Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (8): 89-99.DOI: 10.13304/j.nykjdb.2024.0004
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Mingjun JIANG1(), Yanmin FAN1(
), Hongqi WU1, Hao ZHANG1, Zhuo LIU1, Dejun WANG2
Received:
2024-01-03
Accepted:
2024-06-08
Online:
2025-08-15
Published:
2025-08-26
Contact:
Yanmin FAN
姜明君1(), 范燕敏1(
), 武红旗1, 张浩1, 刘卓1, 王德俊2
通讯作者:
范燕敏
作者简介:
姜明君 E-mail:2229219487@qq.com;
基金资助:
CLC Number:
Mingjun JIANG, Yanmin FAN, Hongqi WU, Hao ZHANG, Zhuo LIU, Dejun WANG. Remote Sensing Inversion Study of Relative Chlorophyll Content in Processing Tomato Based on Machine Learning[J]. Journal of Agricultural Science and Technology, 2025, 27(8): 89-99.
姜明君, 范燕敏, 武红旗, 张浩, 刘卓, 王德俊. 基于机器学习的加工番茄叶绿素相对含量遥感反演研究[J]. 中国农业科技导报, 2025, 27(8): 89-99.
变量参数 Variable parameter | 计算公式 Calculation formula | 参考文献 |
---|---|---|
归一化植被指数 Normalized differential vegetation index(NDVI) | [ | |
土壤调节植被指数 Soil-adjusted vegetation index(SAVI) | [ | |
优化土壤调节植被指数 Optimization soil-adjusted vegetation index(OSAVI) | [ | |
改良土壤调整植被指数 Modified soil-adjusted vegetation index(MSAVI) | [ | |
绿光归一化植被指数 Green normalized difference vegetation index(GNDVI) | [ | |
叶绿素植被指数 Chlorophyll vegetation index(CVI) | CVI=(NIR/G)(R/G) | [ |
差值植被指数 Difference vegetation index(DVI) | [ | |
重归一化植被指数 Renormalized difference vegetation index(RDVI) | RDVI=(NIR | [ |
大气阻抗植被指数 Atmospherically resistant vegetation index(ARVI) | [ | |
比值植被指数 Ratio vegetation index(RVI) | RVI=NIR/R | [ |
Table 1 Formula for calculating the multispectral vegetation index
变量参数 Variable parameter | 计算公式 Calculation formula | 参考文献 |
---|---|---|
归一化植被指数 Normalized differential vegetation index(NDVI) | [ | |
土壤调节植被指数 Soil-adjusted vegetation index(SAVI) | [ | |
优化土壤调节植被指数 Optimization soil-adjusted vegetation index(OSAVI) | [ | |
改良土壤调整植被指数 Modified soil-adjusted vegetation index(MSAVI) | [ | |
绿光归一化植被指数 Green normalized difference vegetation index(GNDVI) | [ | |
叶绿素植被指数 Chlorophyll vegetation index(CVI) | CVI=(NIR/G)(R/G) | [ |
差值植被指数 Difference vegetation index(DVI) | [ | |
重归一化植被指数 Renormalized difference vegetation index(RDVI) | RDVI=(NIR | [ |
大气阻抗植被指数 Atmospherically resistant vegetation index(ARVI) | [ | |
比值植被指数 Ratio vegetation index(RVI) | RVI=NIR/R | [ |
Fig. 2 Correlation between spectral variables and SPAD content in processed tomatoesNote:SPAD—Soil and plantan alyzer development;DVI—Difference vegetation index;GNDVI—Green normalized difference vegetation index;MSAVI—Modified soil-adjusted vegetation index;NDVI—Normalized differential vegetation index;OSAVI—Optimization soil-adjusted vegetation index;RVI—Ratio vegetation index;RDVI—Renormalized difference vegetation index;SAVI—Soil-adjusted vegetation index;CVI—Chlorophyll vegetation index;ARVI—Atmospherically resistant vegetation index.
