Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (4): 52-62.DOI: 10.13304/j.nykjdb.2020.0783
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Yuqing ZHOU1,2(), Yongfei YANG1,2, Changwei GE2, Qian SHEN2, Siping ZHANG2, Shaodong LIU2, Huijuan MA2, Jing CHEN2, Ruihua LIU2, Shicong LI2, Xinhua ZHAO2, Cundong LI1(
), Chaoyou PANG2(
)
Received:
2020-09-07
Accepted:
2021-03-03
Online:
2022-04-15
Published:
2022-04-20
Contact:
Cundong LI,Chaoyou PANG
周雨青1,2(), 杨永飞1,2, 葛常伟2, 沈倩2, 张思平2, 刘绍东2, 马慧娟2, 陈静2, 刘瑞华2, 李士丛2, 赵新华2, 李存东1(
), 庞朝友2(
)
通讯作者:
李存东,庞朝友
作者简介:
周雨青 E-mail: zhouyuqing0803@163.com
基金资助:
CLC Number:
Yuqing ZHOU, Yongfei YANG, Changwei GE, Qian SHEN, Siping ZHANG, Shaodong LIU, Huijuan MA, Jing CHEN, Ruihua LIU, Shicong LI, Xinhua ZHAO, Cundong LI, Chaoyou PANG. Identification of Cold-related Co-expression Modules in Cotton Cotyledon by WGCNA[J]. Journal of Agricultural Science and Technology, 2022, 24(4): 52-62.
周雨青, 杨永飞, 葛常伟, 沈倩, 张思平, 刘绍东, 马慧娟, 陈静, 刘瑞华, 李士丛, 赵新华, 李存东, 庞朝友. 基于WGCNA的棉花子叶抗冷相关共表达模块鉴定[J]. 中国农业科技导报, 2022, 24(4): 52-62.
基因 ID Gene ID | 正向引物 Forward primer (5'-3') | 反向引物 Reverse primer(5'-3') |
---|---|---|
Gh_A11G0969 | GAAGGCATTCCACCTGACCAAC | CTTGACCTTCTTCTTCTTGTGCTTG |
Gh_A05G1931 | TGCCCAATGGTGGAAAACCACT | CGGCTCATGCAGAACCCTTCAA |
Gh_D13G0160 | CGAACATGATGCCAACCGATGC | TGCAATCGAGCTTCCGTAGGTG |
Gh_A13G2112 | CCACAAGAGTTTCCCTACGGGC | CGTGGTTTCTTGGTCGGCAATG |
Gh_A05G0483 | GCCGAGTGTGAGGATTATGCCA | TTCTTGACGGGACAACTTGGGG |
Gh_A12G2357 | CGTGGCAGCTATAGCACTGA | TTCTGAAAGTCTCCGCCACC |
Gh_D09G1773 | AATAGGGCTACCGAGGCTGGTT | AGCCCTCCCGTTGTAAAACACC |
Gh_D05G2642 | GCAGCAACCCCAAAATCCCAAC | CCACATCCCCGTATTCAGCACC |
Gh_A05G1554 | GCCTCAAGAGGAGGTGATCG | GCTGCTGCTATCTGATCGGT |
Gh_D05G0600 | AAGGGCTTACGTCCGCACAAAT | GCACTTGAAGTATGCCCTCGGA |
Gh_A13G0138 | AGGGTGCATGTCCTAAGGGTGA | GACCTCGGTGAAGGCATAGCAG |
Table 1 Specific primers for the selected genes
基因 ID Gene ID | 正向引物 Forward primer (5'-3') | 反向引物 Reverse primer(5'-3') |
---|---|---|
Gh_A11G0969 | GAAGGCATTCCACCTGACCAAC | CTTGACCTTCTTCTTCTTGTGCTTG |
Gh_A05G1931 | TGCCCAATGGTGGAAAACCACT | CGGCTCATGCAGAACCCTTCAA |
Gh_D13G0160 | CGAACATGATGCCAACCGATGC | TGCAATCGAGCTTCCGTAGGTG |
Gh_A13G2112 | CCACAAGAGTTTCCCTACGGGC | CGTGGTTTCTTGGTCGGCAATG |
Gh_A05G0483 | GCCGAGTGTGAGGATTATGCCA | TTCTTGACGGGACAACTTGGGG |
Gh_A12G2357 | CGTGGCAGCTATAGCACTGA | TTCTGAAAGTCTCCGCCACC |
Gh_D09G1773 | AATAGGGCTACCGAGGCTGGTT | AGCCCTCCCGTTGTAAAACACC |
Gh_D05G2642 | GCAGCAACCCCAAAATCCCAAC | CCACATCCCCGTATTCAGCACC |
Gh_A05G1554 | GCCTCAAGAGGAGGTGATCG | GCTGCTGCTATCTGATCGGT |
Gh_D05G0600 | AAGGGCTTACGTCCGCACAAAT | GCACTTGAAGTATGCCCTCGGA |
Gh_A13G0138 | AGGGTGCATGTCCTAAGGGTGA | GACCTCGGTGAAGGCATAGCAG |
Fig.2 Gene cluster dendrograms and module divisionA: Clustering of genes based on the topological overlap; B: Gene modules obtained from the dynamic tree cut, and different colors represent different modules; C: Merged co-expression modules with similar expression pattern
Fig.4 Association analysis of gene co-expression network modules with different samplesNote: Red and green lattice represent positive correlation and negative correlation, respectively.
