Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (8): 65-73.DOI: 10.13304/j.nykjdb.2021.0621
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Shengchuan LIU1(), Yingfen XU1, Jie WEI2, Donghai YAN2, Zhixiong CHEN1, lin XU1, Yan LIU1(
), Yufeng ZHOU2(
)
Received:
2021-07-28
Accepted:
2021-09-22
Online:
2022-08-15
Published:
2022-08-22
Contact:
Yan LIU,Yufeng ZHOU
刘声传1(), 许应芬1, 魏杰2, 鄢东海2, 陈智雄1, 徐霖1, 刘燕1(
), 周玉锋2(
)
通讯作者:
刘燕,周玉锋
作者简介:
刘声传E-mail:gtscliu@163.com
基金资助:
CLC Number:
Shengchuan LIU, Yingfen XU, Jie WEI, Donghai YAN, Zhixiong CHEN, lin XU, Yan LIU, Yufeng ZHOU. Analysis of Genetic Diversity of Albino Tea Cultivars (Strains) Using 2b-RAD Technology[J]. Journal of Agricultural Science and Technology, 2022, 24(8): 65-73.
刘声传, 许应芬, 魏杰, 鄢东海, 陈智雄, 徐霖, 刘燕, 周玉锋. 基于2b-RAD技术分析白化茶树品种(系)遗传多样性[J]. 中国农业科技导报, 2022, 24(8): 65-73.
品种(系)编号 Code of cultivar (strain) | 品种(系)名称 Name of cultivar (strain) | 来源 Origin | 叶片大小 Leaf size | 春季新梢叶色 Color of spring young shoot |
---|---|---|---|---|
T1 | 白叶1号 Baiye 1 | 浙江 Zhejiang | 中叶 Middle leaf | 玉白色 Jade white |
T2 | 中黄1号 Zhonghuang 1 | 浙江 Zhejiang | 中叶 Middle leaf | 鹅黄色 Goose yellow |
T3 | 景白2号 Jingbai 2 | 浙江 Zhejiang | 中叶 Middle leaf | 乳黄色 Creamy yellow |
T4 | 中黄2号 Zhonghuang 2 | 浙江 Zhejiang | 中叶 Middle leaf | 葵花黄 Sunflower yellow |
T5 | 嵊州白茶 Shengzhoubaicha | 浙江 Zhejiang | 中叶 Middle leaf | 玉白色 Jade white |
T6 | 安吉奶白 Anjinaibai | 浙江 Zhejiang | 中叶 Middle leaf | 奶白色 Milky white |
T7 | 黄金叶 Huangjinye | 浙江 Zhejiang | 中叶 Middle leaf | 金黄色 Golden yellow |
T8 | 中白1号 Zhongbai 1 | 浙江 Zhejiang | 小叶 Small leaf | 乳白色 Milky white |
T9 | 黄金芽 Huangjinya | 浙江 Zhejiang | 中叶 Middle leaf | 金黄色 Golden yellow |
T10 | 中黄3号 Zhonghuang 3 | 浙江 Zhejiang | 中叶 Middle leaf | 嫩黄色Pastel yellow |
T11 | 黄魁 Huangkui | 安徽 Anhui | 中叶 Middle leaf | 金黄色 Golden yellow |
T12 | 御金香 Yujinxiang | 浙江 Zhejiang | 中叶 Middle leaf | 黄色 Yellow |
T13 | 新安4号 Xinan4 | 浙江 Zhejiang | 中叶 Middle leaf | 奶白色Milky white |
T14 | 中白2号 Zhongbai 2 | 浙江 Zhejiang | 中叶 Middle leaf | 浅白色 Light white |
T15 | 越黄早 Yuehuangzao | 浙江 Zhejiang | 中叶 Middle leaf | 金黄色 Golden yellow |
QJY | 千江月 Qianjiangyue | 贵州 Guizhou | 小叶 Small leaf | 玉白色 Jade white |
QM815 | 黔湄815 Qianmei 815 | 贵州 Guizhou | 中叶 Middle leaf | 黄色 Yellow |
QJY2 | 千江月2号 Qianjiangyue 2 | 贵州 Guizhou | 中叶 Middle leaf | 金黄色 Golden yellow |
STL | 石苔绿 Shitailyu | 贵州 Guizhou | 中叶 Middle leaf | 绿色 Green |
TC16 | 苔茶16 Taicha 16 | 贵州 Guizhou | 中叶 Middle leaf | 黄色 Yellow |
MTB | 湄潭白 Meitanbai | 贵州 Guizhou | 大叶 Big leaf | 玉白色 Jade white |
