Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (6): 36-46.DOI: 10.13304/j.nykjdb.2021.0806
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Nan WU(), Jun YANG, Yan ZHANG, Zhengwen SUN, Dongmei ZHANG, Lihua LI, Jinhua WU, Zhiying MA, Xingfen WANG()
Received:
2021-09-13
Accepted:
2021-11-22
Online:
2022-06-15
Published:
2022-06-21
Contact:
Xingfen WANG
吴楠(), 杨君, 张艳, 孙正文, 张冬梅, 李丽花, 吴金华, 马峙英, 王省芬()
通讯作者:
王省芬
作者简介:
吴楠 E-mail:wn2013@126.com;
基金资助:
CLC Number:
Nan WU, Jun YANG, Yan ZHANG, Zhengwen SUN, Dongmei ZHANG, Lihua LI, Jinhua WU, Zhiying MA, Xingfen WANG. Overexpression of a Cotton Glucuronokinase Gene GbGlcAK Promotes Cell Elongation in Arabidopsis thaliana[J]. Journal of Agricultural Science and Technology, 2022, 24(6): 36-46.
吴楠, 杨君, 张艳, 孙正文, 张冬梅, 李丽花, 吴金华, 马峙英, 王省芬. 过表达棉花葡萄糖醛酸激酶基因GbGlcAK促进拟南芥细胞伸长[J]. 中国农业科技导报, 2022, 24(6): 36-46.
引物名称 Primer names | 登录号 Accession No. | 引物序列 Primer sequences (5’-3’) | 用途 Purpose |
---|---|---|---|
GlcAK-F | — | TGGTATTGGCTTGGTGCAGT | 基因克隆 Gene cloning |
GlcAK-R | CAAAAACAATCCCTAAAATGCTCTT | ||
sGbGlcAK-R | — | GGTGGTACCCTGCTTAGACAATGT | 亚细胞定位Subcellular location |
GbGlcAK-F | — | GGCGTCTAGAATGGATCAAAATATG | 亚细胞定位和载体构建 Subcellular location and vector construction |
GbGlcAK-R | GGTACCCGCCTACTTAGACAATG | 载体构建 Vector construction | |
qGbGlcAK-F | — | CATCATCAACCCTCACCCCATTC | 拟南芥实时定量PCR Real-time PCR for A. thaliana |
qGbGlcAK-R | GCCGCATACAATAGCACTGGACC | ||
qAtGlcAK-F | AT3G01640 | GGATAGAGCATCGGTCCTTCGC | |
qAtGlcAK-R | CGCCATTAGCAACCTTACCCCA | ||
qAtMIPS-F | AT4G39800 | AAGGAGAAGAATAAGGTGGATAAGGTT | |
qAtMIPS-R | GCAATCGCATAAAGTGTTGAAGG | ||
qAtIMP-F | AT3G02870 | GACAGAGACTGATAAAGGATGTGAAGA | |
qAtIMP-R | AGGGAACCCGTGAACGAAAT | ||
qAtMIOX-F | AT4G26260 | CGAAGCCATCCGCAAAGATTACC | |
qAtMIOX-R | CCAACAACAGCCCATTGAGGAAGTC | ||
qAtPGM-F | AT1G23190 | GCTACCTACGGTCGTCACTATTACACTCG | |
qAtPGM-R | GTAACGGATTCCCTGGTGCTTCG | ||
qAtUGP-F | AT5G17310 | GCCCAGCAAGGGAAAGACCG | |
qAtUGP-R | CGATGGCACCCAAGTTGTCTGAAT | ||
qAtUGD-F | AT5G15490 | GATTGCGGTTCTCGGCTTCG | |
qAtUGD-R | TGCTTCACAGTGGTGGGGCTC | ||
qAtUXS-F | AT5G59290 | TGAGAAGAATGAGGTGGTTGTTGC | |
qAtUXS-R | GGTTGTATTTGTAGAAGATAGGAGAGGC | ||
