sigB-F | GGTGCCATAAATAGATTCGATATGTCCTT | SigB调控系统相关基因 SigB regulatory system genes[ |
sigB-R | CTTTTGATTTCACCGATTACAGTAGGTACT | |
rsbV-F | ACGAAGTTAAAGTCGGTGGAGA | |
rsbV-R | ATTCGACCTCCGTTCCTTCA | |
rsbU-F | CGCGTGAAGATGTGTTCAAGAC | |
rsbU-R | CTATCTCTTTATCGTGAACTTGAAG | |
rsbW-F | GCGAAGGTGGCCTAGGTTTA | |
rsbW-R | GCCATTATTTCGCACCTGCT | |
relQ-F | AGAAAGTGGTTACCGCTCGT | 生物膜相关基因 Biofilm related genes[ |
relQ-R | TCATCCGGATAAGCACCATCA | |
relP-F | TTGCCGGAATTCGCGTAGTA | |
relP-R | CGCGTTCTGCTAAAAAGACTGG | |
rsh-F | TACATCGCACTGATTGCCCA | |
rsh-R | TTAAATTGCCGGCTGTCGAG | |
ccp-F | ATGATGTAGCAAGAGAAGCGCG | |
ccp-R | TAACTGATGCTATATGTGCATCC | |
luxS -F | GTCATTCACAAATACGACATTCG | |
luxS -R | CCTGTACCGAAAACATCATGCC | |
eno-F | ACGTGCAGCAGCTGACT | |
eno-R | CAACAGCATCTTCAGTACCTTC | |
clfA-F | ATTGGCGTGGCTTCAGTGCT | |
clfA-R | CGTTTCTTCCGTAGTTGCATTTG | |
codY-F | AGTCGATGAGTCTGGGACATAATT | |
codY-R | TGTGAAATATCAATTTGATTG | |
16s RNA-F | GCTGCCCTTTGTATTGTC | 内参基因 Reference gene |
16s RNA-R | AGATGTTGGGTTAAGTCCC |
菌株 Strain | 最小抑菌浓度 MIC | 最小杀菌浓度 MBC |
---|---|---|
S. aureus | 8 | 16 |
SCVs | 16 | 32 |
Table 2 MIC and MBC of antimicrobial peptide PAJE on SCVs
菌株 Strain | 最小抑菌浓度 MIC | 最小杀菌浓度 MBC |
---|---|---|
S. aureus | 8 | 16 |
SCVs | 16 | 32 |
Fig. 2 Stability of antimicrobial peptide PAJE under different treatmentsNote: ** indicates significant differences compared with CK at P<0.01 level; different lowercase letters indicate significant differences between different treatments of same strain at P<0.05 level.
Fig. 4 Inhibition rate of antimicrobial peptide PAJE on biofilmNote: Different lowercase letters indicate significant differences between treatments at P<0.05 level.
Fig. 5 Relative expression of S. aureus and SCVs characteristic genes treated with antimicrobial peptide PAJEA~B: Agr regulatory system genes; C~D: SigB regulatory system genes; E~F: Biofilm related genes; * and ** indicate significant differences between CK and treatment groups at P<0.05 and P<0.01 levels, respectively
1 | ROLLIN E, DHUYVETTER K C, OVERTON M W. The cost of clinical mastitis in the first 30 days of lactation: an economic modeling tool [J]. Prev. Vet. Med., 2015, 122(3):257-264. |
2 | BOBBO T, RUEGG P L, STOCCO G, et al.. Associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits in dairy cows [J]. J. Dairy Sci., 2017, 100(6):4868-4883. |
3 | ZHENG X, YANG N, MAO R, et al.. Pharmacokinetics and pharmacodynamics of fungal defensin NZX against Staphylococcus aureus-induced mouse peritonitis model [J/OL]. Front. Microbiol., 2022, 13:865774 [2023-10-28]. . |
4 | HOGEVEEN H, VAN DER VOORT M. Assessing the economic impact of an endemic disease: the case of mastitis [J]. Rev. Sci. Technol., 2017, 36(1):217-226. |
5 | JIANG X, HE D, GAO L, et al.. Synergistic pathogenicity of avian orthoreovirus and Staphylococcus aureus on SPF chickens [J/OL]. Poult. Sci., 2023, 102(10):102996 [2023-10-28]. . |
6 | 周宇,李佳玉,王乐,等.金黄色葡萄球菌小菌落突变体诱导筛选及特性研究[J].中国农业科技导报,2023,25(5):147-157. |
ZHOU Y, LI J Y, WANG L, et al.. Induction screening and characteristics of Staphylococcus aureus small colony variants [J]. J. Agric. Sci. Technol., 2023, 25(5):147-157. | |
7 | 冯春香.鸡葡萄球菌病的预防与治疗[J].兽医导刊,2021(13):27-28. |
FENG C X. The prevention and treatment of Staphylococcus aureus disease in chickens [J]. Vet. Orient., 2021(13):27-28. | |