模型 Model | 生育时期 Growth period | 建模集Modeling | 验证集Vertification | ||||
---|---|---|---|---|---|---|---|
决定系数 R2 | 均方根误差 RMSE | 平均相对误差 MRE/% | 决定系数 R2 | 均方根误差 RMSE | 平均相对误差 MRE/% | ||
随机森林 RF | 始花期 Anthesis period | 0.89 | 1.15 | 2.11 | 0.90 | 1.01 | 2.00 |
盛花期 Blooming period | 0.86 | 1.33 | 2.35 | 0.80 | 1.80 | 3.45 | |
坐果期 Fruiting period | 0.87 | 1.30 | 2.04 | 0.74 | 1.99 | 3.79 | |
成熟期 Maturation period | 0.83 | 1.33 | 3.21 | 0.71 | 2.50 | 4.26 | |
支持向量机 SVM | 始花期 Anthesis period | 0.88 | 0.95 | 1.27 | 0.79 | 1.41 | 1.20 |
盛花期 Blooming period | 0.87 | 1.46 | 2.08 | 0.82 | 1.83 | 1.81 | |
坐果期 Fruiting period | 0.88 | 1.25 | 1.94 | 0.88 | 1.31 | 1.04 | |
成熟期 Maturation period | 0.85 | 1.91 | 2.65 | 0.75 | 2.34 | 3.35 | |
BP神经网络 BP neural network | 始花期 Anthesis period | 0.81 | 1.56 | 3.45 | 0.76 | 1.56 | 3.16 |
盛花期 Blooming period | 0.68 | 2.35 | 4.21 | 0.67 | 2.35 | 4.81 | |
坐果期 Fruiting period | 0.69 | 2.43 | 4.78 | 0.65 | 2.43 | 4.97 | |
成熟期 Maturation period | 0.89 | 1.07 | 2.53 | 0.80 | 1.25 | 2.17 |
Table 2 Results for modeling and validating SPAD values for different estimation models
模型 Model | 生育时期 Growth period | 建模集Modeling | 验证集Vertification | ||||
---|---|---|---|---|---|---|---|
决定系数 R2 | 均方根误差 RMSE | 平均相对误差 MRE/% | 决定系数 R2 | 均方根误差 RMSE | 平均相对误差 MRE/% | ||
随机森林 RF | 始花期 Anthesis period | 0.89 | 1.15 | 2.11 | 0.90 | 1.01 | 2.00 |
盛花期 Blooming period | 0.86 | 1.33 | 2.35 | 0.80 | 1.80 | 3.45 | |
坐果期 Fruiting period | 0.87 | 1.30 | 2.04 | 0.74 | 1.99 | 3.79 | |
成熟期 Maturation period | 0.83 | 1.33 | 3.21 | 0.71 | 2.50 | 4.26 | |
支持向量机 SVM | 始花期 Anthesis period | 0.88 | 0.95 | 1.27 | 0.79 | 1.41 | 1.20 |
盛花期 Blooming period | 0.87 | 1.46 | 2.08 | 0.82 | 1.83 | 1.81 | |
坐果期 Fruiting period | 0.88 | 1.25 | 1.94 | 0.88 | 1.31 | 1.04 | |
成熟期 Maturation period | 0.85 | 1.91 | 2.65 | 0.75 | 2.34 | 3.35 | |
BP神经网络 BP neural network | 始花期 Anthesis period | 0.81 | 1.56 | 3.45 | 0.76 | 1.56 | 3.16 |
盛花期 Blooming period | 0.68 | 2.35 | 4.21 | 0.67 | 2.35 | 4.81 | |
坐果期 Fruiting period | 0.69 | 2.43 | 4.78 | 0.65 | 2.43 | 4.97 | |
成熟期 Maturation period | 0.89 | 1.07 | 2.53 | 0.80 | 1.25 | 2.17 |
Fig. 6 Predicted SPAD values at different stages of processing tomatoesA: Anthesis period; B: Blooming period; C: Fruiting period; D: Maturation period
[1] | ZHANG H C, GE Y F, XIE X Y, et al.. High throughput analysis of leaf chlorophyll content in Sorghum using RGB, hyperspectral,and fluorescence imaging and sensor fusion [J/OL].Plant Methods,2022,18(1):60 [2024-12-19]. . |
[2] | 郭建鹏. 玉米叶倾角反演及其与叶绿素含量的关系研究[D]. 呼和浩特:内蒙古师范大学,2024. |
GUO J P. Retrieval of leaf inclination angle and its relationship with chlorophyll content in maize [D]. Hohhot: Inner Mongolia Normal University, 2024. | |
[3] | JIANG C Y, JOHKAN M, HOHJO M, et al.. A correlation analysis on chlorophyll content and SPAD value in tomato leaves [J]. HortResearch, 2017, 71(71): 37-42. |
[4] | PAJARES G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs) [J].Photogramm. Eng. Remote. Sens., 2015, 81(4): 281-329. |
[5] | HUANG Y B, REDDY K N, FLETCHER R S, et al.. UAV low-altitude remote sensing for precision weed management [J]. Weed Technol., 2018, 32(1): 2-6. |
[6] | MAES W H, STEPPE K.Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture [J]. Trends Plant Sci., 2019, 24(2): 152-164. |
[7] | 高亚利,王振锡,连玲,等.截形叶螨危害下枣叶片叶绿素含量高光谱估算模型[J].西北农业学报, 2020, 29(4): 613-621. |
GAO Y L, WANG Z X, LIAN L, et al.. Hyperspectral estimation model of jujube leaves chlorophyll contents under different damages of Tetranychus truncatus ehara [J]. Acta Agric. Bor-Occid. Sin., 2020, 29(4): 613-621. | |
