Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (9): 110-119.DOI: 10.13304/j.nykjdb.2024.0159
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Zhenfei ZHANG1,2(), An YAN1, Jing GUO2(
), Yuhang ZHAO1, Yilin YUAN1, Peng LIU1, Zuohao QU1, Chuan YUAN1
Received:
2024-03-04
Accepted:
2024-10-12
Online:
2025-09-15
Published:
2025-09-24
Contact:
Jing GUO
张振飞1,2(), 颜安1, 郭靖2(
), 赵宇航1, 袁以琳1, 刘鹏1, 曲佐昊1, 袁川1
通讯作者:
郭靖
作者简介:
张振飞 E-mail:1291716283@qq.com;
基金资助:
CLC Number:
Zhenfei ZHANG, An YAN, Jing GUO, Yuhang ZHAO, Yilin YUAN, Peng LIU, Zuohao QU, Chuan YUAN. Research on Apple Yield Estimation Model Based on Unmanned Aerial Vehicle Remote Sensing[J]. Journal of Agricultural Science and Technology, 2025, 27(9): 110-119.
张振飞, 颜安, 郭靖, 赵宇航, 袁以琳, 刘鹏, 曲佐昊, 袁川. 基于无人机遥感的苹果产量估测模型研究[J]. 中国农业科技导报, 2025, 27(9): 110-119.
植被指数 | 计算公式 | 参考文献Reference |
---|---|---|
归一化差异植被指数 Normalized difference vegetation index(NDVI) | [ | |
差值植被指数 Different influential factors(DVI) | [ | |
比值植被指数 Ratio vegetation index(RVI) | [ | |
绿色归一化差异植被指数 Green normalized difference vegetation index(GNDVI) | [ | |
蓝色归一化差异植被指数 Blue normalized difference vegetation index(BNDVI) | [ | |
归一化差异红边植被指数 Normalized difference red edge index(NDRE) | [ | |
红边叶绿素指数 Chlorophyll index-red edge(CIrededge) | [ | |
绿色叶绿素指数 Chlorophyll index-green(CIgreen) | [ | |
超绿指数 Excess green index(ExG) | [ | |
归一化差异指数 Normalized green-red difference index(NGRDI) | [ | |
可见光差异植被指数 Visible-band difference vegetation index(VDVI) | [ | |
增强型植被指数 Enhanced vegetation index(EVI) | [ | |
土壤调节植被指数 Soil adjusted vegetable index(SAVI) | [ |
Table 1 Vegetation indices and their calculation formulas
植被指数 | 计算公式 | 参考文献Reference |
---|---|---|
归一化差异植被指数 Normalized difference vegetation index(NDVI) | [ | |
差值植被指数 Different influential factors(DVI) | [ | |
比值植被指数 Ratio vegetation index(RVI) | [ | |
绿色归一化差异植被指数 Green normalized difference vegetation index(GNDVI) | [ | |
蓝色归一化差异植被指数 Blue normalized difference vegetation index(BNDVI) | [ | |
归一化差异红边植被指数 Normalized difference red edge index(NDRE) | [ | |
红边叶绿素指数 Chlorophyll index-red edge(CIrededge) | [ | |
绿色叶绿素指数 Chlorophyll index-green(CIgreen) | [ | |
超绿指数 Excess green index(ExG) | [ | |
归一化差异指数 Normalized green-red difference index(NGRDI) | [ | |
可见光差异植被指数 Visible-band difference vegetation index(VDVI) | [ | |
增强型植被指数 Enhanced vegetation index(EVI) | [ | |
土壤调节植被指数 Soil adjusted vegetable index(SAVI) | [ |
Fig. 1 Correlation analysis between characteristics of different growth stage and yieldNote:* and ** indicate significant correlations at P<0.05 and P<0.01 levels, respectively.