GYL | 高原绿 Gaoyuanlyu | 贵州 Guizhou | 中叶 Middle leaf | 绿色 Green |
FD | 福鼎大白茶 Fudingdabaicha | 福建 Fujian | 中叶 Middle leaf | 黄绿色 Yellow green |
Table 1 Origin, leaf size and color of spring young shoot among 23 tea germplasms
品种(系)编号 Code of cultivar (strain) | 品种(系)名称 Name of cultivar (strain) | 来源 Origin | 叶片大小 Leaf size | 春季新梢叶色 Color of spring young shoot |
---|---|---|---|---|
T1 | 白叶1号 Baiye 1 | 浙江 Zhejiang | 中叶 Middle leaf | 玉白色 Jade white |
T2 | 中黄1号 Zhonghuang 1 | 浙江 Zhejiang | 中叶 Middle leaf | 鹅黄色 Goose yellow |
T3 | 景白2号 Jingbai 2 | 浙江 Zhejiang | 中叶 Middle leaf | 乳黄色 Creamy yellow |
T4 | 中黄2号 Zhonghuang 2 | 浙江 Zhejiang | 中叶 Middle leaf | 葵花黄 Sunflower yellow |
T5 | 嵊州白茶 Shengzhoubaicha | 浙江 Zhejiang | 中叶 Middle leaf | 玉白色 Jade white |
T6 | 安吉奶白 Anjinaibai | 浙江 Zhejiang | 中叶 Middle leaf | 奶白色 Milky white |
T7 | 黄金叶 Huangjinye | 浙江 Zhejiang | 中叶 Middle leaf | 金黄色 Golden yellow |
T8 | 中白1号 Zhongbai 1 | 浙江 Zhejiang | 小叶 Small leaf | 乳白色 Milky white |
T9 | 黄金芽 Huangjinya | 浙江 Zhejiang | 中叶 Middle leaf | 金黄色 Golden yellow |
T10 | 中黄3号 Zhonghuang 3 | 浙江 Zhejiang | 中叶 Middle leaf | 嫩黄色Pastel yellow |
T11 | 黄魁 Huangkui | 安徽 Anhui | 中叶 Middle leaf | 金黄色 Golden yellow |
T12 | 御金香 Yujinxiang | 浙江 Zhejiang | 中叶 Middle leaf | 黄色 Yellow |
T13 | 新安4号 Xinan4 | 浙江 Zhejiang | 中叶 Middle leaf | 奶白色Milky white |
T14 | 中白2号 Zhongbai 2 | 浙江 Zhejiang | 中叶 Middle leaf | 浅白色 Light white |
T15 | 越黄早 Yuehuangzao | 浙江 Zhejiang | 中叶 Middle leaf | 金黄色 Golden yellow |
QJY | 千江月 Qianjiangyue | 贵州 Guizhou | 小叶 Small leaf | 玉白色 Jade white |
QM815 | 黔湄815 Qianmei 815 | 贵州 Guizhou | 中叶 Middle leaf | 黄色 Yellow |
QJY2 | 千江月2号 Qianjiangyue 2 | 贵州 Guizhou | 中叶 Middle leaf | 金黄色 Golden yellow |
STL | 石苔绿 Shitailyu | 贵州 Guizhou | 中叶 Middle leaf | 绿色 Green |
TC16 | 苔茶16 Taicha 16 | 贵州 Guizhou | 中叶 Middle leaf | 黄色 Yellow |
MTB | 湄潭白 Meitanbai | 贵州 Guizhou | 大叶 Big leaf | 玉白色 Jade white |
GYL | 高原绿 Gaoyuanlyu | 贵州 Guizhou | 中叶 Middle leaf | 绿色 Green |
FD | 福鼎大白茶 Fudingdabaicha | 福建 Fujian | 中叶 Middle leaf | 黄绿色 Yellow green |
品种(系)编号 Code of cultivar (strain) | 原始测序数据 Raw reads | 高质量测序数据 High-quality reads | 唯一标签数量 Unique tags | 标签深度 Tags depth | |
---|---|---|---|---|---|
数量Number | 百分比Percent/% | ||||
T1 | 25 930 331 | 24 209 997 | 93.37 | 193 158 | 13.72 |
T2 | 25 930 331 | 24 287 180 | 93.66 | 220 066 | 20.88 |
T3 | 25 930 331 | 24 324 938 | 93.81 | 182 693 | 14.12 |
T4 | 25 930 331 | 24 229 648 | 93.44 | 185 629 | 15.14 |
T5 | 25 930 331 | 24 112 863 | 92.99 | 202 381 | 14.20 |
T6 | 28 672 094 | 26 914 051 | 93.87 | 214 176 | 17.59 |
T7 | 28 672 094 | 26 925 303 | 93.91 | 244 521 | 24.23 |
T8 | 28 672 094 | 27 042 229 | 94.32 | 188 659 | 16.28 |
T9 | 28 672 094 | 26 905 770 | 93.84 | 191 744 | 15.60 |
T10 | 28 672 094 | 26 907 020 | 93.84 | 188 640 | 13.63 |
T11 | 25 617 752 | 23 819 329 | 92.98 | 209 723 | 16.83 |
T12 | 25 617 752 | 23 900 413 | 93.30 | 233 180 | 18.76 |
T13 | 25 617 752 | 23 946 769 | 93.48 | 167 221 | 13.62 |
T14 | 25 617 752 | 23 897 780 | 93.29 | 163 131 | 12.24 |
T15 | 25 617 752 | 23 816 243 | 92.97 | 213 559 | 13.17 |
QJY | 28 059 160 | 26 119 037 | 93.09 | 190 092 | 14.57 |
QM815 | 28 059 160 | 26 206 494 | 93.40 | 214 296 | 23.32 |
QJY2 | 28 059 160 | 26 251 125 | 93.56 | 179 788 | 14.94 |
STL | 28 059 160 | 26 131 028 | 93.13 | 166 609 | 15.46 |
TC16 | 28 059 160 | 26 159 918 | 93.23 | 190 833 | 17.05 |
MTB | 25 031 063 | 23 363 836 | 93.34 | 181 332 | 14.18 |
GYL | 25 031 063 | 23 276 200 | 92.99 | 199 756 | 16.00 |
FD | 25 031 063 | 23 446 579 | 93.67 | 165 419 | 12.91 |
总数 Total | 616 489 874 | 576 193 750 | — | 4 486 606 | — |
平均值 Mean | 26 803 908 | 25 051 902 | 93.46 | 195 069 | 16.02 |
Table 2 Quality of sequencing library
品种(系)编号 Code of cultivar (strain) | 原始测序数据 Raw reads | 高质量测序数据 High-quality reads | 唯一标签数量 Unique tags | 标签深度 Tags depth | |
---|---|---|---|---|---|
数量Number | 百分比Percent/% | ||||
T1 | 25 930 331 | 24 209 997 | 93.37 | 193 158 | 13.72 |
T2 | 25 930 331 | 24 287 180 | 93.66 | 220 066 | 20.88 |
T3 | 25 930 331 | 24 324 938 | 93.81 | 182 693 | 14.12 |
T4 | 25 930 331 | 24 229 648 | 93.44 | 185 629 | 15.14 |
T5 | 25 930 331 | 24 112 863 | 92.99 | 202 381 | 14.20 |
T6 | 28 672 094 | 26 914 051 | 93.87 | 214 176 | 17.59 |
T7 | 28 672 094 | 26 925 303 | 93.91 | 244 521 | 24.23 |
T8 | 28 672 094 | 27 042 229 | 94.32 | 188 659 | 16.28 |
T9 | 28 672 094 | 26 905 770 | 93.84 | 191 744 | 15.60 |
T10 | 28 672 094 | 26 907 020 | 93.84 | 188 640 | 13.63 |
T11 | 25 617 752 | 23 819 329 | 92.98 | 209 723 | 16.83 |
T12 | 25 617 752 | 23 900 413 | 93.30 | 233 180 | 18.76 |
T13 | 25 617 752 | 23 946 769 | 93.48 | 167 221 | 13.62 |
T14 | 25 617 752 | 23 897 780 | 93.29 | 163 131 | 12.24 |
T15 | 25 617 752 | 23 816 243 | 92.97 | 213 559 | 13.17 |
QJY | 28 059 160 | 26 119 037 | 93.09 | 190 092 | 14.57 |
QM815 | 28 059 160 | 26 206 494 | 93.40 | 214 296 | 23.32 |
QJY2 | 28 059 160 | 26 251 125 | 93.56 | 179 788 | 14.94 |
STL | 28 059 160 | 26 131 028 | 93.13 | 166 609 | 15.46 |
TC16 | 28 059 160 | 26 159 918 | 93.23 | 190 833 | 17.05 |
MTB | 25 031 063 | 23 363 836 | 93.34 | 181 332 | 14.18 |
