Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (8): 89-99.DOI: 10.13304/j.nykjdb.2024.0004

• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles     Next Articles

Remote Sensing Inversion Study of Relative Chlorophyll Content in Processing Tomato Based on Machine Learning

Mingjun JIANG1(), Yanmin FAN1(), Hongqi WU1, Hao ZHANG1, Zhuo LIU1, Dejun WANG2   

  1. 1.College of Resources and Environment,Xinjiang Agricultural University,Urumqi 830052,China
    2.Western Agricultural Research Center,Chinese Academy of Agricultural Sciences,Xinjiang Changji 831199,China
  • Received:2024-01-03 Accepted:2024-06-08 Online:2025-08-15 Published:2025-08-26
  • Contact: Yanmin FAN

基于机器学习的加工番茄叶绿素相对含量遥感反演研究

姜明君1(), 范燕敏1(), 武红旗1, 张浩1, 刘卓1, 王德俊2   

  1. 1.新疆农业大学资源与环境学院,乌鲁木齐 830052
    2.中国农业科学院西部农业研究中心,新疆 昌吉 831199
  • 通讯作者: 范燕敏
  • 作者简介:姜明君 E-mail:2229219487@qq.com
  • 基金资助:
    新疆维吾尔自治区重点研发任务专项(2022B02033)

Abstract:

Chlorophyll plays a key role in the process of plant photosynthesis, and the relative chlorophyll content (soil and plantan alyzer development,SPAD) is an important indicator to measure the growth status of crops. In order to construct an inversion model of SPAD value of processing tomato, this study used unmanned aerial vehicle(UAV) remote sensing technology to predict the SPAD value of canopy leaves at 4 key growth periods of processing tomato by machine learning method, and drew a visual mapping of SPAD value of processing tomato based on the optimal prediction model. The results showed that random forest (RF), support vector machine (SVM) and back propagation(BP)neural network prediction model of SPAD values at different growth periods of processing tomato, the multispectral vegetation index as the independent variable, the RF model had the best prediction effect at the first flowering period, with determination coefficient(R2 )of 0.89 and root mean square error(RMSE) of 1.15, the SVM model was the best at the full flowering period, with R2 of 0.87 and RMSE of 1.46, the SVM model was the best at the fruit setting period, with R2 of 0.88 and RMSE of 1.25, and the BP neural network model was the best at the maturity period, with R2 of 0.89 and RMSE of 1.07. In the full flowering period of crops, the flowering process would consume most of the nutrients inside the plant, resulting in different changes in chlorophyll content, and its prediction effect was relatively low, and the selection of appropriate models for modeling in different growth periods could achieve high-precision monitoring of chlorophyll content in processing tomato. The stability of the prediction results and verification results of SVM model in each growth period of processing tomato was better, with R2 of 0.88, 0.87, 0.88, 0.85 and RMSE of 0.95, 1.46, 1.25,1.91, respectively, so the SPAD value of processing tomato was visualized and mapped at each growth stage based on the optimal SVM model to realize the dynamic monitoring of chlorophyll in processing tomato. Above results could be used to quickly and efficiently estimate the relative chlorophyll content of processing tomatoes, and provided decision-making information and technical support for the precision agriculture management of processing tomatoes.

Key words: UAV remote sensing, multispectral, inversion, SPAD value, dynamic monitoring, processing tomato

摘要:

叶绿素在植物光合作用过程中起关键作用,叶绿素相对含量(soil and plantan alyzer development,SPAD)是衡量农作物生长状况的重要指标。为构建加工番茄SPAD值的反演模型,基于无人机遥感技术,通过机器学习方法预测加工番茄4个关键生育期冠层叶片SPAD值,并基于最优预测模型绘制加工番茄SPAD值可视化制图。结果表明,在加工番茄不同生育时期SPAD值的随机森林(random forest,RF)、支持向量机(support vector machine,SVM)、BP(back propagation)神经网络3种预测模型中,以多光谱植被指数为自变量,在始花期RF模型预测效果最优,决定系数(R2)为0.89,均方根误差(root mean square error,RMSE)为1.15;在盛花期SVM模型预测效果最优,R2为0.87,RMSE为1.46;在坐果期SVM模型预测效果最优,R2为0.88,RMSE为1.25;在成熟期BP神经网络模型预测效果最优,R2为0.89,RMSE为1.07。在作物盛花期,开花过程会消耗植株内部的大部分营养,导致叶绿素含量发生不同变化,其预测效果相对较低,在不同生育期选择合适的模型进行建模,可以实现对加工番茄叶绿素含量较高精度的监测;SVM模型在加工番茄各生育期的预测结果和验证结果稳定性都较优,R2 分别为0.88、0.87、0.88、0.85,RMSE分别为0.95、1.46、1.25、1.91,因此基于最优SVM模型生成加工番茄每个生育期的SPAD值可视化制图,实现对加工番茄叶绿素的动态监测。研究结果可用于快速、高效地估算加工番茄叶绿素相对含量,为加工番茄精准农业管理提供决策信息和技术支持。

关键词: 无人机遥感, 多光谱, 反演, SPAD值, 动态监测, 加工番茄

CLC Number: