Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (2): 83-98.DOI: 10.13304/j.nykjdb.2022.0256
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Linjiang YIN1(), Wei LI1(
), Weiquan ZHAO1,2, Zulun ZHAO1, Sisi LYU1, Xiaoqiong SUN1
Received:
2022-04-02
Accepted:
2022-06-20
Online:
2023-02-15
Published:
2023-05-17
Contact:
Wei LI
尹林江1(), 李威1(
), 赵卫权1,2, 赵祖伦1, 吕思思1, 孙小琼1
通讯作者:
李威
作者简介:
尹林江 E-mail:ylj8575@163.com;
基金资助:
CLC Number:
Linjiang YIN, Wei LI, Weiquan ZHAO, Zulun ZHAO, Sisi LYU, Xiaoqiong SUN. Research on Characteristics and Coverage Extraction of Rice Multi-phase Vegetation Index[J]. Journal of Agricultural Science and Technology, 2023, 25(2): 83-98.
尹林江, 李威, 赵卫权, 赵祖伦, 吕思思, 孙小琼. 水稻多时相植被指数特征及覆盖度提取研究[J]. 中国农业科技导报, 2023, 25(2): 83-98.
数据采集时间 Data collection time (yyyy-mm-dd) | 地物类型 Feature type | 红光波段 Red band | 绿光波段 Green band | 蓝光波段 Blue band | 红边波段 Red edge band | 近红外波段 NIR | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
均值Mean | 标准差 Standard deviation | 均值 Mean | 标准差 Standard deviation | 均值 Mean | 标准差 Standard deviation | 均值 Mean | 标准差 Standard deviation | 均值 Mean | 标准差 Standard deviation | ||
2020-06-05 | 水稻Rice | 105.44 | 15.16 | 115.69 | 12.74 | 81.68 | 13.16 | 4 097.38 | 738.29 | 4 276.35 | 892.60 |
杂草Weed | 107.77 | 21.66 | 112.70 | 21.09 | 64.44 | 12.99 | 4 886.33 | 951.77 | 7 367.03 | 1 492.79 | |
树木Tree | 93.58 | 25.49 | 101.18 | 26.44 | 59.50 | 16.63 | 4 078.05 | 1 247.79 | 6 043.23 | 1 688.11 | |
裸土Soil | 173.12 | 19.08 | 153.24 | 19.75 | 132.63 | 22.51 | 3 213.34 | 1 566.75 | 3 556.76 | 623.46 | |
建设用地 Construction land | 191.34 | 29.29 | 179.54 | 29.28 | 176.37 | 27.12 | 3 422.87 | 1 213.22 | 3 603.97 | 1 198.49 | |
2020-07-15 | 水稻Rice | 99.69 | 12.74 | 108.80 | 11.39 | 70.90 | 8.70 | 4 793.58 | 921.97 | 8 032.65 | 1 285.57 |
杂草Weed | 109.65 | 14.17 | 119.35 | 12.59 | 66.83 | 11.58 | 6 143.60 | 813.66 | 9 432.08 | 1 311.49 | |
树木Tree | 77.22 | 13.74 | 88.96 | 13.70 | 48.49 | 11.94 | 5 173.32 | 972.48 | 8 003.82 | 1 471.76 | |
裸土Soil | 173.51 | 21.69 | 158.72 | 22.89 | 133.89 | 24.95 | 5 201.71 | 1 549.99 | 6 006.72 | 1 553.39 | |
建设用地 Construction land | 178.33 | 41.08 | 171.82 | 39.37 | 163.84 | 39.62 | 4 145.68 | 1 831.42 | 4 472.33 | 1 846.63 | |
2020-08-26 | 水稻Rice | 130.82 | 23.13 | 117.57 | 17.50 | 76.11 | 17.84 | 4 733.62 | 918.47 | 6 378.96 | 1 186.74 |
杂草Weed | 106.61 | 16.98 | 106.66 | 15.10 | 65.99 | 12.27 | 5 286.67 | 1 196.71 | 8 110.84 | 1 909.15 | |
树木Tree | 81.88 | 20.18 | 85.56 | 19.61 | 61.04 | 15.17 | 4 977.61 | 1 559.80 | 7 536.33 | 2 405.31 | |
裸土Soil | 172.64 | 23.02 | 151.57 | 23.83 | 131.93 | 27.50 | 4 389.74 | 1 420.15 | 5 125.09 | 1 554.97 | |
建设用地 Construction land | 181.40 | 34.88 | 170.88 | 34.36 | 170.33 | 31.12 | 4 628.57 | 1 050.65 | 5 151.88 | 1 044.32 |
Table 1 Pixel values of ground objects in red, green and blue bands
数据采集时间 Data collection time (yyyy-mm-dd) | 地物类型 Feature type | 红光波段 Red band | 绿光波段 Green band | 蓝光波段 Blue band | 红边波段 Red edge band | 近红外波段 NIR | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
均值Mean | 标准差 Standard deviation | 均值 Mean | 标准差 Standard deviation | 均值 Mean | 标准差 Standard deviation | 均值 Mean | 标准差 Standard deviation | 均值 Mean | 标准差 Standard deviation | ||
2020-06-05 | 水稻Rice | 105.44 | 15.16 | 115.69 | 12.74 | 81.68 | 13.16 | 4 097.38 | 738.29 | 4 276.35 | 892.60 |
杂草Weed | 107.77 | 21.66 | 112.70 | 21.09 | 64.44 | 12.99 | 4 886.33 | 951.77 | 7 367.03 | 1 492.79 | |
树木Tree | 93.58 | 25.49 | 101.18 | 26.44 | 59.50 | 16.63 | 4 078.05 | 1 247.79 | 6 043.23 | 1 688.11 | |
裸土Soil | 173.12 | 19.08 | 153.24 | 19.75 | 132.63 | 22.51 | 3 213.34 | 1 566.75 | 3 556.76 | 623.46 | |
建设用地 Construction land | 191.34 | 29.29 | 179.54 | 29.28 | 176.37 | 27.12 | 3 422.87 | 1 213.22 | 3 603.97 | 1 198.49 | |
2020-07-15 | 水稻Rice | 99.69 | 12.74 | 108.80 | 11.39 | 70.90 | 8.70 | 4 793.58 | 921.97 | 8 032.65 | 1 285.57 |