qAtGAE-F | AT3G23820 | GCGACGGCGGATACAAGCA | |
qAtGAE-R | GATGGCGAAGATGAGGACGAGG | ||
qAtUB5-F | AT3G62250 | CCTCGCCGACTACAACATCCAG | |
qAtUB5-R | CTTCTTCCTCTTCTTAGCACCACCA |
Table 1 PCR and qPCR primers used in this study
引物名称 Primer names | 登录号 Accession No. | 引物序列 Primer sequences (5’-3’) | 用途 Purpose |
---|---|---|---|
GlcAK-F | — | TGGTATTGGCTTGGTGCAGT | 基因克隆 Gene cloning |
GlcAK-R | CAAAAACAATCCCTAAAATGCTCTT | ||
sGbGlcAK-R | — | GGTGGTACCCTGCTTAGACAATGT | 亚细胞定位Subcellular location |
GbGlcAK-F | — | GGCGTCTAGAATGGATCAAAATATG | 亚细胞定位和载体构建 Subcellular location and vector construction |
GbGlcAK-R | GGTACCCGCCTACTTAGACAATG | 载体构建 Vector construction | |
qGbGlcAK-F | — | CATCATCAACCCTCACCCCATTC | 拟南芥实时定量PCR Real-time PCR for A. thaliana |
qGbGlcAK-R | GCCGCATACAATAGCACTGGACC | ||
qAtGlcAK-F | AT3G01640 | GGATAGAGCATCGGTCCTTCGC | |
qAtGlcAK-R | CGCCATTAGCAACCTTACCCCA | ||
qAtMIPS-F | AT4G39800 | AAGGAGAAGAATAAGGTGGATAAGGTT | |
qAtMIPS-R | GCAATCGCATAAAGTGTTGAAGG | ||
qAtIMP-F | AT3G02870 | GACAGAGACTGATAAAGGATGTGAAGA | |
qAtIMP-R | AGGGAACCCGTGAACGAAAT | ||
qAtMIOX-F | AT4G26260 | CGAAGCCATCCGCAAAGATTACC | |
qAtMIOX-R | CCAACAACAGCCCATTGAGGAAGTC | ||
qAtPGM-F | AT1G23190 | GCTACCTACGGTCGTCACTATTACACTCG | |
qAtPGM-R | GTAACGGATTCCCTGGTGCTTCG | ||
qAtUGP-F | AT5G17310 | GCCCAGCAAGGGAAAGACCG | |
qAtUGP-R | CGATGGCACCCAAGTTGTCTGAAT | ||
qAtUGD-F | AT5G15490 | GATTGCGGTTCTCGGCTTCG | |
qAtUGD-R | TGCTTCACAGTGGTGGGGCTC | ||
qAtUXS-F | AT5G59290 | TGAGAAGAATGAGGTGGTTGTTGC | |
qAtUXS-R | GGTTGTATTTGTAGAAGATAGGAGAGGC | ||
qAtGAE-F | AT3G23820 | GCGACGGCGGATACAAGCA | |
qAtGAE-R | GATGGCGAAGATGAGGACGAGG | ||
qAtUB5-F | AT3G62250 | CCTCGCCGACTACAACATCCAG | |
qAtUB5-R | CTTCTTCCTCTTCTTAGCACCACCA |
Fig. 1 Characterization of GbGlcAK proteinA: Hydrophilic/hydrophobic distribution curve of the GbGlcAK peptide analyzed by ProtScale; B, C: Transmembrane region prediction of the GbGlcAK amino acid sequence by TOPpred2 and TMHMM 2.0; D: Signal peptide analysis of the GbGlcAK protein
Fig.2 Evolutionary analysis of GbGlcAKNote: Rc—Ricinus communis; Pt—Populus trichocarpa; Vv—Vitis vinifera; At—Arabidopsis thaliana; Gm—Glycine max; Os—Oryza sativa; Zm—Zea mays; Sb—Sorghum bicolor.