生育期 | 输入变量 | 随机森林 RF | 支持向量回归 SVR | BP神经网络 BPNN | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
决定系数 R2 | 平均绝对误差 MAE | 均方根 误差 RMSE | 决定系数 R2 | 平均绝对误差 MAE | 均方根 误差 RMSE | 决定系数 R2 | 平均绝对误差 MAE | 均方根 误差 RMSE | ||||
花期Flower stage | P | 0.206 3 | 32.203 1 | 37.062 0 | 0.341 9 | 28.535 1 | 33.748 5 | 0.119 4 | 32.911 2 | 39.039 7 | ||
VI | 0.364 8 | 24.201 8 | 33.155 6 | 0.382 9 | 24.823 4 | 32.680 3 | 0.316 1 | 25.462 4 | 34.404 9 | |||
P+VI | 0.432 1 | 24.929 9 | 31.351 1 | 0.500 6 | 21.369 2 | 29.399 7 | 0.527 2 | 21.731 5 | 28.604 9 | |||
幼果期Fruit formation stage | P | 0.252 3 | 31.709 3 | 35.972 7 | 0.410 7 | 28.752 2 | 31.934 9 | 0.314 9 | 29.581 6 | 34.434 7 | ||
VI | 0.446 0 | 25.514 6 | 30.964 3 | 0.473 0 | 25.048 6 | 30.200 9 | 0.367 2 | 27.054 2 | 33.094 6 | |||
P+VI | 0.481 1 | 24.964 2 | 29.966 8 | 0.628 5 | 20.424 5 | 25.355 2 | 0.565 7 | 21.845 0 | 27.414 8 | |||
果实膨大期Fruit expansion stage | P | 0.329 2 | 29.798 4 | 34.072 0 | 0.356 9 | 29.590 6 | 33.362 3 | 0.337 6 | 29.686 2 | 33.857 9 | ||
VI | 0.635 9 | 20.149 9 | 25.103 6 | 0.632 7 | 20.472 2 | 25.213 7 | 0.638 0 | 20.394 9 | 25.031 9 | |||
P+VI | 0.704 7 | 18.574 0 | 22.608 6 | 0.802 0 | 15.024 2 | 18.510 7 | 0.781 3 | 16.015 7 | 19.456 8 | |||
成熟期Fruit ripening stage | P | 0.342 5 | 28.582 9 | 33.732 7 | 0.419 7 | 26.972 4 | 31.692 2 | 0.381 9 | 27.377 4 | 32.706 8 | ||
VI | 0.567 9 | 22.257 9 | 27.345 3 | 0.594 3 | 21.446 9 | 26.497 2 | 0.566 1 | 21.922 5 | 27.403 0 | |||
P+VI | 0.582 3 | 21.705 4 | 26.887 4 | 0.633 8 | 20.016 0 | 25.174 4 | 0.600 8 | 21.519 5 | 26.284 6 |
Table. 2 Apple yield estimates
生育期 | 输入变量 | 随机森林 RF | 支持向量回归 SVR | BP神经网络 BPNN | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
决定系数 R2 | 平均绝对误差 MAE | 均方根 误差 RMSE | 决定系数 R2 | 平均绝对误差 MAE | 均方根 误差 RMSE | 决定系数 R2 | 平均绝对误差 MAE | 均方根 误差 RMSE | ||||
花期Flower stage | P | 0.206 3 | 32.203 1 | 37.062 0 | 0.341 9 | 28.535 1 | 33.748 5 | 0.119 4 | 32.911 2 | 39.039 7 | ||
VI | 0.364 8 | 24.201 8 | 33.155 6 | 0.382 9 | 24.823 4 | 32.680 3 | 0.316 1 | 25.462 4 | 34.404 9 | |||
P+VI | 0.432 1 | 24.929 9 | 31.351 1 | 0.500 6 | 21.369 2 | 29.399 7 | 0.527 2 | 21.731 5 | 28.604 9 | |||
幼果期Fruit formation stage | P | 0.252 3 | 31.709 3 | 35.972 7 | 0.410 7 | 28.752 2 | 31.934 9 | 0.314 9 | 29.581 6 | 34.434 7 | ||
VI | 0.446 0 | 25.514 6 | 30.964 3 | 0.473 0 | 25.048 6 | 30.200 9 | 0.367 2 | 27.054 2 | 33.094 6 | |||
P+VI | 0.481 1 | 24.964 2 | 29.966 8 | 0.628 5 | 20.424 5 | 25.355 2 | 0.565 7 | 21.845 0 | 27.414 8 | |||
果实膨大期Fruit expansion stage | P | 0.329 2 | 29.798 4 | 34.072 0 | 0.356 9 | 29.590 6 | 33.362 3 | 0.337 6 | 29.686 2 | 33.857 9 | ||
VI | 0.635 9 | 20.149 9 | 25.103 6 | 0.632 7 | 20.472 2 | 25.213 7 | 0.638 0 | 20.394 9 | 25.031 9 | |||
P+VI | 0.704 7 | 18.574 0 | 22.608 6 | 0.802 0 | 15.024 2 | 18.510 7 | 0.781 3 | 16.015 7 | 19.456 8 | |||
成熟期Fruit ripening stage | P | 0.342 5 | 28.582 9 | 33.732 7 | 0.419 7 | 26.972 4 | 31.692 2 | 0.381 9 | 27.377 4 | 32.706 8 | ||
VI | 0.567 9 | 22.257 9 | 27.345 3 | 0.594 3 | 21.446 9 | 26.497 2 | 0.566 1 | 21.922 5 | 27.403 0 | |||
P+VI | 0.582 3 | 21.705 4 | 26.887 4 | 0.633 8 | 20.016 0 | 25.174 4 | 0.600 8 | 21.519 5 | 26.284 6 |
[1] | 张鹏飞,王爱玲,田时敏,等.苹果不同生育期水肥需求规律研究进展[J].黑龙江农业科学,2020(8):121-125. |