Fig.5 ME correlation between different modulesNote : Red and green lattice represent positive correlation and negative correlation, respectively. The numbers in the lattice show correlation coefficient and the corresponding P value (in the bracket).
模块 Module | GO条目 GO term | 基因本体 Ontology | 描述 Description | 基因数目 Genes No. | P值 P value |
---|---|---|---|---|---|
蓝色 Blue | GO:0048583 | P | 对刺激反应的调节Regulation of response to stimulus | 538 | 0.001 08 |
GO:0080134 | P | 对胁迫反应的调节Regulation of response to stress | 282 | 0.000 45 | |
GO:0031347P | P | 对防御反应的调节Regulation of defense response | 216 | 0.000 15 | |
GO:0009738 | P | 脱落酸激活的信号通路 Abscisic acid-activated signaling pathway | 216 | 0.000 32 | |
GO:0010200 | P | 对几丁质的反应Response to chitin | 166 | 0.000 15 | |
GO:0009741 | P | 对油菜素类固醇的反应Response to brassinosteroid | 114 | 0.001 47 | |
GO:0003700 | F | 转录因子活性,特异性DNA序列结合 Transcription factor activity, sequence-specific DNA binding | 1 275 | 0.000 68 | |
GO:0005623 | C | 细胞Cell | 12 853 | 1.05e-06 | |
GO:0043227 | C | 膜结合细胞器Membrane-bounded organelle | 10 326 | 7.51e-06 |
Table 2 Partial GO enrichment analysis of target module
模块 Module | GO条目 GO term | 基因本体 Ontology | 描述 Description | 基因数目 Genes No. | P值 P value |
---|---|---|---|---|---|
蓝色 Blue | GO:0048583 | P | 对刺激反应的调节Regulation of response to stimulus | 538 | 0.001 08 |
GO:0080134 | P | 对胁迫反应的调节Regulation of response to stress | 282 | 0.000 45 | |
GO:0031347P | P | 对防御反应的调节Regulation of defense response | 216 | 0.000 15 | |
GO:0009738 | P | 脱落酸激活的信号通路 Abscisic acid-activated signaling pathway | 216 | 0.000 32 | |
GO:0010200 | P | 对几丁质的反应Response to chitin | 166 | 0.000 15 | |
GO:0009741 | P | 对油菜素类固醇的反应Response to brassinosteroid | 114 | 0.001 47 | |
GO:0003700 | F | 转录因子活性,特异性DNA序列结合 Transcription factor activity, sequence-specific DNA binding | 1 275 | 0.000 68 | |
GO:0005623 | C | 细胞Cell | 12 853 | 1.05e-06 | |
GO:0043227 | C | 膜结合细胞器Membrane-bounded organelle | 10 326 | 7.51e-06 |
模块 Module | 核心基因编号 Hub gene ID | 模块内连通性 Connectivity | 拟南芥同源基因编号 Homologous gene ID in A. thaliana | 基因功能 Gene function |
---|---|---|---|---|
蓝色Blue | Gh_A05G1931 | 4 300.865 | AT4G08950 | 磷酸盐反应1家族蛋白 Phosphate-responsive 1 family protein |
Gh_D13G0160 | 4 218.162 | AT2G40140 | 锌指(C3H型)蛋白家族 Zinc finger (C3H-type) family protein | |
Gh_A13G2112 | 3 944.263 | AT1G27730 | 耐盐锌指Salt tolerance zinc finger | |
Gh_A05G0483 | 3 864.472 | AT1G80840 | WRKY DNA结合蛋白40 WRKY DNA-binding protein 40 | |
Gh_A12G2357 | 3 096.27 | AT5G51990 | C重复结合因子4 C-repeat-binding factor 4 | |
棕色 Brown | Gh_D09G1773 | 628.545 | AT3G49530 | 含有NAC结构域的蛋白质62 NAC domain containing protein 62 |
Gh_D05G2642 | 601.582 | AT3G56400 | WRKY DNA结合蛋白70 WRKY DNA-binding protein 70 | |
Gh_A05G1554 | 557.708 | AT1G20440 | 低温调节47 Cold-regulated 47 | |
Gh_D05G0600 | 550.86 | AT1G80840 | WRKY DNA结合蛋白40 WRKY DNA-binding protein 40 | |