杂草Weed | 109.65 | 14.17 | 119.35 | 12.59 | 66.83 | 11.58 | 6 143.60 | 813.66 | 9 432.08 | 1 311.49 | |
树木Tree | 77.22 | 13.74 | 88.96 | 13.70 | 48.49 | 11.94 | 5 173.32 | 972.48 | 8 003.82 | 1 471.76 | |
裸土Soil | 173.51 | 21.69 | 158.72 | 22.89 | 133.89 | 24.95 | 5 201.71 | 1 549.99 | 6 006.72 | 1 553.39 | |
建设用地 Construction land | 178.33 | 41.08 | 171.82 | 39.37 | 163.84 | 39.62 | 4 145.68 | 1 831.42 | 4 472.33 | 1 846.63 | |
2020-08-26 | 水稻Rice | 130.82 | 23.13 | 117.57 | 17.50 | 76.11 | 17.84 | 4 733.62 | 918.47 | 6 378.96 | 1 186.74 |
杂草Weed | 106.61 | 16.98 | 106.66 | 15.10 | 65.99 | 12.27 | 5 286.67 | 1 196.71 | 8 110.84 | 1 909.15 | |
树木Tree | 81.88 | 20.18 | 85.56 | 19.61 | 61.04 | 15.17 | 4 977.61 | 1 559.80 | 7 536.33 | 2 405.31 | |
裸土Soil | 172.64 | 23.02 | 151.57 | 23.83 | 131.93 | 27.50 | 4 389.74 | 1 420.15 | 5 125.09 | 1 554.97 | |
建设用地 Construction land | 181.40 | 34.88 | 170.88 | 34.36 | 170.33 | 31.12 | 4 628.57 | 1 050.65 | 5 151.88 | 1 044.32 |
数据采集时间 Data collection time (yyyy-mm-dd) | 地物类型 Feature type | NDVI | GNDVI | NDRE | LCI | OSAVI | VDVI | EGRBDI | ExG-ExR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
均值Mean | 标准差 Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | ||
2020-06-05 | 水稻Rice | 0.30 | 0.16 | 0.41 | 0.12 | 0.19 | 0.04 | 0.21 | 0.06 | 0.30 | 0.05 | 0.07 | 0.02 | 0.68 | 0.02 | -35.68 | 16.03 |
杂草Weeds | 0.81 | 0.07 | 0.65 | 0.06 | 0.20 | 0.05 | 0.30 | 0.07 | 0.35 | 0.05 | 0.13 | 0.02 | 0.76 | 0.02 | 15.03 | 15.11 | |
树木Trees | 0.83 | 0.03 | 0.68 | 0.05 | 0.19 | 0.04 | 0.30 | 0.05 | 0.31 | 0.05 | 0.14 | 0.04 | 0.76 | 0.04 | 19.45 | 14.68 | |
裸土Soil | 0.17 | 0.09 | 0.20 | 0.08 | 0.05 | 0.02 | 0.05 | 0.03 | 0.06 | 0.03 | 0.00 | 0.01 | 0.61 | 0.03 | -88.39 | 11.86 | |
建设用地 Construction land | 0.02 | 0.09 | 0.03 | 0.10 | 0.02 | 0.06 | 0.02 | 0.06 | 0.01 | 0.03 | -0.01 | 0.02 | 0.58 | 0.02 | -96.98 | 21.53 | |
2020-07-15 | 水稻Rice | 0.81 | 0.04 | 0.66 | 0.04 | 0.26 | 0.04 | 0.38 | 0.05 | 0.37 | 0.05 | 0.12 | 0.02 | 0.74 | 0.02 | 16.25 | 11.73 |
杂草Weeds | 0.82 | 0.06 | 0.65 | 0.05 | 0.20 | 0.04 | 0.31 | 0.05 | 0.40 | 0.04 | 0.15 | 0.04 | 0.77 | 0.04 | 28.05 | 24.07 | |
树木Trees | 0.83 | 0.04 | 0.68 | 0.06 | 0.21 | 0.04 | 0.32 | 0.05 | 0.37 | 0.04 | 0.18 | 0.04 | 0.79 | 0.04 | 33.06 | 14.54 | |
裸土Soil | 0.29 | 0.15 | 0.29 | 0.12 | 0.07 | 0.05 | 0.09 | 0.06 | 0.13 | 0.06 | 0.02 | 0.02 | 0.63 | 0.03 | -74.14 | 17.46 | |
建设用地 Construction land | 0.06 | 0.13 | 0.04 | 0.10 | 0.04 | 0.07 | 0.04 | 0.07 | 0.02 | 0.05 | 0.00 | 0.01 | 0.60 | 0.02 | -76.37 | 23.05 | |
2020-08-26 | 水稻Rice | 0.58 | 0.14 | 0.52 | 0.08 | 0.16 | 0.04 | 0.22 | 0.07 | 0.25 | 0.07 | 0.07 | 0.02 | 0.69 | 0.03 | -37.36 | 21.95 |
杂草Weeds | 0.75 | 0.09 | 0.62 | 0.06 | 0.20 | 0.04 | 0.29 | 0.05 | 0.34 | 0.06 | 0.10 | 0.03 | 0.73 | 0.03 | -1.89 | 17.06 | |
树木Trees | 0.80 | 0.08 | 0.66 | 0.08 | 0.20 | 0.05 | 0.30 | 0.07 | 0.34 | 0.07 | 0.09 | 0.04 | 0.71 | 0.04 | -0.88 | 17.44 | |
裸土Soil | 0.17 | 0.11 | 0.24 | 0.12 | 0.07 | 0.05 | 0.08 | 0.05 | 0.07 | 0.04 | 0.00 | 0.01 | 0.60 | 0.02 | -91.53 | 12.62 | |
建设用地 Construction land | 0.04 | 0.09 | 0.04 | 0.09 | 0.036 | 0.06 | 0.03 | 0.06 | 0.01 | 0.04 | -0.02 | 0.02 | 0.58 | 0.02 | -93.05 | 16.21 |
Table 2 Pixel characteristics of various objects on different vegetation indices
数据采集时间 Data collection time (yyyy-mm-dd) | 地物类型 Feature type | NDVI | GNDVI | NDRE | LCI | OSAVI | VDVI | EGRBDI | ExG-ExR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
均值Mean | 标准差 Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | 均值Mean | 标准差Standard deviation | ||
2020-06-05 | 水稻Rice | 0.30 | 0.16 | 0.41 | 0.12 | 0.19 | 0.04 | 0.21 | 0.06 | 0.30 | 0.05 | 0.07 | 0.02 | 0.68 | 0.02 | -35.68 | 16.03 |
杂草Weeds | 0.81 | 0.07 | 0.65 | 0.06 | 0.20 | 0.05 | 0.30 | 0.07 | 0.35 | 0.05 | 0.13 | 0.02 | 0.76 | 0.02 | 15.03 | 15.11 | |
树木Trees | 0.83 | 0.03 | 0.68 | 0.05 | 0.19 | 0.04 | 0.30 | 0.05 | 0.31 | 0.05 | 0.14 | 0.04 | 0.76 | 0.04 | 19.45 | 14.68 | |