Fig. 3 Subcellular localization of GbGlcAKA, B, C: Cell transfected with pCam::GFP under Blu-ray, visible light superimposed Blu-ray, and visible light; D, E, F: Cell transfected with pCam::GbGlcAK-GFP under Blu-ray, visible light superimposed Blu-ray, and visible light after plasma-wall separation
Fig. 5 Analysis of hypocotyl length in transgenic A. thalianaA, B: Comparison of hypocotyl length between transgenic and wild-type Arabidopsis; C: Microscopic observation of hypocotyl cells; ** indicates significant difference at the P<0.01 level (2-tailed t-test);white arrows show the ends of cells
1 | 喻树迅,魏晓文,赵新华.中国棉花生产与科技发展 [J].棉花学报, 2000, 12(6): 327-329. |
YU S X, WEI X W, ZHAO X H. Cotton production and technical development in China [J]. Acta Gossypii Sin., 2000, 12(6): 327-329. | |
2 | MA Z, ZHANG Y, WU L, et al.. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement [J]. Nat. Genet., 2021, 53(9): 1385-1391. |
3 | BASRA A S, MALIK C P. Development of the cotton fiber [J]. Int. Rev. Cytol., 1984, 89(6): 65-113. |
4 | HAIGLER C H, BETANCUR L, STIFF M R, et al.. Cotton fiber: a powerful single-cell model for cell wall and cellulose research [J/OL]. Front. Plant Sci., 2012, 3: 104 [2021-11-09]. . |
5 | QIN Y M, ZHU Y X. How cotton fibers elongate: a tale of linear cell-growth mode [J]. Curr. Opin. Plant Biol., 2011, 14(1): 106-111. |
6 | SINGH B, AVCI U, EICHLER INWOOD S E, et al.. A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles [J]. Plant Physiol., 2009, 150(2): 684-699. |
7 | ZABLACKIS E, JING H, MüLLER B, et al.. Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves [J]. Plant Physiol., 1995, 107(4): 1129-1138. |
8 | KANTER U, USADEL B, GUERINEAU F, et al.. The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides [J]. Planta, 2005, 221(2): 243-254. |
9 | LOEWUS F A, KELLY S, NEUFELD E F. Metabolism of myo-inositol in plants: conversion to pectin, hemicellulose, D-xylose, and sugar acids [J]. Proc. Natl. Acad. Sci. USA, 1962, 48(3): 421-425. |
10 | NEUFELD E F, FEINGOLD D S, HASSID W Z. Enzymic phosphorylation of D-glucuronic acid by extracts from seedlings of Phaseolus aureus [J]. Arch. Biochem. Biophys., 1959, 83(1): 96-100. |
11 | LEIBOWITZ M D, DICKINSON D B, LOEWUS F A, et al.. Partial purification and study of pollen glucuronokinase [J]. Arch. Biochem. Biophys., 1977, 179(2): 559-564. |
12 | PIESLINGER A M, HOEPFLINGER M C, TENHAKEN R. Nonradioactive enzyme measurement by high-performance liquid chromatography of partially purified sugar-1-kinase (glucuronokinase) from pollen of Lilium longiflorum [J]. Anal. Biochem., 2009, 388(2): 254-259. |
13 | PIESLINGER A M, HOEPFLINGER M C, TENHAKEN R. Cloning of Glucuronokinase from Arabidopsis thaliana, the last missing enzyme of the myo-inositol oxygenase pathway to nucleotide sugars [J]. J. Biol. Chem., 2010, 285(5): 2902-2910. |
14 | HOLDEN H M, THODEN J B, TIMSON D J, et al.. Galactokinase: structure, function and role in type Ⅱ galactosemia [J]. Cell. Mol. Life Sci., 2004, 61(19-20): 2471-2484. |
15 | XIAO W, HU S, ZHOU X, et al.. A glucuronokinase gene in Arabidopsis, AtGlcAK, is involved in drought tolerance by modulating sugar metabolism [J]. Plant Mol. Biol. Rep., 2017, 35(2): 1-14. |
16 | IVANOV KAVKOVA E, BLöCHL C, TENHAKEN R. The Myo-inositol pathway does not contribute to ascorbic acid synthesis [J]. Plant Biol., 2019, 21 (): 95-102. |
17 | LIU Z, WANG X, SUN Z, et al.. Evolution, expression and functional analysis of cultivated allotetraploid cotton DIR genes [J/OL]. BMC Plant Biol., 2021, 21(1): 89[2022-03-07]. . |
18 | WANG Z, YANG Z, LI F. Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton [J]. Plant Biotechnol. J., 2019, 17(9): 1706-1722. |
19 | 吴立柱,王省芬,李喜焕,等.通用型植物表达载体pCamE的构建及功能验证[J].农业生物技术学报, 2014, 22(6): 661-671. |
WU L Z, WANG X F, LI X H, et al.. Construction and function identification of universal plant expression vector pCamE [J]. J. Agric. Biotechnol., 2014, 22(6): 661-671. | |