ZHANG P F, WANG A L, TIAN S M, et al.. Research progress in water and fertilizer demand rule of apple in different growth stages [J]. Heilongjiang Agric. Sci., 2020(8):121-125. | |
[2] | 杨永娥,张晓煜,梁小娟,等.苹果花期至幼果期花朵和果实对低温的敏感性研究[J].西北植物学报,2023,43(10):1694-1703. |
YANG Y E, ZHANG X Y, LIANG X J, et al.. Studies on the sensitivity of apple flowers and fruits to low temperatures from flowering to young fruiting stage [J]. Acta Bot. Bor-Occid. Sin., 2023, 43(10):1694-1703. | |
[3] | 马友福,卢磊,唐金.新疆苹果品种选育现状、存在的问题及对策[J].果树资源学报,2023,4(5):67-71, 79. |
MA Y F, LU L, TANG J. Currentstatus, problems and countermeasures of apple cultivar breeding in Xinjiang [J]. J. Fruit Res., 2023, 4(5):67-71, 79. | |
[4] | 霍学喜,刘天军,刘军弟,等.2020年度中国苹果产业发展报告(精简版)[J].中国果菜,2022, 42(2):1-6. |
[5] | CHEN R Q, ZHANG C J, XU B, et al.. Predicting individual apple tree yield using UAV multi-source remote sensing data and ensemble learning [J/OL]. Comput. Electron. Agric., 2022, 201:107275 [2024-02-10]. . |
[6] | HE L L, FANG W T, ZHAO G N, et al.. Fruit yield prediction and estimation in orchards:a state-of-the-art comprehensive review for both direct and indirect methods [J/OL]. Comput. Electron. Agric., 2022, 195:106812 [2024-02-10]. . |
[7] | HASSAN M A, YANG M J, RASHEED A, et al.. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform [J]. Plant Sci., 2019, 282:95-103. |
[8] | TAO H, FENG H, XU L, et al.. Estimation of the yield and plant height of winter wheat using UAV-based hyperspectral images [J/OL]. Mol. Breed., 2020, 20(4):E1231 [2024-02-10].. |
[9] | TANABE R, MATSUI T, TANAKA T S T. Winter wheat yield prediction using convolutional neural networks and UAV-based multispectral imagery [J/OL]. Field Crops Res., 2023, 291:108786 [2024-02-10]. . |
[10] | FURUKAWA F, MARUYAMA K, SAITO Y K, et al.. Corn height estimation using UAV for yield prediction and crop monitoring [J/OL]. Appl. Agric. Environ., 2020, 22:5 [2024-02-10]. . |
[11] | KUMAR C, MUBVUMBA P, HUANG Y, et al.. Multi-stage corn yield prediction using high-resolution uav multispectral data and machine learning models [J]. Agronomy, 2023, 13(5):1277-1286. |
[12] | FENG A J, ZHOU J F, VORIES E D, et al.. Yield estimation in cotton using UAV-based multi-sensor imagery [J]. Biosyst. Eng., 2020, 193:101-114. |
[13] | FENG A, ZHANG M, SUDDUTH K A, et al.. Cotton yield estimation from UAV-based plant height [J]. Trans. ASABE, 2019, 62(2):393-404. |
[14] | SILVAE E DA, ROJO BAIO F H, RIBEIRO TEODORO L P, et al.. UAV-multispectral and vegetation indices in soybean grain yield prediction based on in situ observation [J/OL]. Remote. Sens. Appl. Soc. Environ., 2020, 18:100318 [2024-02-10]. . |
[15] | 赵晓庆,杨贵军,刘建刚,等.基于无人机载高光谱空间尺度优化的大豆育种产量估算[J].农业工程学报, 2017, 33(1):110-116. |
ZHAO X Q, YANG G J, LIU J G, et al.. Estimation of soybean breeding yield based on optimization of spatial scale of UAV hyperspectral image [J]. Trans. Chin. Soc. Agric. Eng., 2017, 33(1):110-116. | |
[16] | MAIMAITIJIANG M, SAGAN V, SIDIKE P, et al.. Soybean yield prediction from UAV using multimodal data fusion and deep learning [J/OL]. Remote Sens. Environ., 2020, 237:111599 [2024-02-10]. . |
[17] | VIJAYAKUMA R V, COSTA L, AMPATZIDIS Y. Prediction of citrus yield with AI using ground-based fruit detection and UAV imagery [C]//Proceedings of the 2021 ASABE Annual International Virtual Meeting, 2021. |