[8] | ZHANG H, SHI P, CRUCIL G, et al.. Evaluating the capability of a UAV-borne spectrometer for soil organic carbon mapping in bare croplands [J]. Land Degrad. Dev., 2021, 32(15): 4375-4389. |
[9] | 毛智慧,邓磊,孙杰,等.无人机多光谱遥感在玉米冠层叶绿素预测中的应用研究[J].光谱学与光谱分析, 2018, 38(9):2923-2931. |
MAO Z H, DENG L, SUN J, et al.. Research on the application of UAV multispectral remote sensing in the maize chlorophyll prediction [J]. Spectrosc. Spectr. Anal., 2018, 38(9): 2923-2931. | |
[10] | 刘小辉.基于无人机影像的小麦叶绿素含量及产量定量反演研究[D].合肥:安徽大学,2019. |
LIU X H. Inversion of wheat chlorophyll content and yield based on unmanned aerial vehicle images [D]. Hefei: Anhui University, 2019. | |
[11] | 陈浩,冯浩,杨祯婷,等.基于无人机多光谱遥感的夏玉米冠层叶绿素含量估计[J].排灌机械工程学报, 2021, 39(6):622-629. |
CHEN H, FENG H, YANG Z T, et al..Estimation of chlorophyll content of summer maize canopy based on UAV multispectral remote sensing [J]. J. Drain. Irrig. Mach. Eng., 2021, 39(6): 622-629. | |
[12] | 王丽爱,马昌,周旭东,等.基于随机森林回归算法的小麦叶片SPAD值遥感估算[J].农业机械学报, 2015, 46(1): 259-265. |
WANG L A, MA C, ZHOU X D, et al.. Estimation of wheat leaf SPAD value using RF algorithmic model and remote sensing data [J]. Trans. Chin. Soc. Agric. Mach., 2015, 46(1): 259-265. | |
[13] | HUANG Y Y, MA Q M, WU X M, et al.. Estimation of chlorophyll content in Brassica napus based on unmanned aerial vehicle images [J]. Oil Crop Sci., 2022, 7(3): 149-155. |
[14] | JIANG J L, JOHANSEN K, STANSCHEWSKI C S, et al.. Phenotyping a diversity panel of quinoa using UAV-retrieved leaf area index, SPAD-based chlorophyll and a random forest approach [J]. Precis. Agric., 2022, 23(3): 961-983. |
[15] | YANG S Q, HU L, WU H B, et al.. Integration of crop growth model and random forest for winter wheat yield estimation from UAV hyperspectral imagery [J]. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 2021, 14: 6253-6269. |
[16] | ZHANG Y, SU Z B, SHEN W Z, et al.. Remote monitoring of heading rice growing and nitrogen content based on UAV images [J].Int. J. Smart Home, 2016, 10(7):103-114. |
[17] | 彭晓伟,张爱军,杨晓楠,等.谷子叶绿素含量高光谱特征分析及其反演模型构建[J].干旱地区农业研究,2022,40(2):69-77. |
PENG X W, ZHANG A J, YANG X N, et al.. Hyperspectral characteristics and remote sensing inversion model of chlorophyll content of millet [J]. Agric. Res. Arid Areas, 2022, 40(2): 69-77. | |
[18] | 田军仓,杨振峰,冯克鹏,等.基于无人机多光谱影像的番茄冠层SPAD预测研究[J].农业机械学报, 2020, 51(8): 178-188. |
TIAN J C, YANG Z F, FENG K P, et al.. Prediction of tomato canopy SPAD based on UAV multispectral image [J]. Trans.Chin. Soc. Agric. Mach., 2020, 51(8): 178-188. | |
[19] | 岳云开,陈建福,赵亮,等.基于无人机多光谱遥感的苎麻叶绿素含量反演[J].山东农业科学, 2023, 55(7): 152-158. |
YUE Y K, CHEN J F, ZHAO L, et al.. Inversion of chlorophyll content in ramie based on UAV multispectral remote sensing [J].Shandong Agric. Sci., 2023, 55(7): 152-158. | |
[20] | FENG A J, ZHOU J F, VORIES E D, et al.. Yield estimation in cotton using UAV-based multi-sensor imagery [J]. Biosyst. Eng., 2020, 193: 101-114. |
[21] | 梁栋,杨勤英,黄文江,等.基于小波变换与支持向量机回归的冬小麦叶面积指数估算[J].红外与激光工程, 2015, 44(1):335-340. |
LIANG D, YANG Q Y, HUANG W J, et al.. Estimation of leaf area index based on wavelet transform and support vector machine regression in winter wheat [J]. Infrared Laser Eng.,2015, 44(1): 335-340. |
[1] | Licheng WANG, Zhu ZHU, Qianqian KONG, Yongqian PENG, Yongxin LU, Lianyong ZHU. Characteristics of Water Infiltration and Evaporation Under Different Modes of Mixing Between Soil and Sand Based on HYDRUS-1D [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 183-193. |
[2] | Linjiang YIN, Wei LI, Weiquan ZHAO, Zulun ZHAO, Sisi LYU, Xiaoqiong SUN. Research on Characteristics and Coverage Extraction of Rice Multi-phase Vegetation Index [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 83-98. |
[3] | Xiaohu YANG, Manyu ZHANG, Haichang YANG, Fenghua ZHANG, Yilin JIANG, Xiaolan YI. Inversion of Soil Salinity in Farmland of Manas River Basin Based on Combined Model [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 134-141. |
[4] | Chuang LU, Haitang HU, Yuan QIN, Heju HUAI, Cunjun LI. Delineating Management Zones in Spring Maize Field Based on UAV Multispectral Image [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 106-115. |
[5] | Lingwen HU, Zhongfa ZHOU, Linjiang YIN, Meng ZHU, Denghong HUANG. Rape Identification at Seedling Stage Based on UAV RGB Image [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 116-128. |
[6] | FAN Hongye, LI Yaoyao, LU Xiaju, GU Shenghao, GUO Xinyu, , LIU Yuhua. [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 112-120. |
[7] | ZHANG Guanhong, WANG Xinjun, XU Xiaolong, YAN Linan, CHANG Mengdi, LI Yongkang, . Desert Vegetation Classification Based on Object-oriented UAV Remote Sensing Images [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 69-77. |
[8] | GU Huimin1, CHEN Bolang1*, SUN Jin2. Influences of Mycorrhizal Seedling on Growth and Physiological Characteristics of Processing Tomato Under Salt Stress#br# [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 166-177. |
[9] | ZHAO Ningbo, YANG Jiajia, ZHAO Yingjun, QIN Kai, YANG Yuechao, LI Ming. Comprehensive Evaluation of Black Soil Quality Based on Aerial Hyperspectral Inversion [J]. Journal of Agricultural Science and Technology, 2021, 23(11): 88-98. |
[10] | CHEN Xiaojie, LYU Desheng, WANG Zhenhua, LI Wenhao, ZONG Rui, WEN Yue, ZOU Jie. Effects of Water and Nitrogen Coupling on the Yield and Quality of Processing Tomato Under Aerated Irrigation [J]. Journal of Agricultural Science and Technology, 2021, 23(11): 191-200. |
[11] | CUI Huaxing1§, WANG Ning2,3§, HOU Min2,3, XU Junfeng1, GUO Wenchao2,3, AN Kang4, CHEN Yanghui4, CUI Weidong2,3*. Application of Bacillus subtilis DNKAS to Control Orobanche aegyptiaca of Processing Tomato [J]. Journal of Agricultural Science and Technology, 2020, 22(12): 105-114. |
[12] | YANG Mingkun1, LI Jianhua2, LIU Kouzhu1, DUN Songyang2, LI Hongliang2, WANG Dian2, SHI Hongzhi1*. Effects of Different Harvesting Periods on the Quality of Upper Six Tobacco Leaves of Flue-cured Tobacco in Central Henan [J]. Journal of Agricultural Science and Technology, 2020, 22(12): 163-171. |
[13] | ZHENG Xiaoyu1, LI Changjun2, LU Xiaochong1, WANG Gang3, ZHAO Junjie2, LI Yunping2, PENG Jiuhua2, YANG Chao1,2*. Study on Changes of Pigment Content in Flue-cured Tobacco at Different Maturity Stage and Its Relationship with Chloroplast Ultrastructure [J]. Journal of Agricultural Science and Technology, 2020, 22(10): 60-68. |
[14] | GUO Shijia1, DUAN Yu2*, ZHANG Jun2, ZHANG Runsheng1, SHI Youguo3. Influence of Different Types of Urea on the Yield, Quality and Nitrogen Use Efficiency of Processing Tomato [J]. Journal of Agricultural Science and Technology, 2018, 20(6): 96-103. |
[15] | WANG Shuangxi1,2§, SHU Meiyan3§, GU Xiaohe2*, YANG Guijun2, ZHANG Jichao1, HAN Dong4, GUO Wei5. Retrieval of Corn Leaf Area Index Using Beer-Lambert Extinction Law [J]. Journal of Agricultural Science and Technology, 2018, 20(12): 67-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||