Gh_A13G0138 | 517.077 | AT2G40140 | 锌指(C3H型)蛋白家族 Zinc finger (C3H-type) family protein 图8 核心基因的表达模式 Fig.8 Expression pattern of hub genes 图9 核心基因的 RT-qPCR 验证 Fig.9 qRT-PCR validation of hub genes |
Table 3 Annotation of hub genes in target module
模块 Module | 核心基因编号 Hub gene ID | 模块内连通性 Connectivity | 拟南芥同源基因编号 Homologous gene ID in A. thaliana | 基因功能 Gene function |
---|---|---|---|---|
蓝色Blue | Gh_A05G1931 | 4 300.865 | AT4G08950 | 磷酸盐反应1家族蛋白 Phosphate-responsive 1 family protein |
Gh_D13G0160 | 4 218.162 | AT2G40140 | 锌指(C3H型)蛋白家族 Zinc finger (C3H-type) family protein | |
Gh_A13G2112 | 3 944.263 | AT1G27730 | 耐盐锌指Salt tolerance zinc finger | |
Gh_A05G0483 | 3 864.472 | AT1G80840 | WRKY DNA结合蛋白40 WRKY DNA-binding protein 40 | |
Gh_A12G2357 | 3 096.27 | AT5G51990 | C重复结合因子4 C-repeat-binding factor 4 | |
棕色 Brown | Gh_D09G1773 | 628.545 | AT3G49530 | 含有NAC结构域的蛋白质62 NAC domain containing protein 62 |
Gh_D05G2642 | 601.582 | AT3G56400 | WRKY DNA结合蛋白70 WRKY DNA-binding protein 70 | |
Gh_A05G1554 | 557.708 | AT1G20440 | 低温调节47 Cold-regulated 47 | |
Gh_D05G0600 | 550.86 | AT1G80840 | WRKY DNA结合蛋白40 WRKY DNA-binding protein 40 | |
Gh_A13G0138 | 517.077 | AT2G40140 | 锌指(C3H型)蛋白家族 Zinc finger (C3H-type) family protein 图8 核心基因的表达模式 Fig.8 Expression pattern of hub genes 图9 核心基因的 RT-qPCR 验证 Fig.9 qRT-PCR validation of hub genes |
模块 Module | GO条目 GO term | 基因本体 Ontology | 描述 Description | 基因数目 Genes No. | P值 P value |
---|---|---|---|---|---|
棕色 Brown | GO:0050896 | P | 对刺激的反应Response to stimulus | 644 | 6.16e-10 |
GO:0006950 | P | 对胁迫的反应Response to stress | 365 | 1.39e-05 | |
GO:0009719 | P | 对内源性刺激的反应Response to endogenous stimulus | 269 | 7.26e-14 | |
GO:0009628 | P | 对非生物刺激的反应Response to abiotic stimulus | 263 | 2.57e-07 | |
GO:1901700 | P | 对含氧化合物的反应Response to oxygen-containing compound | 253 | 3.61e-14 | |
GO:0009725 | P | 对激素的反应Response to hormone | 233 | 1.08e-08 | |
GO:0048583 | P | 对刺激反应的调节Regulation of response to stimulus | 106 | 3.83e-08 | |
GO:0009737 | P | 对脱落酸的反应Response to abscisic acid | 103 | 3.37e-08 | |
GO:0009723 | P | 对乙烯的反应Response to ethylene | 68 | 6.83e-08 | |
GO:0080134 | P | 对胁迫反应的调节Regulation of response to stress | 66 | 3.94e-09 | |
GO:0010200 | P | 对几丁质的反应Response to chitin | 64 | 2.87e-20 | |
GO:0009751 | P | 对水杨酸的反应Response to salicylic acid | 47 | 4.46e-08 | |
GO:0031347 | P | 对防御反应的调节Regulation of defense response | 47 | 1.41e-06 | |
GO:0009753 | P | 对茉莉酸的反应Response to jasmonic acid | 46 | 2.71e-05 | |
GO:0003700 | F | 转录因子活性,特异性DNA序列结合 Transcription factor activity, sequence-specific DNA binding | 262 | 3.74e-20 | |
GO:0005634 | C | 核nucleus | 797 | 1.94e-06 | |
GO:0005887 | C | 质膜的组成部分Integral component of plasma membrane | 24 | 0.024 88 |
Table 2 Partial GO enrichment analysis of target module
模块 Module | GO条目 GO term | 基因本体 Ontology | 描述 Description | 基因数目 Genes No. | P值 P value |
---|---|---|---|---|---|
棕色 Brown | GO:0050896 | P | 对刺激的反应Response to stimulus | 644 | 6.16e-10 |
GO:0006950 | P | 对胁迫的反应Response to stress | 365 | 1.39e-05 | |