裸土Soil | 0.17 | 0.09 | 0.20 | 0.08 | 0.05 | 0.02 | 0.05 | 0.03 | 0.06 | 0.03 | 0.00 | 0.01 | 0.61 | 0.03 | -88.39 | 11.86 | |
建设用地 Construction land | 0.02 | 0.09 | 0.03 | 0.10 | 0.02 | 0.06 | 0.02 | 0.06 | 0.01 | 0.03 | -0.01 | 0.02 | 0.58 | 0.02 | -96.98 | 21.53 | |
2020-07-15 | 水稻Rice | 0.81 | 0.04 | 0.66 | 0.04 | 0.26 | 0.04 | 0.38 | 0.05 | 0.37 | 0.05 | 0.12 | 0.02 | 0.74 | 0.02 | 16.25 | 11.73 |
杂草Weeds | 0.82 | 0.06 | 0.65 | 0.05 | 0.20 | 0.04 | 0.31 | 0.05 | 0.40 | 0.04 | 0.15 | 0.04 | 0.77 | 0.04 | 28.05 | 24.07 | |
树木Trees | 0.83 | 0.04 | 0.68 | 0.06 | 0.21 | 0.04 | 0.32 | 0.05 | 0.37 | 0.04 | 0.18 | 0.04 | 0.79 | 0.04 | 33.06 | 14.54 | |
裸土Soil | 0.29 | 0.15 | 0.29 | 0.12 | 0.07 | 0.05 | 0.09 | 0.06 | 0.13 | 0.06 | 0.02 | 0.02 | 0.63 | 0.03 | -74.14 | 17.46 | |
建设用地 Construction land | 0.06 | 0.13 | 0.04 | 0.10 | 0.04 | 0.07 | 0.04 | 0.07 | 0.02 | 0.05 | 0.00 | 0.01 | 0.60 | 0.02 | -76.37 | 23.05 | |
2020-08-26 | 水稻Rice | 0.58 | 0.14 | 0.52 | 0.08 | 0.16 | 0.04 | 0.22 | 0.07 | 0.25 | 0.07 | 0.07 | 0.02 | 0.69 | 0.03 | -37.36 | 21.95 |
杂草Weeds | 0.75 | 0.09 | 0.62 | 0.06 | 0.20 | 0.04 | 0.29 | 0.05 | 0.34 | 0.06 | 0.10 | 0.03 | 0.73 | 0.03 | -1.89 | 17.06 | |
树木Trees | 0.80 | 0.08 | 0.66 | 0.08 | 0.20 | 0.05 | 0.30 | 0.07 | 0.34 | 0.07 | 0.09 | 0.04 | 0.71 | 0.04 | -0.88 | 17.44 | |
裸土Soil | 0.17 | 0.11 | 0.24 | 0.12 | 0.07 | 0.05 | 0.08 | 0.05 | 0.07 | 0.04 | 0.00 | 0.01 | 0.60 | 0.02 | -91.53 | 12.62 | |
建设用地 Construction land | 0.04 | 0.09 | 0.04 | 0.09 | 0.036 | 0.06 | 0.03 | 0.06 | 0.01 | 0.04 | -0.02 | 0.02 | 0.58 | 0.02 | -93.05 | 16.21 |
Fig. 3 Vegetation index of each feature in different periods under the pixel unitNote: Each line in the figure represents the change of a sample value.
数据采集时间 Data collection time (yyyy-mm-dd) | 地物类型 Feature type | NDVI | GNDVI | NDRE | LCI | OSAVI | VDVI | ExG-ExR | EGRBDI |
---|---|---|---|---|---|---|---|---|---|
2020-06-05 | 水稻Rice | [0.114 6,0.650 0] | [0.292 8,0.597 7] | [0.053 7,0.162 1] | [0.070 6,0.241 6] | [0.100 1,0.255 8] | [0.019 8,0.092 5] | [-66.965 8,-3.103 5] | [0.636 1,0.719 2] |
杂草Weed | [0.114 7,0.895 6] | [0.597 8,0.661 9] | [0.162 2,0.174 4] | [0.241 7,0.275 5] | [0.366 4,0.470 9] | [0.098 5,0.209 6] | [-66.965 9,51.109 0] | [0.697 3,0.830 4] | |
树木Tree | [0.716 7,0.922 6] | [0.662 0,0.834 4] | [0.174 5,0.349 5] | [0.275 6,0.491 1] | [0.255 9,0.366 4] | [0.092 6,0.359 2] | [-55.000 1,64.800 0] | [0.719 3,0.934 0] | |
裸土Soil | [-0.073 0,0.114 6] | [0.053 4,0.292 7] | [0.014 6,0.053 6] | [0.016 5,0.070 5] | [0.005 5,0.100 0] | [-0.031 5,0.019 8] | [130.600 0,-55.000 0] | [0.562 1,0.636 0] | |
建设用地Construction land | [-0.127 8,0.070 5] | [-0.123 6,0.053 3] | [-0.068 8,0.014 6] | [-0.087 0,0.016 4] | [-0.047 7,0.005 4] | [-0.105 2,0.007 4] | [206.800 0,-66.965 7] | [0.459 0,0.636 0] | |
2020-07-15 | 水稻Rice | [0.651 5,0.868 6] | [0.518 7,0.735 1] | [0.267 3,0.421 3] | [0.344 2,0.561 2] | [0.245 5,0.517 0] | [0.074 2,0.144 0] | [-15.488 6,34.141 2] | [0.690 8,0.799 5] |
杂草Weed | [0.651 5,0.898 1] | [0.518 7,0.798 4] | [0.151 0,0.267 2] | [0.204 6,0.344 1] | [0.401 2,0.486 0] | [0.071 0,0.280 8] | [-14.521 7,93.200 0] | [0.690 8,0.877 6] | |
树木Tree | [0.651 5,0.921 1] | [0.518 7,0.858 2] | [0.151 0,0.267 2] | [0.204 6,0.344 1] | [0.245 5,0.401 1] | [0.124 5,0.070 9] | [-1.000 0,70.319 2] | [0.710 9,0.949 5] | |
裸土Soil | [0.009 3,0.651 4] | [0.141 4,0.518 6] | [0.053 5,0.150 9] | [0.056 0,0.204 5] | [0.077 4,0.245 4] | [-0.021 0,0.068 7] | [-115.400 0,-20.800 0] | [0.574 0,0.690 7] | |
建设用地Construction land | [-0.308 0,0.129 0] | [-0.330 7,0.141 3] | [-0.198 6,0.053 4] | [-0.177 5,0.055 9] | [-0.139 2,0.077 3] | [-0.032 1,0.070 8] | [-132.800 0,-15.488 7] | [0.558 2,0.690 7] | |
2020-08-26 | 水稻Rice | [0.369 1,0.755 8] | [0.391 6,0.654 2] | [0.018 6,0.204 1] | [0.120 9,0.285 2] | [0.126 4,0.308 1] | [0.048 5,0.097 5] | [-70.505 9,-9.375 3] | [0.621 2,0.729 4] |