GYL | 25 031 063 | 23 276 200 | 92.99 | 199 756 | 16.00 |
FD | 25 031 063 | 23 446 579 | 93.67 | 165 419 | 12.91 |
总数 Total | 616 489 874 | 576 193 750 | — | 4 486 606 | — |
平均值 Mean | 26 803 908 | 25 051 902 | 93.46 | 195 069 | 16.02 |
指标Index | 类群ⅠGroupⅠ | 类群ⅡGroup Ⅱ | 类群ⅢGroup Ⅲ | |
---|---|---|---|---|
期望杂合度He | 平均 Mean | 0.088 | 0.064 | 0.058 |
变幅 Range | 0.057~0.070 | 0.045~0.082 | ||
观测杂合度Ho | 平均 Mean | 0.176 | 0.129 | 0.116 |
变幅 Range | 0.113~0.140 | 0.091~0.164 | ||
多态信息含量PIC | 平均 Mean | 0.066 | 0.048 | 0.044 |
变幅 Range | 0.042~0.053 | 0.034~0.061 | ||
有效等位基因Ne | 平均 Mean | 1.176 | 1.129 | 1.116 |
变幅 Range | 1.113~1.141 | 1.091~1.164 | ||
核苷酸多样性Pi | 平均 Mean | 0.176 | 0.129 | 0.116 |
变幅 Range | 0.113~0.140 | 0.091~0.164 |
Table 3 Summary statistic of genetic diversity for different groups of germplasm based on polygenetic tree
指标Index | 类群ⅠGroupⅠ | 类群ⅡGroup Ⅱ | 类群ⅢGroup Ⅲ | |
---|---|---|---|---|
期望杂合度He | 平均 Mean | 0.088 | 0.064 | 0.058 |
变幅 Range | 0.057~0.070 | 0.045~0.082 | ||
观测杂合度Ho | 平均 Mean | 0.176 | 0.129 | 0.116 |
变幅 Range | 0.113~0.140 | 0.091~0.164 | ||
多态信息含量PIC | 平均 Mean | 0.066 | 0.048 | 0.044 |
变幅 Range | 0.042~0.053 | 0.034~0.061 | ||
有效等位基因Ne | 平均 Mean | 1.176 | 1.129 | 1.116 |
变幅 Range | 1.113~1.141 | 1.091~1.164 | ||
核苷酸多样性Pi | 平均 Mean | 0.176 | 0.129 | 0.116 |
变幅 Range | 0.113~0.140 | 0.091~0.164 |
类群 Group | Ⅰ | Ⅱ | Ⅲ |
---|---|---|---|
Ⅰ | — | 0.12 | 0.26 |
Ⅱ | 0.12 | — | 0.11 |
Ⅲ | 0.23 | 0.10 | — |
Table 4 Pairwise Fst and genetic distance of different group
类群 Group | Ⅰ | Ⅱ | Ⅲ |
---|---|---|---|
Ⅰ | — | 0.12 | 0.26 |
Ⅱ | 0.12 | — | 0.11 |
Ⅲ | 0.23 | 0.10 | — |
1 | LIU G F, HAN Z X, FENG L, et al.. Metabolic flux redirection and transcriptomic reprogramming in the albino tea cultivar ‘Yu-Jin-Xiang’ with an emphasis on catechin production [J/OL]. Sci. Rep., 2017, 7:45062 [2021-06-10]. . |
2 | 马建强,姚明哲,陈亮.茶树种质资源研究进展[J].茶叶科学,2015,35(1):11-16. |
MA J Q, YAO M Z, CHEN L. Research progress on germplasms of tea plant (Camellia sinensis) [J]. J. Tea Sci., 2015, 35(1):11-16. | |
3 | 卢翠,沈程文.茶树白化变异研究进展[J].茶叶科学,2016,36(5):445-451. |
LU C, SHEN C W. Research progress of albino tea plant (Camellia sinensis L. O. Kuntze) [J]. J. Tea Sci., 2016, 36(5):445-451. | |
4 | RAFALSKI A. Applications of single nucleotide polymorphisms in crop genetics [J]. Curr. Opin. Plant Biol., 2002, 5(2):94-100. |
5 | 杜春芳,刘惠民,李润植,等.单核苷酸多态性在作物遗传及改良中的应用[J].遗传,2003,25(6):735-739. |
DU C F, LIU H M, LI R Z. Application of single nucleotide polymorphism in crop genetics and improvement [J]. Hereditas, 2003, 25(6):735-739. | |