GO:0009719 | P | 对内源性刺激的反应Response to endogenous stimulus | 269 | 7.26e-14 | |
GO:0009628 | P | 对非生物刺激的反应Response to abiotic stimulus | 263 | 2.57e-07 | |
GO:1901700 | P | 对含氧化合物的反应Response to oxygen-containing compound | 253 | 3.61e-14 | |
GO:0009725 | P | 对激素的反应Response to hormone | 233 | 1.08e-08 | |
GO:0048583 | P | 对刺激反应的调节Regulation of response to stimulus | 106 | 3.83e-08 | |
GO:0009737 | P | 对脱落酸的反应Response to abscisic acid | 103 | 3.37e-08 | |
GO:0009723 | P | 对乙烯的反应Response to ethylene | 68 | 6.83e-08 | |
GO:0080134 | P | 对胁迫反应的调节Regulation of response to stress | 66 | 3.94e-09 | |
GO:0010200 | P | 对几丁质的反应Response to chitin | 64 | 2.87e-20 | |
GO:0009751 | P | 对水杨酸的反应Response to salicylic acid | 47 | 4.46e-08 | |
GO:0031347 | P | 对防御反应的调节Regulation of defense response | 47 | 1.41e-06 | |
GO:0009753 | P | 对茉莉酸的反应Response to jasmonic acid | 46 | 2.71e-05 | |
GO:0003700 | F | 转录因子活性,特异性DNA序列结合 Transcription factor activity, sequence-specific DNA binding | 262 | 3.74e-20 | |
GO:0005634 | C | 核nucleus | 797 | 1.94e-06 | |
GO:0005887 | C | 质膜的组成部分Integral component of plasma membrane | 24 | 0.024 88 |
1 | 付小琼,彭军.国家棉花区域试验工作十年回顾与展望[J].棉花学报,2017,29(S1):113-117. |
FU X Q, PENG J. Prospect and retrospection of national cotton regional test of China in last decade [J]. Cotton Sci., 2017, 29(S1):113-117. | |
2 | 李俊义,王润珍,王宗洪,等.环境条件与棉苗冻害程度研究简报[J].新疆农垦科技,2000(1):19. |
3 | 龚双军,李国英,杨德松,等.不同棉花品种苗期抗寒性及其生理指标测定[J].中国棉花,2005,32(3):16-17. |
GONG S J, LI G Y, YANG D S, et al.. Determination of cold resistance and physiological indexes of different cotton varieties at seedling stage [J]. China Cotton, 2005, 32(3):16-17. | |
4 | 秦天元,孙超,毕真真,等.基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J].作物学报,2020,46(7):1033-1051. |
QIN T Y, SUN C, BI Z Z, et al.. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA [J]. Acta Agron. Sin., 2020, 46(7):1033-1051. | |
5 | 巨飞燕,张思平,刘绍东,等.利用WGCNA进行棉花果枝节间伸长相关基因共表达模块鉴定[J].棉花学报,2019,31(5)403-413. |
JU F Y, ZHANG S P, LIU S D, et al.. Identification of co-expression modules of genes related to internode elongation of cotton fruiting branches by WGCNA [J]. Cotton Sci., 2019, 31(5)403-413. | |
6 | 傅明川,李浩,陈义珍,等.利用WGCNA鉴定棉花抗黄萎病相关基因共表达网络[J].作物学报,2020,46(5)668-679. |
FU M C, LI H, CHEN Y Z, et al.. Identification of co-expressed modules of cotton genes responding to Verticillium dahliae infection by WGCNA [J]. Acta Agron. Sin., 2020, 46(5):668-679. | |
7 | 李旭凯,李任建,张宝俊.利用WGCNA鉴定非生物胁迫相关基因共表达网络[J].作物学报,2019,45(9)1349-1364. |
LI X K, LI R J, ZHANG B J. Identification of rice stress-related gene co-expression modules by WGCNA [J]. Acta Agron. Sin., 2019, 45(9)1349-1364. | |
8 | 秦梦凡,李浩东,左凯峰,等.利用WGCNA鉴定甘蓝型油菜低温胁迫的基因共表达网络[J].中国油料作物学报,2020,42(4)554-562. |
QIN M F, LI H D, ZUO K F, et al.. Identification of co-expression networks responding to low-temperature stress by WGCNA in Brassica napus L. [J]. Chin. J. Oil Crop Sci., 2020, 42(4)554-562. | |
