Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (7): 32-38.DOI: 10.13304/j.nykjdb.2021.0583
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Zhengwen SUN(), Qishen GU, Yan ZHANG, Xingfen WANG, Zhiying MA()
Received:
2021-07-15
Accepted:
2022-03-27
Online:
2022-07-15
Published:
2022-08-15
Contact:
Zhiying MA
通讯作者:
马峙英
作者简介:
孙正文 E-mail: nxszhw@hebau.edu.cn;
基金资助:
CLC Number:
Zhengwen SUN, Qishen GU, Yan ZHANG, Xingfen WANG, Zhiying MA. Research Progress on Cotton Gene Discovery and Molecular Breeding[J]. Journal of Agricultural Science and Technology, 2022, 24(7): 32-38.
孙正文, 谷淇深, 张艳, 王省芬, 马峙英. 棉花基因发掘与分子育种研究进展[J]. 中国农业科技导报, 2022, 24(7): 32-38.
QTL | 染色体Chromosome | 分子 标记 Marker | 表型变异 解释率 Phenotypic variation explained/% | 物理区间 Physical interval /Mb |
---|---|---|---|---|
qFL-D02-1 | Dt02 | bin4537 | 5.21~14.65 | 2.84~3.83 |
qFL-D02-4 | Dt02 | bin4669 | 4.37~10.34 | 21.34~30.84 |
qFL-D05-1 | Dt05 | bin5200 | 2.47~6.98 | 4.62~6.64 |
qFS-D02-1 | Dt02 | bin4537 | 3.85~6.70 | 2.95~3.83 |
qFS-D05-2 | Dt05 | bin5165 | 3.53~4.15 | 1.63~2.24 |
qFS-D11-1 | Dt11 | bin6330 | 4.66~12.08 | 62.03~64.45 |
qFS-D13-1 | Dt13 | bin6606 | 3.26~5.95 | 0.00~2.15 |
qFM-A05-1 | At05 | bin1333 | 3.58~5.58 | 9.54~10.55 |
qFM-D05-1 | Dt05 | bin5275 | 3.02~4.77 | 12.21~21.52 |
qFU-D02-3 | Dt02 | bin4537 | 5.72~7.46 | 2.71~3.83 |
qFU-D02-6 | Dt02 | bin4697 | 3.07~4.60 | 27.63~39.98 |
qFU-D11-1 | Dt11 | bin6322 | 2.59~5.59 | 61.94~63.14 |
qFE-A05-1 | At05 | bin1337 | 3.83~15.83 | 9.95~10.57 |
qFE-A11-2 | At11 | bin3388 | 2.29~3.40 | 67.16~81.20 |
qFE-D02-1 | Dt02 | bin4513 | 2.45~5.43 | 0.04~0.94 |
qFE-D13-1 | Dt13 | bin6606 | 2.44%~4.23% | 0.05~1.10 |
Table 1 Marker information closely linked to stable QTL[6]
QTL | 染色体Chromosome | 分子 标记 Marker | 表型变异 解释率 Phenotypic variation explained/% | 物理区间 Physical interval /Mb |
---|---|---|---|---|
qFL-D02-1 | Dt02 | bin4537 | 5.21~14.65 | 2.84~3.83 |
qFL-D02-4 | Dt02 | bin4669 | 4.37~10.34 | 21.34~30.84 |
qFL-D05-1 | Dt05 | bin5200 | 2.47~6.98 | 4.62~6.64 |
qFS-D02-1 | Dt02 | bin4537 | 3.85~6.70 | 2.95~3.83 |
qFS-D05-2 | Dt05 | bin5165 | 3.53~4.15 | 1.63~2.24 |
qFS-D11-1 | Dt11 | bin6330 | 4.66~12.08 | 62.03~64.45 |
qFS-D13-1 | Dt13 | bin6606 | 3.26~5.95 | 0.00~2.15 |
qFM-A05-1 | At05 | bin1333 | 3.58~5.58 | 9.54~10.55 |
qFM-D05-1 | Dt05 | bin5275 | 3.02~4.77 | 12.21~21.52 |
qFU-D02-3 | Dt02 | bin4537 | 5.72~7.46 | 2.71~3.83 |
qFU-D02-6 | Dt02 | bin4697 | 3.07~4.60 | 27.63~39.98 |
qFU-D11-1 | Dt11 | bin6322 | 2.59~5.59 | 61.94~63.14 |
qFE-A05-1 | At05 | bin1337 | 3.83~15.83 | 9.95~10.57 |
qFE-A11-2 | At11 | bin3388 | 2.29~3.40 | 67.16~81.20 |
qFE-D02-1 | Dt02 | bin4513 | 2.45~5.43 | 0.04~0.94 |
qFE-D13-1 | Dt13 | bin6606 | 2.44%~4.23% | 0.05~1.10 |
基因功能 Gene function | 基因名称 Gene name | 染色体 Chromosome | 参考文献 Reference |
---|---|---|---|
转录因子 | GhbHLH18 | Dt04 | [ |
GhKNL1 | Dt08 | [ | |
激素 Hormone | AKR2A | — | [ |
GhVTC1 | Dt10 | [ | |
激素信号途径 | Gh_D02G0025 | Dt02 | [ |
Ghir_A03G020290 | At03 | [ | |