[18] | VAN BEEK J, TITS L, SOMERS B,et al..Temporal dependency of yield and quality estimation through spectral vegetation indices in pear orchards [J].Remote.Sens.,2015,7(8):9886-9903. |
[19] | ORTENZI L, VIOLINO S, PALLOTTINO F, et al.. Early estimation of olive production from light drone orthophoto, through canopy radius [J/OL]. Drones, 2021, 5(4):118 [2024-02-10]. . |
[20] | APOLO-APOLO O E, PÉREZ-RUIZ M, MARTÍNEZ-GUANTER J, et al.. A cloud-based environment for generating yield estimation maps from apple orchards using UAV imagery and a deep learning technique [J/OL].Mol.Metab.,2020,11:1086 [2024-02-10]. . |
[21] | 刘永波,高文波,何鹏,等.基于改进ResNet50模型的自然环境下苹果物候期识别[J].智慧农业,2023,5(2):13-22. |
LIU Y B, GAO W B, HE P, et al.. Apple phenological period identification in natural envi ronment based on improved ResNet50 model [J]. Smart Agric., 2023, 5(2):13-22. | |
[22] | 陈日强,李长春,杨贵军,等.无人机机载激光雷达提取果树单木树冠信息[J].农业工程学报,2020,36(22):50-59. |
CHEN R Q, LI C C, ZHU Y J, et al.. Extraction of crown information from individual fruit tree by UAV LiDAR [J]. Trans. Chin. Soc. Agric. Eng., 2020, 36(22):50-59. | |
[23] | WANG P, FAN W Y, LI M Z, et al.. Extraction of individual tree height using a combination of large-scale aerial photo and LiDAR [J]. Adv. Mater. Res., 2011, 268-270:1157-1162. |
[24] | 束美艳,李世林,魏家玺,等.基于无人机平台的柑橘树冠信息提取[J].农业工程学报,2021,37(1):68-76. |
SHU M Y, LI S L, WEI J X,et al..Extraction of citrus crown parameters using UAV platform [J].Trans. Chin. Soc. Agric. Eng.,2021,37(1):68-76. | |
[25] | 周辰琴,余拥军,方陆明,等.飞行高度与郁闭度对水杉冠幅提取影响的研究[J].林业资源管理,2022(1):150-156. |
ZHOU C Q, YU Y J, FANG L M, et al.. Effects of flight height and canopy density on canopy extraction of metasequoia glyptostroboides [J]. For. Resour. Manage., 2022(1):150-156. | |
[26] | CARLSON T N, RIPLEY D A.On the relation between NDVI,fractional vegetation cover,and leaf area index [J]. Remote. Sens. Environ., 1997, 62(3):241-252. |
[27] | MOKARRAM M, HOJJATI M, ROSHAN G,et al..Modeling the behavior of vegetation indices in the salt dome of Korsia in North-East of Darab,Fars,Iran [J/OL].Model.Earth Syst.Environ., 2015,1(3):27 [2024-02-10]. . |
[28] | JORDAN C F. Derivation of leaf-area index from quality of light on the forest floor [J]. Ecology, 1969, 50(4):663-666. |
[29] | GITELSON A A, KAUFMAN Y J, MERZLYAK M N.Use of a green channel in remote sensing of global vegetation from EOS-MODIS [J]. Remote. Sens. Environ., 1996, 58(3):289-298. |
[30] | WANG J, DING J, ABULIMITI A, et al.. Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS-NIR) spectroscopy,Ebinur Lake Wetland,Northwest China [J/OL]. PeerJ, 2018, 6:e4703 [2024-02-10]. . |
[31] | FITZGERALD G, RODRIGUEZ D, O’LEARY G. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index—the canopy chlorophyll content index (CCCI) [J]. Field Crops Res., 2010, 116(3):318-324. |
[32] | 黄侠,姜雪芹,张灿,等.红边波段在水稻生育期识别中的应用研究[J].测绘地理信息,2023,48(3):87-90. |
HUANG X, JIANG X Q, ZHANG C, et al.. Application of red edge band in identification of rice growth stages [J]. J. Geomat., 2023, 48(3):87-90. | |
[33] | WOEBBECKE D M, MEYER G E, VON BARGEN K, et al.. Color indices for weed identification under various soil, residue, and lighting conditions [J]. Trans. ASAE, 1995, 38(1):259-269. |