杂草Weed | [0.755 9,0.887 4] | [0.654 3,0.667 3] | [0.204 2,0.319 1] | [0.285 3,0.325 1] | [0.368 5,0.574 4] | [0.099 6,0.117 4] | [-8.531 8,34.950 6] | [0.647 8,0.824 6] | |
树木Tree | [0.756 0,0.930 6] | [0.667 4,0.873 3] | [0.204 2,0.410 3] | [0.325 2,0.538 6] | [0.308 2,0.368 5] | [0.016 4,0.260 9] | [-9.266 7,36.000 0] | [0.627 4,0.873 6] | |
裸土Soil | [-0.456 0,0.369 0] | [0.092 0,0.391 5] | [0.025 5,0.108 5] | [0.025 2,0.120 8] | [0. 046 6,0.126 3] | [-0.025 2,0.016 3] | [-122.800 0,-72.564 7] | [0.569 0,0.621 1] | |
建设用地Construction land | [-0.240 2,0.114 8] | [-0.256 4,0.091 9] | [-0.074 9,0.025 4] | [-0.075 0,0.025 2] | [-0. 078 3,0. 046 5] | [-0.108 3,0.016 2] | [-133.597 7,-70.505 8] | [0.473 2,0.621 1] |
Table 3 Vegetation index segmentation threshold interval statistics of corresponding features in each period
数据采集时间 Data collection time (yyyy-mm-dd) | 地物类型 Feature type | NDVI | GNDVI | NDRE | LCI | OSAVI | VDVI | ExG-ExR | EGRBDI |
---|---|---|---|---|---|---|---|---|---|
2020-06-05 | 水稻Rice | [0.114 6,0.650 0] | [0.292 8,0.597 7] | [0.053 7,0.162 1] | [0.070 6,0.241 6] | [0.100 1,0.255 8] | [0.019 8,0.092 5] | [-66.965 8,-3.103 5] | [0.636 1,0.719 2] |
杂草Weed | [0.114 7,0.895 6] | [0.597 8,0.661 9] | [0.162 2,0.174 4] | [0.241 7,0.275 5] | [0.366 4,0.470 9] | [0.098 5,0.209 6] | [-66.965 9,51.109 0] | [0.697 3,0.830 4] | |
树木Tree | [0.716 7,0.922 6] | [0.662 0,0.834 4] | [0.174 5,0.349 5] | [0.275 6,0.491 1] | [0.255 9,0.366 4] | [0.092 6,0.359 2] | [-55.000 1,64.800 0] | [0.719 3,0.934 0] | |
裸土Soil | [-0.073 0,0.114 6] | [0.053 4,0.292 7] | [0.014 6,0.053 6] | [0.016 5,0.070 5] | [0.005 5,0.100 0] | [-0.031 5,0.019 8] | [130.600 0,-55.000 0] | [0.562 1,0.636 0] | |
建设用地Construction land | [-0.127 8,0.070 5] | [-0.123 6,0.053 3] | [-0.068 8,0.014 6] | [-0.087 0,0.016 4] | [-0.047 7,0.005 4] | [-0.105 2,0.007 4] | [206.800 0,-66.965 7] | [0.459 0,0.636 0] | |
2020-07-15 | 水稻Rice | [0.651 5,0.868 6] | [0.518 7,0.735 1] | [0.267 3,0.421 3] | [0.344 2,0.561 2] | [0.245 5,0.517 0] | [0.074 2,0.144 0] | [-15.488 6,34.141 2] | [0.690 8,0.799 5] |
杂草Weed | [0.651 5,0.898 1] | [0.518 7,0.798 4] | [0.151 0,0.267 2] | [0.204 6,0.344 1] | [0.401 2,0.486 0] | [0.071 0,0.280 8] | [-14.521 7,93.200 0] | [0.690 8,0.877 6] | |
树木Tree | [0.651 5,0.921 1] | [0.518 7,0.858 2] | [0.151 0,0.267 2] | [0.204 6,0.344 1] | [0.245 5,0.401 1] | [0.124 5,0.070 9] | [-1.000 0,70.319 2] | [0.710 9,0.949 5] | |
裸土Soil | [0.009 3,0.651 4] | [0.141 4,0.518 6] | [0.053 5,0.150 9] | [0.056 0,0.204 5] | [0.077 4,0.245 4] | [-0.021 0,0.068 7] | [-115.400 0,-20.800 0] | [0.574 0,0.690 7] | |
建设用地Construction land | [-0.308 0,0.129 0] | [-0.330 7,0.141 3] | [-0.198 6,0.053 4] | [-0.177 5,0.055 9] | [-0.139 2,0.077 3] | [-0.032 1,0.070 8] | [-132.800 0,-15.488 7] | [0.558 2,0.690 7] | |
2020-08-26 | 水稻Rice | [0.369 1,0.755 8] | [0.391 6,0.654 2] | [0.018 6,0.204 1] | [0.120 9,0.285 2] | [0.126 4,0.308 1] | [0.048 5,0.097 5] | [-70.505 9,-9.375 3] | [0.621 2,0.729 4] |
杂草Weed | [0.755 9,0.887 4] | [0.654 3,0.667 3] | [0.204 2,0.319 1] | [0.285 3,0.325 1] | [0.368 5,0.574 4] | [0.099 6,0.117 4] | [-8.531 8,34.950 6] | [0.647 8,0.824 6] | |
树木Tree | [0.756 0,0.930 6] | [0.667 4,0.873 3] | [0.204 2,0.410 3] | [0.325 2,0.538 6] | [0.308 2,0.368 5] | [0.016 4,0.260 9] | [-9.266 7,36.000 0] | [0.627 4,0.873 6] | |
裸土Soil | [-0.456 0,0.369 0] | [0.092 0,0.391 5] | [0.025 5,0.108 5] | [0.025 2,0.120 8] | [0. 046 6,0.126 3] | [-0.025 2,0.016 3] | [-122.800 0,-72.564 7] | [0.569 0,0.621 1] | |
建设用地Construction land | [-0.240 2,0.114 8] | [-0.256 4,0.091 9] | [-0.074 9,0.025 4] | [-0.075 0,0.025 2] | [-0. 078 3,0. 046 5] | [-0.108 3,0.016 2] | [-133.597 7,-70.505 8] | [0.473 2,0.621 1] |
采集日期 Collection date (yyyy-mm-dd) | 精度 Accuracy | 类型 Type | 植被像元数 Vegetation pixels | 非植被像元数 Non-vegetation pixels | 总计 Total | 用户精度 User accuracy/% | ||