骨架蛋白 | GhXLIM6 | Dt02 | [ |
GhKCBP | At02 | [ | |
TUA2 | Dt02 | [ | |
Gh_A10G1256 | At10 | [ | |
Ghir_D02G002580 | Dt02 | [ | |
脂肪代谢 Fat metabolism | KCS1 | — | [ |
GhKCS13/CER6 | At01 | [ | |
细胞壁成分 Cell wall component | GhCesA2 | At08/Dt08 | [ |
GhCesA4/8 | At04/Dt08 | [ | |
Ghir_D02G011110 | Dt02 | [ | |
细胞代谢 Cell metabolism | Gh_D07G1799 | Dt02 | [ |
Gh_D13G1792 | Dt13 | [ | |
KRP家族蛋白 KRP family protein | Gh_D11G1929 | Dt11 | [ |
脂质信号转导 Lipids signal transduction | Ghir_D02G010340 | Dt02 | [ |
Table 2 Identification of candidate genes related to fiber development
基因功能 Gene function | 基因名称 Gene name | 染色体 Chromosome | 参考文献 Reference |
---|---|---|---|
转录因子 | GhbHLH18 | Dt04 | [ |
GhKNL1 | Dt08 | [ | |
激素 Hormone | AKR2A | — | [ |
GhVTC1 | Dt10 | [ | |
激素信号途径 | Gh_D02G0025 | Dt02 | [ |
Ghir_A03G020290 | At03 | [ | |
骨架蛋白 | GhXLIM6 | Dt02 | [ |
GhKCBP | At02 | [ | |
TUA2 | Dt02 | [ | |
Gh_A10G1256 | At10 | [ | |
Ghir_D02G002580 | Dt02 | [ | |
脂肪代谢 Fat metabolism | KCS1 | — | [ |
GhKCS13/CER6 | At01 | [ | |
细胞壁成分 Cell wall component | GhCesA2 | At08/Dt08 | [ |
GhCesA4/8 | At04/Dt08 | [ | |
Ghir_D02G011110 | Dt02 | [ | |
细胞代谢 Cell metabolism | Gh_D07G1799 | Dt02 | [ |
Gh_D13G1792 | Dt13 | [ | |
KRP家族蛋白 KRP family protein | Gh_D11G1929 | Dt11 | [ |
脂质信号转导 Lipids signal transduction | Ghir_D02G010340 | Dt02 | [ |
基因功能 Gene function | 基因名称 Gene name | 染色体 Chromosome | 参考文献 Reference |
---|---|---|---|
信号转导 Signal | GaGSTF9 | At03 | [ |
MOS2 | At05 | [ | |
GbEDS1 | At12 | [ | |
蛋白激酶 Protein kinase | GbSTK | At10 | [ |
亲环素基因 Cyclophilin | GhCYP-3 | At01 | [ |
细胞壁蛋白 Cell wall protein | GbHyPRP1 | Dt06 | [ |
G蛋白 G protein | GhGPA | Dt05 | [ |
R基因 R gene | CG03 | At10 | [ |
GhDSC1 | At10 | [ | |
GhGLR4.8 | Dt03 | [ | |
GbVe | Dt09 | [ | |
GbRVd | Dt11 | [ | |
次级代谢产物 | GhSNAT1/GhCOMT | Dt02/ Dt12 | [ |
类受体激酶 Receptor-like kinases,RLKs | GhLecRKs-V.9 | Dt11 | [ |
木质素合成 Lignin synthesis | GhLAC15 | At05 | [ |
GhnsLTPs | At10 | [ | |
活性氧相关 Reactive oxygen species related | GhPAO | At08 | [ |
硬脂酰-ACP-去饱和酶家族 Stearoyl-ACP-desaturase family | GhSSI2s | At10/ Dt10 | [ |
谷胱甘肽硫转移酶 Glutathione S-transferase | Gh_A09G1508 | At09 | [ |
Gh_A09G1509 | At09 | [ | |
Gh_A09G1510 | At09 | [ | |
植物病程相关蛋白 Plant pathogenesis-related proteins | GhNCS | Dt11 | [ |
Table 3 Identification of cotton Verticillium Wilt resistance related genes
基因功能 Gene function | 基因名称 Gene name | 染色体 Chromosome | 参考文献 Reference |
---|---|---|---|
信号转导 Signal | GaGSTF9 | At03 | [ |
MOS2 | At05 | [ | |
GbEDS1 | At12 | [ | |
蛋白激酶 Protein kinase | GbSTK | At10 | [ |
亲环素基因 Cyclophilin | GhCYP-3 | At01 | [ |
细胞壁蛋白 Cell wall protein | GbHyPRP1 | Dt06 | [ |
G蛋白 G protein | GhGPA | Dt05 | [ |
R基因 R gene | CG03 | At10 | [ |
GhDSC1 | At10 | [ | |
GhGLR4.8 | Dt03 | [ | |
GbVe | Dt09 | [ | |
GbRVd | Dt11 | [ | |
次级代谢产物 | GhSNAT1/GhCOMT | Dt02/ Dt12 | [ |
类受体激酶 Receptor-like kinases,RLKs | GhLecRKs-V.9 | Dt11 | [ |
木质素合成 Lignin synthesis | GhLAC15 | At05 | [ |
GhnsLTPs | At10 | [ | |
活性氧相关 Reactive oxygen species related | GhPAO | At08 | [ |
硬脂酰-ACP-去饱和酶家族 Stearoyl-ACP-desaturase family | GhSSI2s | At10/ Dt10 | [ |
谷胱甘肽硫转移酶 Glutathione S-transferase | Gh_A09G1508 | At09 | [ |
Gh_A09G1509 | At09 | [ | |
Gh_A09G1510 | At09 | [ | |
植物病程相关蛋白 Plant pathogenesis-related proteins | GhNCS | Dt11 | [ |
1 | SUN Z W, WANG X F, LIU Z W, et al.. Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. [J]. Plant Biotechnol. J., 2017, 15(8): 982-996. |
2 | MA Z Y, HE S P, WANG X F, et al.. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield [J]. Nat. Genet., 2018, 50(6):803-813. |
3 | SUN Z W, WANG X F, LIU Z W, et al.. Evaluation of the genetic diversity of fibre quality traits in upland cotton (Gossypium hirsutum L.) inferred from phenotypic variations [J]. J. Cotton Res., 2019, 2(4):183-190. |
4 | MA Z Y, ZHANG Y, WU L Q, et al.. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement [J]. Nat. Genet., 2021, 53(9):1385-1391. |
5 | SUN Z W, WANG X F, LIU Z W, et al.. A genome-wide association study uncovers novel genomic regions and candidate genes of yield-related traits in upland cotton [J]. Theor. Appl. Genet., 2018, 131(11):2413-2425. |
6 | GU Q S, KE H F, LIU Z W, et al.. A high-density genetic map and multiple environmental tests reveal novel quantitative trait loci and candidate genes for fibre quality and yield in cotton [J]. Theor. Appl. Genet., 2020, 133(12):3395-3408. |
7 | GAO Z, SUN W, WANG J, et al.. GhbHLH18 negatively regulates fiber strength and length by enhancing lignin biosynthesis in cotton fibers [J]. Plant Sci., 2019, 286:7-16. |
8 | GONG S Y, HUANG G Q, SUN X, et al.. Cotton KNL1, encoding a class Ⅱ KNOX transcription factor, is involved in regulation of fibre development [J]. J. Exp. Bot., 2014, 65:4133-4147. |
9 | HU W, CHEN L, QIU X, et al.. AKR2A participates in the regulation of cotton fiber development by modulating biosynthesis of very-long-chain fatty acids [J]. Plant Biotechnol. J., 2019, 18(2):526-539. |
10 | SONG W, WANG F, CHEN L, et al.. GhVTC1, the key gene for ascorbate biosynthesis in Gossypium hirsutum, involves in cell elongation under control of ethylene [J/OL]. Cell, 2019, 8(9):1039 [2022-05-25]. . |
11 | LI Y, WANG N N, WANG Y, et al.. The cotton XLIM protein (GhXLIM6) is required for fiber development via maintaining dynamic F-actin cytoskeleton and modulating cellulose biosynthesis [J]. Plant J., 2018, 96:1269-1282. |
12 | PREUSS M L, DELMER D P, LIU B, et al.. The cotton kinesin-like calmodulin-binding protein associates with cortical microtubules in cotton fibers [J]. Plant Physiol., 2003, 132(1):154-160. |
13 | QIN Y, SUN H, HAO P, et al.. Transcriptome analysis reveals differences in the mechanisms of fiber initiation and elongation between long- and short-fiber cotton (Gossypium hirsutum L.) lines [J/OL]. BMC Genomics, 2019, 20:633 [2022-05-25]. . |
14 | QIN Y M, HU C Y, PANG Y, et al.. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis [J]. Plant Cell, 2007, 19(11): 3692-3704. |
15 | KIM H J, Triplett B A, Zhang H B, et al.. Cloning and characterization of homeologous cellulose synthase catalytic subunit 2 genes from allotetraploid cotton (Gossypium hirsutum L.) [J]. Gene, 2012, 494:181-189. |
16 | NING Z Y, ZHAO R, CHEN H, et al.. Molecular tagging of a major quantitative trait locus for broad-spectrum resistance to Verticillium wilt in upland cotton cultivar prema [J]. Crop Sci., 2013, 53:2304-2312. |
17 | LI T, MA X, LI N, et al.. Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.) [J]. Plant Biotechnol. J., 2017, 15(12):1520-1532. |
18 | ZHANG Y, CHEN B, SUN Z W, et al.. A large-scale genomic association analysis identifies a fragment in Dt11 chromosome conferring cotton Verticillium wilt resistance [J]. Plant Biotechnol. J., 2021, 19(10): 2126-2138. |
19 | GONG Q, YANG Z, CHEN E, et al.. A Phi-class glutathione S-transferase gene for Verticillium wilt resistance in Gossypium arboreum identified in a genome-wide association study [J]. Plant Cell Physiol., 2018, 59:275-289. |
20 | LI P T, RASHID M H O, CHEN T T, et al.. Transcriptomic and biochemical analysis of upland cotton (Gossypium hirsutum) and a chromosome segment substitution line from G . hirsutum× G. barbadense in response to Verticillium dahliae infection [J/OL]. BMC Plant Biol., 2019, 19(1):19 [2022-05-25]. . |
21 | LI T G, WANG B L, YIN C M, et al.. The Gossypium hirsutum TIR-NBS-LRR gene GhDSC1 mediates resistance against Verticillium wilt [J]. Mol. Plant Pathol., 2019, 20(6):857-876. |
22 | LIU S M, ZHANG X J, XIAO S H, et al.. A single-nucleotide mutation in a GLUTAMATE RECEPTOR-LIKE gene confers resistance to Fusarium wilt in Gossypium hirsutum [J/OL]. Adv. Sci., 2021, 8(7):2002723 [2022-05-25]. . |
23 | LI C, HE Q, ZHANG F, et al.. Melatonin enhances cotton immunity to Verticillium wilt via manipulating lignin and gossypol biosynthesis [J]. Plant J., 2019, 100(4):784-800. |
24 | ZHANG Y, WANG X F, RONG W, et al.. Island cotton enhanced disease susceptibility 1 gene encoding a lipase-like protein plays a crucial role in response to Verticillium dahliae by regulating the SA level and H2O2 accumulation [J/OL]. Front. Plant Sci., 2016, 7:1830 [2022-05-25]. . |
25 | ZHANG Y, WANG X F, RONG W, et al.. Histochemical analyses reveal that stronger intrinsic defenses in Gossypium barbadense than in G. hirsutum are associated with resistance to Verticillium dahliae [J]. Mol. Plant Microbe Interact., 2017, 30: 984-996. |
26 | ZHANG Y, WANG X F, LI Y Y, et al.. Ectopic expression of a novel Ser/Thr protein kinase from cotton (Gossypium barbadense), enhances resistance to Verticillium dahliae infection and oxidative stress in Arabidopsis [J]. Plant Cell Rep., 2013, 32:1703-1713. |
27 | YANG J, WANG G, KE H, et al.. Genome-wide identification of cyclophilin genes in Gossypium hirsutum and functional characterization of a CYP with antifungal activity against Verticillium dahliae [J/OL]. BMC Plant Biol., 2019, 19:272 [2022-05-25]. . |
28 | YANG J, ZHANG Y, WANG X F, et al.. HyPRP1 performs a role in negatively regulating cotton resistance to V. dahliae via the thickening of cell walls and ROS accumulation [J/OL]. BMC Plant Biol., 2018, 18(1):339 [2022-05-25]. . |
29 | CHEN B, ZHANG Y, YANG J, et al.. The G-protein α subunit GhGPA positively regulates Gossypium hirsutum resistance to Verticillium dahliae via induction of SA and JA signaling pathways and ROS accumulation [J/OL]. Crop J., 2021, 9(4):125-135. |
30 | ZHANG Y, WANG X F, YANG S, et al.. Cloning and characterization of a Verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana [J]. Plant Cell Rep., 2011, 30:2085-2096. |
31 | YANG J, MA Q, ZHANG Y, et al.. Molecular cloning and functional analysis of GbRVd, a gene in Gossypium barbadense that plays an important role in conferring resistance to Verticillium wilt [J]. Gene, 2015, 575:687-694. |
32 | ZHANG Y, WU L Z, WANG X F, et al.. The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants [J]. Mol. Plant Pathol., 2019, 20(3):309-322. |
33 | MO H J, ZHANG Y, WANG X F, et al.. Cotton polyamine oxidase is required for spermine and camalexin signalling in the defence response to Verticillium dahliae [J]. Plant J., 2015, 83(6):962-975. |
34 | CHEN B, ZHANG Y, SUN Z W, et al.. Tissue-specific expression of GhnsLTPs identified via GWAS sophisticatedly coordinates disease- and insect-resistance by regulating metabolic flux redirection in cotton [J]. Plant J., 2021, 107(3):831-846. |
35 | MO S J, ZHANG Y, WANG X F, et al.. Cotton GhSSI2 isoforms from the stearoyl acyl carrier protein fatty acid desaturase family regulate Verticillium wilt resistance [J]. Mol. Plant Pathol., 2021, 22(9):1041-1056. |
36 | LI Z K, CHEN B, LI X X, et al.. A newly identified cluster of glutathione S-transferase genes provides Verticillium wilt resistance in cotton [J]. Plant J., 2019, 98, 213-227. |
[1] | Chengchuan YAN, Qingtao ZENG, Qin CHEN, Jincheng FU, Tingwei WANG, Quanjia CHEN, Yanying QU. Screening and Evaluation of Drought Resistance Indicators at Flowering and Boll Stage of Upland Cotton [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 46-57. |
[2] | Lijuan ZHANG, Yukun QIN, Huihuang CHENG, Yongqi LI, Haihua LUO. Research on Characteristics of Nitrogen and Phosphorus Loss from Surface Runoff of Cotton Field in Northern Jiangxi Province of Poyang Lake Region [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 166-175. |
[3] | Nan WU, Jun YANG, Yan ZHANG, Zhengwen SUN, Dongmei ZHANG, Lihua LI, Jinhua WU, Zhiying MA, Xingfen WANG. Overexpression of a Cotton Glucuronokinase Gene GbGlcAK Promotes Cell Elongation in Arabidopsis thaliana [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 36-46. |
[4] | Yajie HUANG, Dan REN, Shengmei LI, Jinxin CUI, Tao YANG, Jiaojiao REN, Wenwei GAO. Evaluation and Screening of Salt and Alkali Tolerance Indices of Upland Cotton Seedlings [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 46-55. |
[5] | Yuqing ZHOU, Yongfei YANG, Changwei GE, Qian SHEN, Siping ZHANG, Shaodong LIU, Huijuan MA, Jing CHEN, Ruihua LIU, Shicong LI, Xinhua ZHAO, Cundong LI, Chaoyou PANG. Identification of Cold-related Co-expression Modules in Cotton Cotyledon by WGCNA [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 52-62. |
[6] | Xiaoqian MA, Tao YANG, Quan ZHANG, Hongliang ZHANG. Development Status and Prospect of Rice New Breeding Technology [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 24-30. |
[7] | LIU Zhengwen, WANG Xingfen, MENG Chengsheng, ZHANG Yan, SUN Zhengwen, WU Liqiang, MA Zhiying, ZHANG Guiyin. Genome-Wide Identification and Analysis of GH9 Gene Family in Gossypium barbadense L. [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 30-45. |
[8] | LI Shengmei, ZHANG Dawei, DILIBAIER Dilimaimaiti, WEI Xin, RUI Cun, YANG Tao, GENG Shiwei, GAO Wenwei. Influence of Reduced Irrigation on Agronomic Traits, Yield and Fiber Quality of Transgenic ScALDH21 Cotton [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 152-159. |
[9] | XIN Minghua§, WANG Zhanbiao§, HAN Yingchun, FAN Zhengyi, FENG Lu, YANG Beifang, LI Xiaofei, WANG Guoping, LEI Yaping, XING Fangfang, XIONG Shiwu, LI Yabing. Review, Status and Measures of Xinjiang Machine-picked Cotton [J]. Journal of Agricultural Science and Technology, 2021, 23(7): 11-20. |
[10] | CHEN Yuan, LIU Zhenyu, ZHOU Mingyuan, ZHANG Chenxia, TIAN Qiaofeng, ZHANG Zhongning, ZHANG Xiang, CHEN Dehua. Effect of Planting Density on the Expression of Insecticidal Protein and Nitrogen Metabolism in the Fiber of Bt Transgenic Cotton [J]. Journal of Agricultural Science and Technology, 2021, 23(7): 45-53. |
[11] | ZHANG Xu1, HE Junfeng1, CHEN Fowen1, LI Jifu1*, WU Qixia1, Tan Jinghong1, ZOU Jialong2. Influences of Wheat Straw Returning on the Yield and Nitrogen Uptake of Direct-Seeding and Transplanting Cotton [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 122-131. |
[12] | ZHANG Te, KANG Zhenghua, ZHAO Qiang*, NIE Zhiyong, WANG Mifeng, CUI Yannan. Impacts of Nitrogen Application Rate and Topping Methods on Nutrient Accumulation, Distribution and Yield of Cotton#br# [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 139-147. |
[13] |
MA Panpan1,2, ZHAO Zengqiang1,2, ZHU Jianbo2, SUN Guoqing3*.
Physiological and Molecular Mechanisms of Drought and Salt Tolerance in Cotton
[J]. Journal of Agricultural Science and Technology, 2021, 23(2): 27-36.
|
[14] | WANG Guoning, ZHANG Yan, SONG Junli, YANG Jun, WANG Xingfen, WU Liqiang, ZHANG Guiyin. Identification and Analysis of Stem lncRNAs from Resistant Gossypium hirsutum Under Verticillium Wilt Stress [J]. Journal of Agricultural Science and Technology, 2021, 23(12): 29-41. |
[15] | WU Xueqin, CUI Yannan, ZHAO Qiang. Effects of Exogenous Substance on Defoliation Ripening, Yield and Quality after Chemical Topping of cotton [J]. Journal of Agricultural Science and Technology, 2021, 23(12): 151-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||