8 | PÉREZ V K C, COSTA G M D, GUIMARES A S, et al.. Relationship between virulence factors and antimicrobial resistance in Staphylococcus aureus from bovine mastitis [J]. J. Glob. Antimicrob. Resist., 2020, 22:792-802. |
9 | MARTIN V, WILHELM P, BINGFENG L, et al.. Novel pathways for ameliorating the fitness cost of gentamicin resistant small colony variants [J/OL]. Front. Microbiol., 2016, 7:1866 [2023-10-28]. . |
10 | PROCTOR R A, VAN LANGEVELDE P, KRISTJANSSON M, et al.. Persistent and relapsing infections associated with small-colony variants of Staphylococcus aureus [J]. Clin. Infect. Dis., 1995, 20(1):95-102. |
11 | BISCHOFF M, ENTENZA J M, GIACHINO P. Influence of a functional sigB operon on the global regulators sar and agr in Staphylococcus aureus [J]. J. Bacteriol., 2001, 183(17):5171-5179. |
12 | 李冠楠,夏雪娟,隆耀航,等.抗菌肽的研究进展及其应用[J].动物营养学报,2014,26(1):17-25. |
LI G N, XIA X J, LONG Y H, et al.. Research progress and applications of antimicrobial peptides [J]. Chin. J. Anim. Nutr., 2014, 26(1):17-25. | |
13 | FLEMMING H C, WINGENDER J. The biofilm matrix [J]. Nat. Rev. Microbiol., 2010, 8(9):623-633. |
14 | TRAN N N, MORRISETTE T, JORGENSEN S C J, et al.. Current therapies and challenges for the treatment of Staphylococcus aureus biofilm-related infections [J]. Pharmacotherapy, 2023, 43(8):816-832. |
15 | SCHILCHER K, ANDREONI F, DENGLER HAUNREITER V, et al.. Modulation of Staphylococcus aureus biofilm matrix by subinhibitory concentrations of clindamycin [J]. Antimicrobiol. Agents Chemother., 2016, 60(10):5957-5967. |
16 | TAN X, QIN N, WU C, et al.. Transcriptome analysis of the biofilm formed by methicillin-susceptible Staphylococcus aureus [J/OL]. Sci. Rep., 2015, 5:11997 [2023-10-28]. . |
17 | XIE X, LIU X, LI Y, et al.. Advanced glycation end products enhance biofilm formation by promoting extracellular DNA release through sigB upregulation in Staphylococcus aureus [J/OL]. Front. Microbiol., 2020, 11:1479 [2023-10-28]. . |
18 | MHLONGO J T, WADDAD A Y, ALBERICIO F, et al.. Antimicrobial peptide synergies for fighting infectious diseases [J/OL]. Adv. Sci., 2023, 10(26):e2300472 [2023-10-28]. . |
19 | JIALE Z, JIAN J, XINYI T, et al.. Design of a novel antimicrobial peptide 1018M targeted ppGpp to inhibit MRSA biofilm formation [J/OL]. AMB Express, 2021, 11(1):49 [2023-10-28]. . |
20 | KANG M Y, JEONG H W, KIM J, et al.. Removal of biofilms using carbon dioxide aerosols [J]. J. Aerosol Sci., 2010, 41(11):1044-1051. |
21 | SON J S, LEE S J, JUN S Y, et al.. Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme [J]. Appl. Microbiol. Biotechnol., 2010, 86(5):1439-1449. |
22 | NA D H, FARAJ J, CAPAN Y, et al.. Chewing gum of antimicrobial decapeptide (KSL) as a sustained antiplaque agent: preformulation study [J]. J. Control Release, 2005, 107(1):122-130. |
23 | ZASLOFF M. Antimicrobial peptides of multicellular organisms: my perspective [J]. Adv. Exp. Med. Biol., 2019, 1117:3-6. |
24 | SHAZELY B E, YU G Z, JOHNSTON P R, et al.. Resistance evolution against antimicrobial peptides in Staphylococcus aureus alters pharmacodynamics beyond the MIC [J/OL]. Front. Microbiol., 2020, 11:103 [2023-10-28]. . |
25 | KIM S R, CHOI K H, KIM K Y, et al.. Development of a novel short synthetic antibacterial peptide derived from the swallowtail butterfly Papilio xuthus larvae [J]. J. Microbiol. Biotechnol., 2020, 30(9):1305-1309. |