20 | WANG M, TU L, YUAN D, et al.. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense [J]. Nat. Genet., 2019, 51(2): 224-229. |
21 | MISTRY J, CHUGURANSKY S, WILLIAMS L, et al.. Pfam: The protein families database in 2021 [J]. Nucleic Acids Res., 2021, 49(D1): D412-D419. |
22 | ARTIMO P, JONNALAGEDDA M, ARNOLD K, et al.. ExPASy: SIB bioinformatics resource portal [J]. Nucleic Acids Res., 2012, 40(W1): W597-W603. |
23 | CUTHBERTSON J M, DOYLE D A, SANSOM M S. Transmembrane helix prediction: a comparative evaluation and analysis [J]. Protein Eng. Des. Sel., 2005, 18(6): 295-308. |
24 | KROGH A, LARSSON B, GVON HEIJNE, et al.. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes [J]. J. Mol. Biol., 2001, 305(3): 567-580. |
25 | MÖLLER S, CRONING M D, APWEILER R. Evaluation of methods for the prediction of membrane spanning regions [J]. Bioinformatics, 2001, 17(7): 646-653. |
26 | ALMAGRO ARMENTEROS J J, TSIRIGOS K D, SøNDERBY C K, et al.. SignalP 5.0 improves signal peptide predictions using deep neural networks [J]. Nat. Biotechnol., 2019, 37(4): 420-423. |
27 | KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Mol. Biol. Evol., 2016, 33(7): 1870-1874. |
28 | YANG J, JI L, WANG X, et al.. Overexpression of 3-deoxy-7-phosphoheptulonate synthase gene from Gossypium hirsutum enhances Arabidopsis resistance to Verticillium wilt [J]. Plant Cell Rep., 2015, 34(8): 1429-1441. |
29 | CHEN H, NELSON R S, SHERWOOD J L. Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection [J]. Biotechniques, 1994, 16(4): 664-668, 670. |
30 | CLOUGH S J, BENT A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J]. Plant J., 1998, 16(6): 735-743. |
31 | An C, Wang C, Mou Z. The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121 [J]. New Phytol., 2017, 214(3): 1245-1259. |
32 | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CT method [J]. Methods, 2001, 25(4): 402-408. |
33 | JEAN-MARC L, TRUNG-BIEU N, BRIGITTE C, et al.. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generations [J]. BMC Plant Biol., 2005, 45(1): 123-140. |
34 | SERNA L, MARTIN C. Trichomes: different regulatory networks lead to convergent structures [J]. Trends Plant Sci., 2006, 11(6): 274-280. |
35 | GUAN X, YU N, SHANGGUAN X, et al.. Arabidopsis trichome research sheds light on cotton fiber development mechanisms [J]. Chin Sci. Bull., 2007, 52(13): 1734-1741. |
36 | GUAN X, PANG M, NAH G, et al.. miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development [J/OL]. Nat. Commun., 2014, 5: 3050[2022-03-07]. . |
37 | MA Z, HE S, WANG X, et al.. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield [J]. Nat. Genet., 2018, 50(6): 803-813. |
38 | GENDREAU E, TRAAS J, DESNOS T, et al.. Cellular basis of hypocotyl growth in Arabidopsis thaliana [J]. Plant Physiol., 1997, 114(1): 295-305. |
39 | BORON A K, VISSENBERG K. The Arabidopsis thaliana hypocotyl, a model to identify and study control mechanisms of cellular expansion [J]. Plant Cell Rep., 2014, 33(5): 697-706. |
40 | 武耀廷,刘进元.棉纤维细胞发育过程中非纤维素多糖的生物合成 [J].棉花学报, 2004, 16(3): 189-192. |
WU Y, LIU J. Noncellulosic polysaccharides biosynthesis in cotton fiber developing [J]. Cotton Sci., 2004, 16(3): 189-193. | |
41 | 喻树迅,朱玉贤,陈晓亚.棉花纤维发育生物学 [M].北京:科学出版社, 2016: 169. |
42 | KROH M, MIKI-HIROSIGE H, ROSEN W, et al.. Incorporation of label into pollen tube walls from myoinositol-labeled Lilium longiflorum pistils [J]. Plant Physiol., 1970, 45(1): 92-94. |
43 | SEITZ B, KLOS C, WURM M, et al.. Matrix polysaccharide precursors in Arabidopsis cell walls are synthesized by alternate pathways with organ-specific expression patterns [J]. Plant J., 2000, 21(6): 537-546. |
[1] | Lijuan ZHANG, Yukun QIN, Huihuang CHENG, Yongqi LI, Haihua LUO. Research on Characteristics of Nitrogen and Phosphorus Loss from Surface Runoff of Cotton Field in Northern Jiangxi Province of Poyang Lake Region [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 166-175. |