9 | MORTAZAVI A, WILLIAMS B A, MCCUE K, et al.. Mapping and quantifying mammalian transcriptomes by RNA-Seq [J]. Nat. Methods, 2008, 5(7):621-628. |
10 | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method [J]. Methods, 2001, 25(4):402-408. |
11 | 谢勇军.水稻非生物逆境差异表达基因分析及共表达网络构建[D].武汉:华中农业大学,2018. |
XIE Y J. Analysis of ifferentially expressed genes and construction of gene co-expression network in rice under abiotic stresses [D]. Wuhan: Huazhong Agricultural University, 2018. | |
12 | SHARMA N, CRAM D, HUEBERT T, et al.. Exploiting the wild crucifer Thlaspi arvense to identify conserved and novel genes expressed during a plant's response to cold stress [J]. Plant Mol. Biol., 2007, 63(2):171-184. |
13 | 赵娟 .反义抑制GhDET2对棉花生长发育的影响[D].重庆:西南大学,2009. |
ZHAO J. Effects of down-regulation of GhDET2, a steroid 5α-reducase gene of cotton, on the growth and development of cotton (Gossypium hirsutum L.) [D]. Chongqing: Southwest University, 2009. | |
14 | KAZAN K. Negative regulation of defence and stress genes by EAR-motif-containing repressors [J]. Trends Plant Sci., 2006, 11(3):109-112. |
15 | SAKAMOTO H, MARUYAMA K, SAKUMA Y, et al.. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions [J]. Plant Physiol., 2004, 136(1):2734-2746. |
16 | OHTA M, MATSUI K, HIRATSU K, et al.. Repression domains of class Ⅱ ERF transcriptional repressors share an essential motif for active repression [J]. Plant Cell, 2001, 13(8):1959-1968. |
17 | SAKAMOTO H, ARAKI T, MESHI T, et al.. Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress [J]. Gene,2000,248(1):23-32. |
18 | ENGLBRECHT C C, SCHOOF H, BOHM S. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome [J/OL]. BMC Genomics, 2004, 5(1):39 [2021-06-21]. . |
19 | MITTLER R, KIM Y, SONG L, et al.. Gain-and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress [J]. FEBS Lett., 2006, 580(28-29):6537-6542. |
20 | ROSSEL J B, WILSON P B, HUSSAIN D, et al.. Systemic and intracellular responses to photooxidative stress in Arabidopsis [J]. Plant Cell, 2007, 19(12):4091-4110. |
21 | NGUYEN X C, KIM S H, LEE K, et al.. Identification of a C2H2-type zinc finger transcription factor (ZAT10) from Arabidopsis as a substrate of MAP kinase [J]. Plant Cell Rep.,2012, 31(4):737-745. |
22 | DROILLARD M, BOUDSOCQ M, BARBIER-BRYGOO H, et al.. Different protein kinase families are activated by osmotic stresses in Arabidopsis thaliana cell suspensions. Involvement of the MAP kinases AtMPK3 and AtMPK6 [J]. FEBS Lett., 2002, 527(1-3):43-50. |
23 | LIU X M, KIM K E, KIM K C, et al.. Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species [J]. Phytochemistry, 2010, 71(56):614-618. |
24 | NAKAGAMI H, PITZSCHKE A, HIRT H. Emerging MAP kinase pathways in plant stress signalling [J]. Trends Plant Sci., 2005, 10(7):339-346. |
25 | SAMUEL M A, MILES G P, ELLIS B E. Ozone treatment rapidly activates MAP kinase signalling in plants [J]. Plant J., 2000, 22(4):367-376. |