[34] | GUERRERO J M, PAJARES G, MONTALVO M, et al.. Support vector machines for crop/weeds identification in maize fields [J]. Expert Syst. Appl., 2012, 39(12):11149-11155. |
[35] | 汪小钦,王苗苗,王绍强,等.基于可见光波段无人机遥感的植被信息提取[J].农业工程学报,2015,31(5):152-159. |
WANG X Q, WANG M M, WANG S Q, et al.. Extraction of vegetation information from visible unmanned aerial vehicle images [J]. Trans. Chin. Soc. Agric. Eng., 2015, 31(5):152-159. | |
[36] | PENG X, HAN W, AO J, et al.. Assimilation of LAI derived from UAV multispectral data into the SAFY model to estimate maize yield [J/OL]. Remote Sens., 2021, 13(6):1094 [2024-02-10]. . |
[37] | ROUJEAN J L, BREON F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements [J]. Remote. Sens. Environ., 1995, 51(3):375-384. |
[38] | 范军亮,王涵,廖振棋,等.基于纹理-颜色特征与植被指数融合的冬小麦LAI估测[J].农业机械学报,2023,54(7):347-359. |
FAN J L, WANG H, LIAO Z Q, et al.. Winter wheat leaf area index estimation based on texture-color features and vegetation indices [J]. Trans. Chin. Soc. Agric. Mach., 2023, 54(7):347-359. | |
[39] | 宋荣杰,宁纪锋,常庆瑞,等.基于小波纹理和随机森林的猕猴桃果园遥感提取[J].农业机械学报,2018,49(4):222-231. |
SONG R J, NING J F, CHANG Q R, et al.. Kiwifruit orchard mapping based on wavelet textures and random forest [J]. Trans. Chin. Soc. Agric. Mach., 2018, 49(4):222-231. | |
[40] | CUI L G, TAO Y Q, DENG J, et al.. BBO-BPNN and AMPSO-BPNN for multiple-criteria inventory classification [J/OL]. Expert Syst. Appl., 2021, 175:114842 [2024-02-10]. . |
[41] | SAMANTARAY S, SAHOO A. Prediction of runoff using BPNN, FFBPNN, CFBPNN algorithm in arid watershed: a case study [J]. Int. J. Knowl.-Based Intell. Eng. Syst., 2020, 24(3):243-251. |
[42] | AWAD M, KHANNA R, AWAD M, et al.. Support vector machines for classification [J]. Eff. Learn. Mach. Theor. Concepts Appl. Eng. Syst. Des., 2015, 22:39-66. |
[43] | CHANDRA M A, BEDI S S. Survey on SVM and their application in imageclassification [J]. Int. J. Inf. Technol., 2021, 13(5):1-11. |
[44] | SHUJUAN D, CHUNLING L, TAO Z, et al.. Extraction of remote sensing information for lake salinity level based on SVM: a case from Badain Jaran desert in Inner Mongolia [J]. Remote Sens. Nat. Resour., 2016, 28(4):114-118. |
[45] | 梁栋,管青松,黄文江,等.基于支持向量机回归的冬小麦叶面积指数遥感反演[J].农业工程学报,2013,29(7):117-123. |
LIANG D, GUAN Q S, HUANG W J, et al.. Remote sensing inversion of leaf area index based on support vector machine regression in winter wheat [J]. Trans. Chin. Soc. Agric. Eng., 2013, 29(7):117-123. | |
[46] | BENDIG J, BOLTEN A, BENNERTZ S, et al.. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging [J]. Remote Sens., 2014, 6(11):10395-10412. |
[47] | YUE J B, FENG H K, YANG G J, et al.. A comparison of regression techniques for estimation of above-ground winter wheat biomass using near-surface spectroscopy [J/OL]. Remote. Sens., 2018, 10:66 [2024-02-10]. . |
[48] | SUN G, WANG X, YANG H, et al.. A canopy information measurement method for modern standardized apple orchards based on UAV multimodal information [J/OL]. Sensors (basel switz.), 2020, 20(10):E2985 [2024-02-10]. . |
[49] | 岳继博,杨贵军,冯海宽.基于随机森林算法的冬小麦生物量遥感估算模型对比[J].农业工程学报,2016,32(18):175-182. |
YUE J B, YANG G J, FENG H K. Comparative of remote sensing estimation models of winter wheat biomass based on random forest algorithm [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(18):175-182. | |
[50] | 郭斌,吴亚颜,周嘉耀,等.基于无人机影像数据的苹果产量模拟:以洛川县为例[J].西安科技大学学报,2017,37(3):450-454. |