---|---|---|---|---|---|---|---|---|
总体 Overall/% | Kappa | |||||||
2020-06-05 | 95.55 | 0.89 | 植被像元Vegetation pixels | 9 603 | 21 | 9 624 | 99.78 | |
非植被像元 Non-vegetation pixels | 610 | 3 950 | 4 560 | 86.62 | ||||
总计Total | 10 213 | 3 971 | 14 184 | — | ||||
生产者精度Producer accuracy/% | 94.03 | 99.47 | — | — | ||||
2020-07-15 | 99.67 | 0.99 | 植被像元Vegetation pixels | 8 899 | 32 | 8 931 | 99.64 | |
非植被像元 Non-vegetation pixels | 39 | 12 309 | 12 348 | 99.68 | ||||
总计Total | 8 938 | 12 341 | 21 279 | — | ||||
生产者精度Producer accuracy/% | 99.56 | 99.74 | — | — | ||||
2020-08-26 | 95.95 | 0.91 | 植被像元Vegetation pixels | 8 000 | 40 | 8 040 | 99.50 | |
非植被像元 Non-vegetation pixels | 547 | 5 892 | 6 439 | 91.50 | ||||
总计Total | 8 547 | 5 932 | 14 479 | — | ||||
生产者精度Producer accuracy/% | 93.60 | 99.33 | — | — |
Table 4 Supervised classification accuracy
采集日期 Collection date (yyyy-mm-dd) | 精度 Accuracy | 类型 Type | 植被像元数 Vegetation pixels | 非植被像元数 Non-vegetation pixels | 总计 Total | 用户精度 User accuracy/% | ||
---|---|---|---|---|---|---|---|---|
总体 Overall/% | Kappa | |||||||
2020-06-05 | 95.55 | 0.89 | 植被像元Vegetation pixels | 9 603 | 21 | 9 624 | 99.78 | |
非植被像元 Non-vegetation pixels | 610 | 3 950 | 4 560 | 86.62 | ||||
总计Total | 10 213 | 3 971 | 14 184 | — | ||||
生产者精度Producer accuracy/% | 94.03 | 99.47 | — | — | ||||
2020-07-15 | 99.67 | 0.99 | 植被像元Vegetation pixels | 8 899 | 32 | 8 931 | 99.64 | |
非植被像元 Non-vegetation pixels | 39 | 12 309 | 12 348 | 99.68 | ||||
总计Total | 8 938 | 12 341 | 21 279 | — | ||||
生产者精度Producer accuracy/% | 99.56 | 99.74 | — | — | ||||
2020-08-26 | 95.95 | 0.91 | 植被像元Vegetation pixels | 8 000 | 40 | 8 040 | 99.50 | |
非植被像元 Non-vegetation pixels | 547 | 5 892 | 6 439 | 91.50 | ||||
总计Total | 8 547 | 5 932 | 14 479 | — | ||||
生产者精度Producer accuracy/% | 93.60 | 99.33 | — | — |
植被指数 Vegetation index | 水稻生长期 Rice growing period | 阈值分割 Threshold segmentation/% | 监督分类 Supervised classification/% | 提取误差 Extraction error/% | 绝对误差 Absolute error/% | R2 | RMSE/% |
---|---|---|---|---|---|---|---|
NDVI | 分蘖期Tillering stage | 92.20 | 92.57 | 0.40 | 0.37 | 0.77 | 9.09 |
抽穗期Heading stage | 98.32 | 97.90 | 0.43 | 0.42 | 0.92 | 2.97 | |
结实期Fruiting stage | 98.27 | 97.48 | 0.81 | 0.79 | 0.98 | 0.38 | |
GNDVI | 分蘖期Tillering stage | 92.32 | 92.57 | 0.27 | 0.25 | 0.76 | 9.36 |
抽穗期Heading stage | 97.57 | 97.90 | 0.34 | 0.33 | 0.91 | 2.60 | |
结实期Fruiting stage | 97.05 | 97.48 | 0.44 | 0.43 | 0.95 | 1.43 | |
NDRE | 分蘖期Tillering stage | 76.57 | 92.57 | 17.28 | 16.00 | 0.66 | 12.34 |
抽穗期Heading stage | 92.38 | 97.90 | 5.64 | 5.52 | 0.82 | 4.79 | |
结实期Fruiting stage | 95.39 | 97.48 | 2.14 | 2.09 | 0.91 | 3.01 | |
LCI | 分蘖期Tillering stage | 82.22 | 92.57 | 11.18 | 10.35 | 0.68 | 10.58 |
抽穗期Heading stage | 90.49 | 97.90 | 7.57 | 7.41 | 0.82 | 6.19 | |
结实期Fruiting stage | 96.64 | 97.48 | 1.16 | 0.16 | 0.89 | 3.19 | |
OSAVI | 分蘖期Tillering stage | 89.53 | 92.57 | 3.28 | 3.04 | 0.72 | 10.07 |
抽穗期Heading stage | 98.88 | 97.90 | 1.00 | 0.98 | 0.90 | 3.02 | |
结实期Fruiting stage | 98.53 | 97.48 | 1.08 | 1.05 | 0.94 | 2.06 | |
VDVI | 分蘖期Tillering stage | 89.74 | 92.57 | 3.06 | 2.83 | 0.75 | 9.41 |
抽穗期Heading stage | 96.48 | 97.90 | 1.45 | 1.42 | 0.89 | 3.87 | |
结实期Fruiting stage | 99.04 | 97.48 | 1.60 | 1.56 | 0.92 | 1.66 | |
EGRBDI | 分蘖期Tillering stage | 87.67 | 92.57 | 5.29 | 4.90 | 0.65 | 11.29 |
抽穗期Heading stage | 96.01 | 97.90 | 1.93 | 1.89 | 0.81 | 5.43 | |
结实期Fruiting stage | 97.61 | 97.48 | 0.13 | 0.13 | 0.89 | 3.45 | |
ExG-ExR | 分蘖期Tillering stage | 88.59 | 92.57 | 4.30 | 3.98 | 0.53 | 14.62 |
抽穗期Heading stage | 96.57 | 97.90 | 1.36 | 1.33 | 0.77 | 3.70 | |
结实期Fruiting stage | 99.04 | 97.48 | 1.60 | 1.56 | 0.80 | 5.50 |
Table 5 Extraction results and precision statistics of rice vegetation cover
植被指数 Vegetation index | 水稻生长期 Rice growing period | 阈值分割 Threshold segmentation/% | 监督分类 Supervised classification/% | 提取误差 Extraction error/% | 绝对误差 Absolute error/% | R2 | RMSE/% |