26 | TENA G, ASAI T, CHIU W L, et al.. Plant mitogen-activated protein kinase signaling cascades [J]. Curr. Opin. Plant Biol., 2001, 4(5):392-400. |
27 | YUASA T, ICHIMURA K, MIZOGUCHI T, et al.. Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase [J]. Plant Cell Physiol., 2001, 42(9):1012-1016. |
28 | 张丽丽,李景富,王傲雪.转录激活因子CBF基因在植物抗冷分子机制中的作用[J].园艺学报,2008,35(5):765-771. |
ZHANG L L, LI J F, WANG A X. The role of the transcription factor CBF genes in cold-responsive molecular mechanism [J]. Acta Hortic. Sin., 2008, 35(5):765-771. | |
29 | CAI X, MAGWANGA R O, XU Y, et al.. Comparative transcriptome, physiological and biochemical analyses reveal response mechanism mediated by CBF4 and ICE2 in enhancing cold stress tolerance in Gossypium thurberi [J]. AoB Plants, 2019:1-17. |
30 | HAAKE V, COOK D, RIECHMANN J L, et al.. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis [J]. Plant Physiol., 2002, 130(2):639-648. |
31 | CHAWADE A, BRAUTIGAM M, LINDLOF A, et al.. Putative cold acclimation pathways in Arabidopsis thaliana identified by a combined analysis of mRNA co-expression patterns, promoter motifs and transcription factors [J]. BMC Genomics, 2007, 8(1):304. |
32 | SEO P J, KIM M J, PARK J Y, et al.. Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis [J]. Plant J., 2010, 61(4):661-671. |
33 | BOZOVIC V, SVENSSON J, SCHMITT J, et al.. Dehydrins (LTI29, LTI30, COR47) from Arabidopsis thaliana expressed in Escherichia coli protect thylakoid membrane during freezing [J]. J. Serb. Chem. Soc., 2013, 78(8):1149-1160. |
34 | HERNANDEZ-SANCHEZ I E, MARURI-LOPEZ I, GRAETHER S P, et al.. In vivo evidence for homo-and heterodimeric interactions of Arabidopsis thaliana dehydrins AtCOR 47, AtERD10, and AtRAB18 [J/OL]. Sci. Rep., 2019, 7(1):17036 [2021-06-21]. . |
[1] | LIU Zhengwen, WANG Xingfen, MENG Chengsheng, ZHANG Yan, SUN Zhengwen, WU Liqiang, MA Zhiying, ZHANG Guiyin. Genome-Wide Identification and Analysis of GH9 Gene Family in Gossypium barbadense L. [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 30-45. |
[2] | LI Shuxin, ZHANG Hao, ZHENG Housheng, ZHENG Peihe, PANG Shifeng, XU Shiquan. Transcriptome Analysis of Phenotypic Differences Between Ermaya and Changbo of Forest Cultivated Panax ginseng [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 56-68. |
[3] | LI Shengmei, ZHANG Dawei, DILIBAIER Dilimaimaiti, WEI Xin, RUI Cun, YANG Tao, GENG Shiwei, GAO Wenwei. Influence of Reduced Irrigation on Agronomic Traits, Yield and Fiber Quality of Transgenic ScALDH21 Cotton [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 152-159. |
[4] | XIN Minghua§, WANG Zhanbiao§, HAN Yingchun, FAN Zhengyi, FENG Lu, YANG Beifang, LI Xiaofei, WANG Guoping, LEI Yaping, XING Fangfang, XIONG Shiwu, LI Yabing. Review, Status and Measures of Xinjiang Machine-picked Cotton [J]. Journal of Agricultural Science and Technology, 2021, 23(7): 11-20. |