GUO B, WU Y Y, ZHOU J Y, et al.. Simulation of the apple yield based on unmanned aerial vehicle image data—taking Luochuan County as an example [J]. J. Xi’an Univ. Sci. Technol., 2017, 37(3):450-454. | |
[51] | 胡艳萍.不同品种柑橘叶片和根中磷的季节性变化的生理机制[D].重庆:西南大学,2023. |
HU Y P. Physiological mechanism of seasonal changes of phosphorus in leaves and roots of different Citrus cultivars [D]. Chongqing: Southwest University, 2023. | |
[52] | 梁晨欣.柑橘遥感识别方法研究:以广西武鸣为例[D].北京:中国农业科学院,2021. |
LIANG C X. Remote sensing classification for Citrus [D]. Beijing: Chinese Academy of Agricultural, 2021. |
[1] | Mingjun JIANG, Yanmin FAN, Hongqi WU, Hao ZHANG, Zhuo LIU, Dejun WANG. Remote Sensing Inversion Study of Relative Chlorophyll Content in Processing Tomato Based on Machine Learning [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 89-99. |
[2] | Guangyao LI, Shenglong YANG, Tianfei CHENG, Xuesen CUI, Weifeng ZHOU, Shengmao ZHANG. Analysis of Environmental Characteristics and Forecast Status of Tuna Fisheries in Central and Western Pacific [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 203-221. |
[3] | Licheng WANG, Zhu ZHU, Qianqian KONG, Yongqian PENG, Yongxin LU, Lianyong ZHU. Characteristics of Water Infiltration and Evaporation Under Different Modes of Mixing Between Soil and Sand Based on HYDRUS-1D [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 183-193. |
[4] | Lifang SONG, Guiping LIAO, Min CHEN, Yuyang HE-LUO. Hyperspectral Estimation of Rape Leaf Water Content Based on Machine Learning [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 110-119. |
[5] | Fengxia BIAN, Kaige LIU, Xinmin RONG. Development and Verification of Prediction Model for Grape Downy Mildew Based on Machine Learning [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 126-137. |
[6] | Xiaohu YANG, Manyu ZHANG, Haichang YANG, Fenghua ZHANG, Yilin JIANG, Xiaolan YI. Inversion of Soil Salinity in Farmland of Manas River Basin Based on Combined Model [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 134-141. |
[7] | Lingwen HU, Zhongfa ZHOU, Linjiang YIN, Meng ZHU, Denghong HUANG. Rape Identification at Seedling Stage Based on UAV RGB Image [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 116-128. |
[8] | ZHANG Guanhong, WANG Xinjun, XU Xiaolong, YAN Linan, CHANG Mengdi, LI Yongkang, . Desert Vegetation Classification Based on Object-oriented UAV Remote Sensing Images [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 69-77. |
[9] | ZHAO Ningbo, YANG Jiajia, ZHAO Yingjun, QIN Kai, YANG Yuechao, LI Ming. Comprehensive Evaluation of Black Soil Quality Based on Aerial Hyperspectral Inversion [J]. Journal of Agricultural Science and Technology, 2021, 23(11): 88-98. |
[10] |
SHEN Yu1,2, FANG Sheng2, WANG Fengyun1, LI Zhe2, ZHANG Chen1,2, ZHENG Jiye1*.
Effective Wavelengths Study on the Identification of Slight Bruises of Apples Based on Hyperspectral Imaging
[J]. Journal of Agricultural Science and Technology, 2020, 22(3): 64-71.
|
[11] | WANG Shuangxi1,2§, SHU Meiyan3§, GU Xiaohe2*, YANG Guijun2, ZHANG Jichao1, HAN Dong4, GUO Wei5. Retrieval of Corn Leaf Area Index Using Beer-Lambert Extinction Law [J]. Journal of Agricultural Science and Technology, 2018, 20(12): 67-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||