1 |
ZHAO H, LIU Y, LI Z, et al.. Identification of essential hypertension biomarkers in human urine by non-targeted metabolomics based on UPLC-Q-TOF/MS [J]. Clin. Chim. Acta, 2018, 486: 192-198.
|
2 |
NICHOLSON J K, LINDON J C, HOLMES E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data [J]. Xenobiotica, 1999, 29(11): 1181-1189.
|
3 |
COCCI P, MOSCONI G, PALERMO F A. Changes in expression of microRNA potentially targeting key regulators of lipid metabolism in primary gilthead sea bream hepatocytes exposed to phthalates or flame retardants [J]. Aquatic Toxicol., 2019, 209: 81-90.
|
4 |
EVERETT J R. Pharmacometabonomics in humans: a new tool for personalized medicine [J]. Pharmacogenomics, 2015, 16(7): 737-754.
|
5 |
POTRATZ S, TARNOW P, JUNGNICKEL H, et al.. Combination of metabolomics with cellular assays reveals new biomarkers and mechanistic insights on xenoestrogenic exposures in MCF-7 cells [J]. Chem. Rese. Toxicol., 2017, 30(4): 883-892.
|
6 |
JIANG G, KANG H, YU Y. Cross-platform metabolomics investigating the intracellular metabolic alterations of HaCaT cells exposed to phenanthrene [J]. J. Chromatogr. A., 2017, 1060: 15-21.
|
7 |
刘瑞,金龙,李明洲.代谢组学在农业动物中的研究与应用[J].中国畜牧杂志, 2018, 54(6): 1-5.
|
|
LIU R, JIN L, LI M Z. Research and application of metabolomics in agricultural animals [J]. Chin. J. Anim. Husbandry, 2018, 54(6): 1-5.
|
8 |
DEVAUX P G, HORNING M G, HORNING E C. Benzyloxime derivatives of steroids. A new metabolic profile procedure for human urinary steroids human urinary steroids [J]. Anal. Lett., 1971, 4(3):151-160.
|
9 |
VAN DER GREEF J, LEEGWATER D C. Urine profile analysis by field desorption mass spectrometry, a technique for detecting metabolites of xenobiotics. Application to 3,5-dinitro-2-hydroxytoluene [J]. Biomed. Mass Spectrom., 1983, 10(1): 1-4.
|
10 |
NICHOLSON J K, BUCKINGHAM M J, SADLER P J. High resolution 1H N.M.R. studies of vertebrate blood and plasma [J]. Biochem. J., 1983, 211(3):605-615.
|
11 |
OLIVER S G. Yeast as a navigational aid in genome analysis [J]. Microbiology, 1997, 143(5):1483-1487.
|
12 |
FIEHN O. Metabolic networks of Cucurbita maxima phloem [J]. Phytochemistry, 2003, 62(6): 875-886.
|
13 |
吴华慧.养心汤对室性早搏患者(气血亏虚型)的血清miRNA-1和尿代谢组学的影响[D].哈尔滨:黑龙江中医药大学, 2012.
|
|
WU H H. The interventions of Yangxintang on the serum miRNA-1 and urine metabolomics of patients with ventricular premature beats [D]. Harbin: Heilongjiang University of Chinese Medicine, 2012.
|
14 |
GOLDANSAZ S A, GUO A C, SAJED T, et al.. Livestock metabolomics and the livestock metabolome: a systematic review [J/OL]. PLoS One, 2017, 12(5): e0177675 [2021-08-09]..
|
15 |
周萌,景军红,毛瑞涵,等.代谢组学在家养动物遗传育种中的应用[J].遗传, 2019, 41(2): 111-124.
|
|
ZHOU M, JING J H, MAO R H, et al.. Applications of metabonomics in animal genetics and breeding [J]. Hereditas, 2019, 41(2): 111-124.
|
16 |
NAZARI M A, GHAVI HOSSEIN-ZADEH N, SHADPARVAR A A, et al.. Genetic analysis of persistency for milk fat yield in Iranian buffaloes (Bubalus bubalis) [J/OL]. Front. Genet., 2021, 12: 633017 [2021-08-09]. .
|
17 |
GEBREYESUS G, LUND M S, JANSS L, et al.. Short communication: multi-trait estimation of genetic parameters for milk protein composition in the Danish Holstein [J]. J. Dairy Sci., 2016, 99(4): 2863-2866.
|
18 |
NTAWUBIZI M, COLMAN E, JANSSENS S, et al.. Genetic parameters for intramuscular fatty acid composition and metabolism in pigs [J]. J. Anim. Sci., 2010, 88(4): 1286-1294.
|
19 |
IBANEZ-ESCRICHE N, MAGALLON E, GONZALEZ E, et al.. Genetic parameters and crossbreeding effects of fat deposition and fatty acid profiles in Iberian pig lines [J]. J. Anim. Sci., 2016, 94(1): 28-37.
|
20 |
DONG J Q, ZHANG X Y, WANG S Z, et al.. Construction of multiple linear regression models using blood biomarkers for selecting against abdominal fat traits in broilers [J]. Poultry Sci., 2018, 97(1): 17-23.
|
21 |
ZHANG H L, XU Z Q, YANG L L, et al.. Genetic parameters for the prediction of abdominal fat traits using blood biochemical indicators in broilers [J]. Brit. Poultry Sci., 2018, 59(1): 28-33.
|
22 |
FOROUTAN A, FITZSIMMONS C, MANDAL R, et al.. Serum metabolite biomarkers for predicting residual feed intake (RFI) of young Angus bulls [J/OL]. Metabolites, 2020, 10(12):491 [2021-08-09]. .