[5] | CHEN Yuan, LIU Zhenyu, ZHOU Mingyuan, ZHANG Chenxia, TIAN Qiaofeng, ZHANG Zhongning, ZHANG Xiang, CHEN Dehua. Effect of Planting Density on the Expression of Insecticidal Protein and Nitrogen Metabolism in the Fiber of Bt Transgenic Cotton [J]. Journal of Agricultural Science and Technology, 2021, 23(7): 45-53. |
[6] | LIU Yuan, ZHANG Xiuyan, XU Miaoyun, ZHENG Hongyan, ZOU Junjie, ZHANG Lan, WANG Lei. Global Small RNA Transcriptome Profiling of Rice Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2021, 23(6): 23-32. |
[7] | ZHANG Xu1, HE Junfeng1, CHEN Fowen1, LI Jifu1*, WU Qixia1, Tan Jinghong1, ZOU Jialong2. Influences of Wheat Straw Returning on the Yield and Nitrogen Uptake of Direct-Seeding and Transplanting Cotton [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 122-131. |
[8] | ZHANG Te, KANG Zhenghua, ZHAO Qiang*, NIE Zhiyong, WANG Mifeng, CUI Yannan. Impacts of Nitrogen Application Rate and Topping Methods on Nutrient Accumulation, Distribution and Yield of Cotton#br# [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 139-147. |
[9] |
MA Panpan1,2, ZHAO Zengqiang1,2, ZHU Jianbo2, SUN Guoqing3*.
Physiological and Molecular Mechanisms of Drought and Salt Tolerance in Cotton
[J]. Journal of Agricultural Science and Technology, 2021, 23(2): 27-36.
|
[10] | WANG Guoning, ZHANG Yan, SONG Junli, YANG Jun, WANG Xingfen, WU Liqiang, ZHANG Guiyin. Identification and Analysis of Stem lncRNAs from Resistant Gossypium hirsutum Under Verticillium Wilt Stress [J]. Journal of Agricultural Science and Technology, 2021, 23(12): 29-41. |
[11] | WU Xueqin, CUI Yannan, ZHAO Qiang. Effects of Exogenous Substance on Defoliation Ripening, Yield and Quality after Chemical Topping of cotton [J]. Journal of Agricultural Science and Technology, 2021, 23(12): 151-160. |
[12] | ZHANG Na, FENG Lu, MA Yunzhen, LI Ling, FAN Zhengyi, LI Xiaofei, YANG Beifang, WAN Sumei, LI Yabing, XU Wenxiu. Influence of Planting Density on the Agronomic Characteristics and Yield of Machine Picked Cotton in Southern Xinjiang [J]. Journal of Agricultural Science and Technology, 2021, 23(11): 172-180. |
[13] | LI Jinglin, LIU Shaodong, ZHANG Siping, CHEN Jing, LIU Ruihua, SHEN Qian, LI Yang, MA Huijuan, ZHAO Xinhua, PANG Chaoyou. Identification of Drought Tolerance During Whole Growth Period in Cotton Germplasm Resources and Resistance Index Screening [J]. Journal of Agricultural Science and Technology, 2021, 23(10): 52-65. |
[14] | TAN Jinghong, WU Qixia*, ZHU Jianqiang, KE Xinyao, MA Hongyu. Study on the Optimal Nitrogen Application Rate for Transplanted Cotton following Wheat Harvest in Jianghan Plain [J]. Journal of Agricultural Science and Technology, 2020, 22(9): 122-131. |
[15] | LIU Mengli1, LI Jin2, ZHANG Jungao2, ZHOU Xiaoyun2, DU Pengcheng1, GUO Qingyuan1*, LEI Bin2*. Differences of Toxin Activities Among Different Pathogenic Strains of Fusarium verticillioides [J]. Journal of Agricultural Science and Technology, 2020, 22(7): 99-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||