---|---|---|---|---|---|---|---|
NDVI | 分蘖期Tillering stage | 92.20 | 92.57 | 0.40 | 0.37 | 0.77 | 9.09 |
抽穗期Heading stage | 98.32 | 97.90 | 0.43 | 0.42 | 0.92 | 2.97 | |
结实期Fruiting stage | 98.27 | 97.48 | 0.81 | 0.79 | 0.98 | 0.38 | |
GNDVI | 分蘖期Tillering stage | 92.32 | 92.57 | 0.27 | 0.25 | 0.76 | 9.36 |
抽穗期Heading stage | 97.57 | 97.90 | 0.34 | 0.33 | 0.91 | 2.60 | |
结实期Fruiting stage | 97.05 | 97.48 | 0.44 | 0.43 | 0.95 | 1.43 | |
NDRE | 分蘖期Tillering stage | 76.57 | 92.57 | 17.28 | 16.00 | 0.66 | 12.34 |
抽穗期Heading stage | 92.38 | 97.90 | 5.64 | 5.52 | 0.82 | 4.79 | |
结实期Fruiting stage | 95.39 | 97.48 | 2.14 | 2.09 | 0.91 | 3.01 | |
LCI | 分蘖期Tillering stage | 82.22 | 92.57 | 11.18 | 10.35 | 0.68 | 10.58 |
抽穗期Heading stage | 90.49 | 97.90 | 7.57 | 7.41 | 0.82 | 6.19 | |
结实期Fruiting stage | 96.64 | 97.48 | 1.16 | 0.16 | 0.89 | 3.19 | |
OSAVI | 分蘖期Tillering stage | 89.53 | 92.57 | 3.28 | 3.04 | 0.72 | 10.07 |
抽穗期Heading stage | 98.88 | 97.90 | 1.00 | 0.98 | 0.90 | 3.02 | |
结实期Fruiting stage | 98.53 | 97.48 | 1.08 | 1.05 | 0.94 | 2.06 | |
VDVI | 分蘖期Tillering stage | 89.74 | 92.57 | 3.06 | 2.83 | 0.75 | 9.41 |
抽穗期Heading stage | 96.48 | 97.90 | 1.45 | 1.42 | 0.89 | 3.87 | |
结实期Fruiting stage | 99.04 | 97.48 | 1.60 | 1.56 | 0.92 | 1.66 | |
EGRBDI | 分蘖期Tillering stage | 87.67 | 92.57 | 5.29 | 4.90 | 0.65 | 11.29 |
抽穗期Heading stage | 96.01 | 97.90 | 1.93 | 1.89 | 0.81 | 5.43 | |
结实期Fruiting stage | 97.61 | 97.48 | 0.13 | 0.13 | 0.89 | 3.45 | |
ExG-ExR | 分蘖期Tillering stage | 88.59 | 92.57 | 4.30 | 3.98 | 0.53 | 14.62 |
抽穗期Heading stage | 96.57 | 97.90 | 1.36 | 1.33 | 0.77 | 3.70 | |
结实期Fruiting stage | 99.04 | 97.48 | 1.60 | 1.56 | 0.80 | 5.50 |
1 | 顾峰. 基于Sentinel-2数据的典型绿洲植被参数动态监测[D].乌鲁木齐:新疆大学,2019. |
GU F. Dynamic monitoring of vegetation participants in lypical oasis based on sentinel-2 data [D]. Urumqi: Xinjiang University, 2019. | |
2 | 赵静,杨焕波,兰玉彬,等.基于无人机可见光图像的夏季玉米植被覆盖度提取方法[J].农业机械学报,2019,50(5):232-240. |
ZHAO J, YANG H B, LAN Y B, et al.. Extraction method of summer corn vegetation coverage based on visible light image of unmanned aerial vehicle [J]. Trans. Chin. Soc. Agric. Mach., 2019, 50(5): 232-240. | |
3 | 王猛,隋学艳,梁守真,等.利用无人机遥感技术提取农作物植被覆盖度方法研究[J].作物杂志,2020(3):177-183. |
WANG M, SUI X Y, LIANG S Z, et al.. Research on the method of extracting crop vegetation coverage using UAV remote sensing technology [J]. Crops, 2020(3):177-183. | |
4 | SONG W, MU X, RUAN G, et al.. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method [J]. Int. J. Appl. Earth Obs.,2017,58:168-176. |
5 | 李登科,范建忠,王娟. 陕西省植被覆盖度变化特征及其成因[J]. 应用生态学报,2010,21(11):2896-2903. |
LI D K, FAN J Z, WANG J. Change characteristics and their causes of fractional vegetation coverage (FVC) in Shaanxi province [J]. Chin. J. Appl. Ecol., 2010,21(11):2896-2903. | |
6 | 孙中平,刘素红,姜俊,等.中高分辨率遥感协同反演冬小麦覆盖度[J].农业工程学报,2017,33(16):161-167. |
SUN Z P, LIU S H, JIANG J, et al.. Coordination inversion methods for vegetation cover of winter wheat by multi-source satellite images [J]. Trans. Chin. Soc. Agric. Eng., 2017,33(16):161-167. | |
7 | 张喜旺,吴炳方.基于中高分辨率遥感的植被覆盖度时相变换方法[J].生态学报,2015,35(4):1155-1164. |
ZHANG X W, WU B F. A temporal transformation method of fractional vegetation cover derived from high and moderate resolution remote sensing data [J]. Acta Ecol. Sin.,2015,35(4):1155-1164. | |
8 | 张勇峰. 基于多源遥感数据的冬小麦植被覆盖度估算研究[D].南昌:东华理工大学,2016. |
ZHANG Y F. The study on the estimation of the crop coverage ofwinter wheat based on multi-source remote sensing data [D]. Nanchang: East China University of Technology, 2016. | |
9 | 张伟, 宜树华, 秦彧, 等.基于无人机的高寒草甸地表温度监测及影响因素研究[J].草业学报,2021,30(3):15-27. |
ZHANG W, YI S H, QIN Y, et al.. Analysis of features and influencing factors of alpine meadow surface temperature based on UAV thermal thermography [J]. Acta Pratac. Sin.,2021,30(3):15-27. | |
10 | 牛亚晓,张立元,韩文霆.基于Lab颜色空间的棉花覆盖度提取方法研究[J].农业机械学报,2018,49(10):240-249. |