|
23 |
BOVO S, DI LUCA A, GALIMBERTI G, et al.. A comparative analysis of label-free liquid chromatography-mass spectrometry liver proteomic profiles highlights metabolic differences between pig breeds [J/OL]. PLoS One, 2018, 13(9): e0199649 [2021-08-09]. .
|
24 |
CHAROENSIN S, LAOPAIBOON B, BOONKUM W, et al.. Thai native chicken as a potential functional meat source rich in anserine, anserine/carnosine, and antioxidant substances [J/OL]. Animals, 2021, 11(3):902 [2021-08-09]. .
|
25 |
BOVO S, MAZZONI G, CALO D G, et al.. Deconstructing the pig sex metabolome: targeted metabolomics in heavy pigs revealed sexual dimorphisms in plasma biomarkers and metabolic pathways [J]. J. Anim. Sci., 2015, 93(12): 5681-5693.
|
26 |
SUN H Z, WANG D M, WANG B, et al.. Metabolomics of four biofluids from dairy cows: potential biomarkers for milk production and quality [J]. J. Proteome Res., 2015, 14(2): 1287-1298.
|
27 |
SHI W, YUAN X, CUI K, et al.. LC-MS/MS based metabolomics reveal candidate biomarkers and metabolic changes in different buffalo species [J/OL]. Animals, 2021, 11(2):560 [2021-08-09]. .
|
28 |
ROHART F, PARIS A, LAURENT B, et al.. Phenotypic prediction based on metabolomic data for growing pigs from three main European breeds [J]. J. Anim. Sci., 2012, 90(13): 4729-4740.
|
29 |
PICONE G, ZAPPATERRA M, LUISE D, et al.. Metabolomics characterization of colostrum in three sow breeds and its influences on piglets’ survival and litter growth rates [J]. J. Anim. Sci. Biotechnol., 2018, 9(23): 1-12.
|
30 |
WELZENBACH J, NEUHOFF C, HEIDT H, et al.. Integrative analysis of metabolomic, proteomic and genomic data to reveal functional pathways and candidate genes for drip loss in pigs [J]. Int. J. Mol. Sci., 2016, 17(9):1426.
|
31 |
STEPHANE B, N-DLYDIE, H-ACHRISTELLE, et al.. Relationships between digestive efficiency and metabolomic profiles of serum and intestinal contents in chickens [J/OL]. Sci. Rep., 2018, 8(1):6678 [2021-08-09]. .
|
32 |
田菁,王宇哲,闫世雄,等.代谢组学技术发展及其在农业动植物研究中的应用[J].遗传, 2020, 42(5): 452-465.
|
|
TIAN J, WANG YZ, YAN SX, et al.. Development of metabonomics technology and its application in agricultural animal and plant research [J]. Hereditas, 2020, 42(5): 452-465.
|
33 |
SASAGO N, TAKEDA M, OHTAKE T, et al.. Genome-wide association studies identified variants for taurine concentration in Japanese black beef [J]. Anim. Sci. J., 2018, 89(8): 1051-1059.
|
34 |
WANG X, KADARMIDEEN H N. Metabolite genome-wide association study (mGWAS) and gene-metabolite interaction network analysis reveal potential biomarkers for feed efficiency in pigs [J/OL]. Metabolites, 2020, 10(5):201 [2021-08-09]. .
|
35 |
VITERBO V S, LOPEZ B I M, KANG H, et al.. Genome wide association study of fatty acid composition in Duroc swine [J]. Asian-Austral. J. Anim., 2018, 31(8): 1127-1133.
|
36 |
JAVANROUH-ALIABAD A, VAEZ TORSHIZI R, MASOUDI A A, et al.. Identification of candidate genes for blood metabolites in Iranian chickens using a genome-wide association study [J]. Brit. Poultry Sci., 2018, 59(4): 381-388.
|
37 |
SHI S, SHEN Y, ZHANG S, et al.. Combinatory evaluation of transcriptome and metabolome profiles of low temperature-induced resistant ascites syndrome in Broiler chickens [J/OL]. Sci. Rep., 2017, 7(1):2389 [2021-08-09]. .
|
38 |
XI B, LUO J, GAO Y Q, et al.. Transcriptome-metabolome analysis of fatty acid of Bamei pork and Gansu black pork in China [J]. Bioproc. Biosyst. Eng., 2021, 44(5): 995-1002.
|
39 |
QIU J, YAN J, LIU W, et al.. Metabolomics analysis delineates the therapeutic effects of Huangqi decoction and astragalosides on alpha-naphthylisothiocyanate (ANIT) -induced cholestasis in rats [J/OL]. J. Ethnopharmacol., 2021, 268: 113658 [2021-08-09]. .
|
40 |
NIELSEN K L, HARTVIGSEN M L, HEDEMANN M S, et al.. Similar metabolic responses in pigs and humans to breads with different contents and compositions of dietary fibers: a metabolomics study [J]. Am. J. Clin. Nutr., 2014, 99(4): 941-949.
|
41 |
DENG L, FU D, ZHU L, et al.. Testosterone deficiency accelerates early stage atherosclerosis in miniature pigs fed a high-fat and high-cholesterol diet: urine 1H NMR metabolomics targeted analysis [J]. Mol. Cell Biochem., 2021, 476(2): 1245-1255.
|
42 |
LASERNA A K C, LAI Y, FANG G, et al.. Metabolic profiling of a porcine combat trauma-injury model using NMR and multi-Mode LC-MS metabolomics-a preliminary study [J/OL]. Metabolites, 2020, 10(9): 373 [2021-08-09]. .
|