[2] | Yajie HUANG, Dan REN, Shengmei LI, Jinxin CUI, Tao YANG, Jiaojiao REN, Wenwei GAO. Evaluation and Screening of Salt and Alkali Tolerance Indices of Upland Cotton Seedlings [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 46-55. |
[3] | Yuqing ZHOU, Yongfei YANG, Changwei GE, Qian SHEN, Siping ZHANG, Shaodong LIU, Huijuan MA, Jing CHEN, Ruihua LIU, Shicong LI, Xinhua ZHAO, Cundong LI, Chaoyou PANG. Identification of Cold-related Co-expression Modules in Cotton Cotyledon by WGCNA [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 52-62. |
[4] | LIU Zhengwen, WANG Xingfen, MENG Chengsheng, ZHANG Yan, SUN Zhengwen, WU Liqiang, MA Zhiying, ZHANG Guiyin. Genome-Wide Identification and Analysis of GH9 Gene Family in Gossypium barbadense L. [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 30-45. |
[5] | LI Shengmei, ZHANG Dawei, DILIBAIER Dilimaimaiti, WEI Xin, RUI Cun, YANG Tao, GENG Shiwei, GAO Wenwei. Influence of Reduced Irrigation on Agronomic Traits, Yield and Fiber Quality of Transgenic ScALDH21 Cotton [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 152-159. |
[6] | XIN Minghua§, WANG Zhanbiao§, HAN Yingchun, FAN Zhengyi, FENG Lu, YANG Beifang, LI Xiaofei, WANG Guoping, LEI Yaping, XING Fangfang, XIONG Shiwu, LI Yabing. Review, Status and Measures of Xinjiang Machine-picked Cotton [J]. Journal of Agricultural Science and Technology, 2021, 23(7): 11-20. |
[7] | CHEN Yuan, LIU Zhenyu, ZHOU Mingyuan, ZHANG Chenxia, TIAN Qiaofeng, ZHANG Zhongning, ZHANG Xiang, CHEN Dehua. Effect of Planting Density on the Expression of Insecticidal Protein and Nitrogen Metabolism in the Fiber of Bt Transgenic Cotton [J]. Journal of Agricultural Science and Technology, 2021, 23(7): 45-53. |
[8] | ZHANG Xu1, HE Junfeng1, CHEN Fowen1, LI Jifu1*, WU Qixia1, Tan Jinghong1, ZOU Jialong2. Influences of Wheat Straw Returning on the Yield and Nitrogen Uptake of Direct-Seeding and Transplanting Cotton [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 122-131. |
[9] | ZHANG Te, KANG Zhenghua, ZHAO Qiang*, NIE Zhiyong, WANG Mifeng, CUI Yannan. Impacts of Nitrogen Application Rate and Topping Methods on Nutrient Accumulation, Distribution and Yield of Cotton#br# [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 139-147. |
[10] |
MA Panpan1,2, ZHAO Zengqiang1,2, ZHU Jianbo2, SUN Guoqing3*.
Physiological and Molecular Mechanisms of Drought and Salt Tolerance in Cotton
[J]. Journal of Agricultural Science and Technology, 2021, 23(2): 27-36.
|
[11] | WANG Guoning, ZHANG Yan, SONG Junli, YANG Jun, WANG Xingfen, WU Liqiang, ZHANG Guiyin. Identification and Analysis of Stem lncRNAs from Resistant Gossypium hirsutum Under Verticillium Wilt Stress [J]. Journal of Agricultural Science and Technology, 2021, 23(12): 29-41. |
[12] | WU Xueqin, CUI Yannan, ZHAO Qiang. Effects of Exogenous Substance on Defoliation Ripening, Yield and Quality after Chemical Topping of cotton [J]. Journal of Agricultural Science and Technology, 2021, 23(12): 151-160. |
[13] | ZHANG Na, FENG Lu, MA Yunzhen, LI Ling, FAN Zhengyi, LI Xiaofei, YANG Beifang, WAN Sumei, LI Yabing, XU Wenxiu. Influence of Planting Density on the Agronomic Characteristics and Yield of Machine Picked Cotton in Southern Xinjiang [J]. Journal of Agricultural Science and Technology, 2021, 23(11): 172-180. |
[14] | LI Jinglin, LIU Shaodong, ZHANG Siping, CHEN Jing, LIU Ruihua, SHEN Qian, LI Yang, MA Huijuan, ZHAO Xinhua, PANG Chaoyou. Identification of Drought Tolerance During Whole Growth Period in Cotton Germplasm Resources and Resistance Index Screening [J]. Journal of Agricultural Science and Technology, 2021, 23(10): 52-65. |
[15] | TAN Jinghong, WU Qixia*, ZHU Jianqiang, KE Xinyao, MA Hongyu. Study on the Optimal Nitrogen Application Rate for Transplanted Cotton following Wheat Harvest in Jianghan Plain [J]. Journal of Agricultural Science and Technology, 2020, 22(9): 122-131. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||