NIU Y X, ZHANG L Y, HAN W T. Extraction methods of cotton coverage based on lab color space [J].Trans. Chin. Soc. Agric. Mach.,2018,49(10):240-249. | |
11 | 何海清,严椰丽,凌梦云,等.结合三维密集点云的无人机影像大豆覆盖度提取[J].农业工程学报,2022,38(2):201-209. |
HE H Q, YAN Y L, LING M Y, et al.. Extraction of soybean coverage from UAV images combined with 3D dense point cloud [J]. Trans. Chin. Soc. Agric. Eng., 2022,38(2):201-209. | |
12 | 邓尚奇,赵钰,白雪源,等.基于无人机图像分割的冬小麦叶绿素与叶面积指数反演[J].农业工程学报,2022,38(3):136-145. |
DENG S Q, ZHAO Y, BAI X Y, et al.. Inversion of chlorophyll and leaf area index for winter wheat based on UAV image segmentation [J]. Trans. Chin. Soc. Agric. Eng., 2022,38(3):136-145. | |
13 | 刘涛,张寰,王志业,等.利用无人机多光谱估算小麦叶面积指数和叶绿素含量[J].农业工程学报,2021,37(19):65-72. |
LIU T, ZHANG H, WANG Z Y, et al.. Estimation of the leaf area index and chlorophyll content of wheat using UAV multi-spectrum images [J]. Trans. Chin. Soc. Agric. Eng., 2021,37(19):65-72. | |
14 | 王嘉盼,武红旗,王德俊,等.基于无人机可见光影像与生理指标的小麦估产模型研究[J].麦类作物学报,2021,41(10):1307-1315. |
WANG J P, WU H Q, WANG D J, et al.. Research on wheat yield estimation model based on UAV visible light lmage and physiological index [J]. J. Triticeae Crops,2021,41(10):1307-1315. | |
15 | 王靖,彭漪,刘小娟,等.基于无人机多光谱数据的水稻LAI反演与应用[J].中国农业大学学报,2021,26(12):145-156. |
WANG J, PENG Y, LIU X J, et al.. Inversion and application of rice LAl based on UAV multispectral data [J]. J. China Agric. Univ., 2021,26(12):145-156. | |
16 | 刘雅婷, 龚龑, 段博, 等. 多时相NDVI与丰度综合分析的油菜无人机遥感长势监测[J].武汉大学学报(信息科学版), 2020, 45(2): 265-272. |
LIU Y T, GONG Y, DUAN B, et al.. Combining multi-temporal NDVl and abundance from UAV remote sensing data for oilseed rape growth monitoring [J]. Geomatics Inf. Sci. Wuhan Univ., 2020, 45(2): 265-272. | |
17 | 汪小钦, 王苗苗, 王绍强, 等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报, 2015, 31(5): 152-157. |
WANG X Q, WANG M M, WANG S Q, et al.. Extraction of vegetation information from visible unmanned aerial vehicle images [J]. Trans. Chin. Soc. Agric. Eng., 2015, 31(5): 152-158. | |
18 | 高永刚, 林悦欢, 温小乐, 等. 基于无人机影像的可见光波段植被信息识别[J]. 农业工程学报, 2020, 36(3):178-189. |
GAO Y G, LIN Y H, WEN X L, et al.. Vegetation information recognition in visible band based on UAV images [J]. Trans. Chin. Soc. Agric. Eng., 2020, 36(3):178-189. | |
19 | WOEBBECKE D M, MEYER G E, BARGEN K V, et al.. Color indices for weed identification under various soil, residue, and lighting conditions [J]. Trans. Asae, 1995, 38(1): 259-269. |
20 | 李淑贞,徐大伟,范凯凯,等.基于无人机与卫星遥感的草原地上生物量反演研究[J].遥感技术与应用,2022,37(1):272-278. |
LI S Z, XU D W, FAN K K, et al.. Research of grassland aboveground biomass inversion based on UAV and satellite remoting sensing [J]. Remote Sensing Technol. Appl., 2022,37(1):272-278. | |
21 | GOWARD S N, XUE Y K, CZAJKOWSKI K P. Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements an exploration with the simplified simple biosphere model [J]. Remote Sensing Environ., 2002, 79(2/3): 225-242. |
22 | 李冰, 刘镕源, 刘素红, 等. 基于低空无人机遥感的冬小麦覆盖度变化监测[J]. 农业工程学报, 2012, 28(13): 160-165. |
LI B, LIU R Y, LIU S H, et al.. Monitoring vegetation coverage variation of winter wheat by low-altitude UAV remote sensing system [J]. Trans. Chin. Soc. Agric. Eng., 2012, 28(13): 160-165. | |
23 | 田振坤, 傅莺莺, 刘素红, 等. 基于无人机低空遥感的农作物快速分类方法[J]. 农业工程学报, 2013, 29(7): 109-116. |
TIAN Z K, FU Y Y, LIU S H, et al.. Rapid crops classification based on UAV low-altitude remote sensing [J]. Trans. Chin. Soc. Agric. Eng., 2013, 29(7): 109-116. | |
24 | 刘道芳,王景山,李胜阳.高分六号卫星红边波段及红边植被指数对水稻分类精度的影响[J].河南科学,2021,39(9):1417-1423. |
LIU D F, WANG J S, LI S Y. The lmpact of red-edge waveband and red-edge vegetation index of GF6 satellite on rice planting area classification accuracy [J]. Henan Sci.,2021,39(9):1417-1423. | |
25 | 田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998(4):10-16. |
TIAN Q J, MIN X J. Advances in study on vegetation indices [J]. Adv. Earth Sci.,1998(4):10-16. | |
26 | 李明, 黄愉淇, 李绪孟, 等. 基于无人机遥感影像的水稻种植信息提取[J]. 农业工程学报, 2018, 34(4): 108-114. |