26 | 练家惠,陈向东,汪辉,等.人工合成抗菌肽生物信息学分析及其抑菌活性研究[J].药学与临床研究,2020,28(4):251-254. |
LIAN J H, CHEN X D, WANG H, et al.. Bioinformatics and antimicrobial activity of a remoulded antimicrobial peptide [J]. Pharm. Clin. Res., 2020, 28(4):251-254. | |
27 | 于佳民,赵倩,张志焱,等.多黏类芽孢杆菌抗菌肽的分离纯化及特性研究[J].中国畜牧兽医,2021,48(8):2830-2837. |
YU J M, ZHAO Q, ZHANG Z Y, et al.. Separation, purification and characteristics analysis of antibacterial peptides from Paenibacillus polymyxa [J]. China Anim. Husb. Vet. Med., 2021, 48(8):2830-2837. | |
28 | 张炜,杭柏林,司素锦,等.抗菌肽BSN-37的抑菌活性及其稳定性分析[J].中国畜牧兽医,2019,46(1):287-295. |
ZHANG W, HANG B L, SI S J, et al.. Bacteriostatic activity and stability analysis of antimicrobial peptide BSN-37 [J]. China Anim. Husb. Vet. Med., 2019, 46(1):287-295. | |
29 | 戴雨芸,李超,袁中伟,等.香芹酚抑制金黄色葡萄球菌生物被膜的形成[J].微生物学通报,2020,47(3):813-820. |
DAI Y Y, LI C, YUAN Z W, et al.. Inhibition of Staphylococcus aureus biofilm by carvacrol [J]. Microbiol. China, 2020, 47(3):813-820. | |
30 | 郭梦冉,董兵,李聪,等.荧光定量PCR检测金黄色葡萄球菌方法的建立及应用[J].河北农业大学学报,2018,41(3):72-76, 83. |
GUO M R, DONG B, LI C, et al.. Establishment and application of the real-time fluorescence-based quantitative PCR method for detection of Staphylococcus aureus [J]. J. Hebei Agric. Univ., 2018, 41(3):72-76, 83. | |
31 | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method [J]. Methods, 2001, 25(4):402-408. |
32 | WU S, QIN B, DENG S, et al.. CodY is modulated by YycF and affects biofilm formation in Staphylococcus aureus [J/OL]. Front. Microbiol., 2022, 13:967567 [2023-10-28]. . |
33 | 单玉雪,杨娜,滕达,等.抗菌肽NZ2114对来源于奶牛乳房炎的无乳链球菌及其生物膜的消杀作用[J].中国畜牧兽医,2020,47(7):2284-2294. |
SHAN Y X, YANG N, TENG D, et al.. The disinfection effect of antimicrobial peptide NZ2114 on Streptococcus agalactiae isolated from bovine mastitis and its biofilm [J]. China Anim. Husb. Vet. Med., 2020, 47(7):2284-2294. | |
34 | 杨昆,王欢,高洁,等.抗菌肽BCp12对大肠杆菌壁膜及DNA损伤的作用机制[J].食品科学,2021,42(19):114-121. |
YANG K, WANG H, GAO J, et al.. Mechanism by which antimicrobial peptide BCp12 acts on the cell wall and membrane of Escherichia coli cells and induces DNA damage [J]. Food Sci., 2021, 42(19):114-121. | |
35 | HASSOUN A, LINDEN P K, FRIEDMAN B. Incidence prevalence, and management of MRSA bacteremia across patient populations—a review of recent developments in MRSA management and treatment [J/OL]. Crit. Care., 2017, 21(1):211 [2023-10-28]. . |
36 | DOMHAN C, UHL P, KLEIST C, et al.. Replacement of l-amino acids by d-amino acids in the antimicrobial peptide ranalexin and its consequences for antimicrobial activity and biodistribution [J/OL]. Molecules, 2019, 24(16):2987 [2023-10-28]. . |
37 | GRAZIA A D, CAPPIELLO F, COHEN H, et al.. D-amino acids incorporation in the frog skin-derived peptide esculentin-1a(1-21)NH2 is beneficial for its multiple functions [J]. Amino Acids, 2015, 47(12):2505-2519. |
38 | HANEY E F, BRITO-SÁNCHEZ Y, TRIMBLE M J, et al.. Computer-aided discovery of peptides that specifically attack bacterial biofilms [J/OL]. Sci. Rep., 2018, 8(1):1871 [2023-10-28]. . |
39 | MITCHELL G, BROUILLETTE E, SÉGUIN D L, et al.. A role for sigma factor B in the emergence of Staphylococcus aureus small-colony variants and elevated biofilm production resulting from an exposure to aminoglycosides [J]. Microbiol. Pathog., 2010, 48(1):18-27. |
40 | PROCTOR R A, VON EIFF C, KAHL B C, et al.. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections [J]. Nat. Rev. Microbiol., 2006, 4(4):295-305. |
41 | LAUDERDALE K J, BOLES B R, CHEUNG A L, et al.. Interconnections between sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation [J]. Infect. Immun., 2009, 77(4):1623-1635. |
42 | LEE J, ZILM P S, KIDD S P. Novel research models for Staphylococcus aureus small colony variants (SCV) development: co-pathogenesis and growth rate [J/OL]. Front. Microbiol., 2020, 11:321 [2023-10-28]. . |
43 | ABRAHAM N M, LAMLERTTHON S, FOWLER V G, et al.. Chelating agents exert distinct effects on biofilm formation in Staphylococcus aureus depending on strain background: role for clumping factor B [J]. J. Med. Microbiol., 2012, 61(Pt8):1062-1070. |
44 | YANG N, LIU X, TENG D, et al.. Antibacterial and detoxifying activity of NZ17074 analogues with multi-layers of selective antimicrobial actions against Escherichia coli and Salmonella enteritidis [J/OL]. Sci. Rep., 2017, 7(1):3392 [2023-10-28]. . |
45 | YANG N, TENG D, MAO R, et al.. A recombinant fungal defensin-like peptide-P2 combats multidrug-resistant Staphylococcus aureus and biofilms [J]. Appl. Microbiol. Biotechnol., 2019, 103(13):5193-5213. |
[1] | Lei JI, Tianhong LIU, Ying WANG, Xiao LI, Hongyan LI, Yuanqin SUN, Xiaodong JIANG. Research on Antibacterial Activity of Silver-Carried Oxidized Chitosan [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 214-222. |
[2] | Lan MA, Qing PENG, Xiaoqing XU, Shuo YANG, Yuwei ZHANG, Dandan TIAN, Linbo SHI, Bo SHI, Yu QIAO. Gene Expression in Escherichia coli O157∶H7 Biofilms [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 71-88. |
[3] | Yu ZHOU, Jiayu LI, Le WANG, Xiaoshuang JIA, Siqi GAO, Xiao WANG, Jian JIAO. Induction Screening and Characteristics of Staphylococcus aureus Small Colony Variants [J]. Journal of Agricultural Science and Technology, 2023, 25(5): 147-157. |
[4] | Hangfan GUO, Ping WANG, Ying WANG. Inhibitory Effect of Solanum nigrum L. Extracts on Escherichia coli and Enterococcus faecalis and Biofilm Formation [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 152-164. |
[5] | WU Congmin, MA Lan, WU Yonghong, YU Yuanchun. Effects of Different Concentrations of Indole-3-acetic Acid on the Metabolic Characteristics of Microbial Communities in Periphyton [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 74-79. |
[6] | SUI Fu1,2, LIU Xiaolin1,2, XIE Zhihong1,3*. Sensing Mechanism of Receptor TlpA1 to Succinic Acid in Azorhizobium caulinodans ORS571 [J]. Journal of Agricultural Science and Technology, 2020, 22(10): 77-84. |
[7] | LI Yun1, LIU Xiaodong2, LI Qin2, ZHAN Yuhua1, YAN Yongliang1, LU Wei1*. The Regulatory Effect of RpoN on Flagellar Biosynthesis in Nitrogen-Fixing Pseudomonas stutzeri [J]. Journal of Agricultural Science and Technology, 2017, 19(11): 33-41. |
[8] | LU Jia-si1,2, SHANG Li-guo2, ZHAN Yu-hua2, LU Wei2, . Functional Analysis of bifA in Pseudomonas stutzeri [J]. Journal of Agricultural Science and Technology, 2016, 18(3): 67-73. |
[9] | SHANG Li\|guo, ZHAN Yu\|hua, GONG Pai, YAN Yong\|liang*. Research Progress on the Function and Regulatory Mechanism of CsrA, a Global Regulator in Bacteria [J]. , 2014, 16(4): 79-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||