LI M, HUANG Y Q, LI X M, et al.. Extraction of rice planting information based on remote sensing image from UAV [J]. Trans. Chin. Soc. Agric. Eng., 2018, 34(4): 108-114. | |
27 | 吴方明,张淼,吴炳方.无人机影像的面向对象水稻种植面积快速提取[J].地球信息科学学报,2019,21(5):789-798. |
WU F M, ZHANG M, WU B F. Object-oriented rapid estimation of rice acreage from UAV lmagery [J]. J. Geo-Inf. Sci., 2019,21(5):789-798. |
[1] | Zompur CHU, Guangfeng MAO, Min WU, Hongkai WU. Relationship Between Electrical Conductivity of Seed Soaking Solution and Seed Vigor in Rice (Oryza sativa L.) [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 35-41. |
[2] | Wei WANG, Lijuan XIE, Dongya XIAO, Gensheng CHEN, Liang XIE, Ziming WU, Xugen SHI, Huijie LI. Research on the Green Control Technology Model of Diseases and Insects in Double-cropping Rice in Jiangxi Province [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 129-138. |
[3] | Hui JIN, Wei WANG, Chendong YAN, Wei WANG, Xiying LI. Isolation, Identification and Adaptability of Trichoderma spp. for Biocontrol of Rice Sheath Blight [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 139-148. |
[4] | Yuanwei CHEN, Huabin ZHENG, Weiqin WANG, Na KUANG, Youyi LUO, Dan ZOU, Qiyuan TANG. Effect of Mowing Treatment on the Main Season Whole Plant Biomass and Silage Quality and Yield in Regeneration Season of Ratooning Rice [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 161-171. |
[5] | Shuangya WEN, Nan SHI, Chongyi CHEN, Haiyan HU, Zhiqiang GAO. Research on Light Use Efficiency of Rice Based on Eddy Covariance Method [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 159-166. |
[6] | Huibin KE, Yong ZHOU, Guozhong ZHANG, Wen LYU, Yan LIU, Lin HUANG. Design and Experiment of Pneumatic Fertilizer Collecting and Discharging Device for Ratooning Rice [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 106-114. |
[7] | Qionghua LI, Lin ZHANG, Xinru HAN, Lili SONG. Temporal and Spatial Analysis of Total Factor Productivity of Double Cropping Rice in China and Its Countermeasures [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 15-23. |
[8] | Nanrui TANG, Yong ZHOU, Guozhong ZHANG, Fang LIANG, Huibin KE. Performance Simulation and Experiment of Stirred and Bunch Rice Seeding Device [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 107-115. |
[9] | Tao YANG, Xiaoqian MA, Quan ZHANG, Hongliang ZHANG. Research Progress of Histone Modification in Rice [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 11-20. |
[10] | Linlin DONG, Jinfang ZHA, Mingxing SHEN, Haihou WANG, Linlin SHI, Yueyue TAO, Xinwei ZHOU, Changying LU. Effect of Long-term Straw Returning on Soil Organic Carbon Fractions Composition in Rice-Wheat Rotation Ecosystem [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 166-175. |
[11] | Zhenjia HE, Wangtao FAN, Yichun DU, Qilong WANG. Effects of Water and Fertilizer Coupling on the Physical and Chemical Properties of Rice Soil and Yield Based on Soil Organic Reconstruction [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 176-185. |
[12] | Hui XU, Yangyang ZHAO, Dongyue SUN, Yuanyuan KE, Lele ZHANG, Xiang CHEN, Fengzhen WEI, Jincai LI. Progress in Integrated Rice-crayfish Farming System [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 160-168. |
[13] | Xiaoqian MA, Tao YANG, Quan ZHANG, Hongliang ZHANG. Development Status and Prospect of Rice New Breeding Technology [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 24-30. |
[14] | FAN Hongye, LI Yaoyao, LU Xiaju, GU Shenghao, GUO Xinyu, , LIU Yuhua. [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 112-120. |
[15] | XI Min, XU Youzun, SUN Xueyuan, WU Wenge, ZHOU Yongjin. Effects of Nitrogen Fertilizer Topdressing on Grain Filling and Milling Quality of the Rice with High Grain Chalkiness [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 144-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||