6 | WANG R J, GAO X F, YANG J, et al.. Genome-wide association study to identify favorable SNP allelic variations and candidate genes that control the timing of spring bud flush of tea (Camellia sinensis) using SLAF-seq [J]. J. Agric. Food Chem., 2019, 67(37):10380-10391. |
7 | WANG S, MEYER E, MCKAY J K, et al.. 2b-RAD: a simple and flexible method for genome-wide genotyping [J]. Nat. Methods, 2012, 9(8):808-810. |
8 | DOU J, ZHAO X, FU X, et al.. Reference-free SNP calling: improved accuracy by preventing incorrect calls from repetitive genomic regions [J]. Biol. Direct., 2012, 7(7):1-9. |
9 | 卢媛,韩晴,王义发,等.基于2b-RAD技术的糯玉米品种‘沪玉糯3号’特异SNP分子标记开发[J].植物生理学报,2020,56(3):573-582. |
LU Y, HAN Q, WANG Y F, et al.. Development of SNP markers for specific identification of waxy maize variety ‘Huyunuo3’ based on 2b-RAD technique [J]. Plant Physiol. Commun., 2020, 56(3):573-582. | |
10 | 肖玉雄,王彩虹,田义轲,等.利用2b-RAD测序结合HRM分析技术开发与梨矮生性状相关的DNA分子标记[J].中国农业科学,2017,50(15):3006-3012. |
XIAO Y X, WANG C H, TIAN Y K, et al.. Development of DNA molecular markers for the dwarf trait in pear through the method of 2b-RAD sequencing and HRM analysis [J]. Sci. Agric. Sin., 2017, 50(15):3006-3012. | |
11 | 曹燕燕,刁倩楠,陈幼源,等.基于2b-RAD简化基因组测序的甜瓜遗传多样性分析[J].西北植物学报,2021,41(1):96-106. |
CAO Y Y, DIAO Q N, CHEN Y Y, et al.. Analysis of genetic diversity of melon based on 2b-RAD simplified genome sequencing [J]. Acta Bot. Bor-Occid. Sin., 2021, 41(1):96-106. | |
12 | ZHOU X, ZHANG Z C, HUANG Y B, et al.. Conservation genomics of wild red sage (Salvia miltiorrhiza) and its endangered relatives in China: population structure and interspecific relationships revealed from 2b-RAD data [J/OL]. Front. Genet., 2021, 12:688323 [2021-06-10]. . |
13 | XU L Y, WANG L Y, WEI K, et al.. High-density SNP linkage map construction and QTL mapping for flavonoid-related traits in a tea plant (Camellia sinensis) using 2b-RAD sequencing [J/OL]. BMC Genomics, 2018, 19(1):955 [2021-06-10]. . |
14 | WANG S, LIU P, LYU J, et al.. Serial sequencing of length RAD tags for cost-efficient genome-wide profiling of genetic and epigenetic variations [J/OL]. Nat. Protoc., 2016, 11(11):2189 [2021-06-10]. . |
15 | FU X J, DOU J Z, MAO J X, et al.. RAD typing: an integrated package for accurate de novo codominant and dominant RAD genotyping in mapping populations [J/OL]. PLoS One, 2013, 8(11):e79960 [2021-06-10]. . |
16 | LI R Q, LI Y R, KRISTIANSEN K, et al.. SOAP: short oligonucleotide alignment program [J]. Bioinformatics, 2008, 24(5):713-714. |
17 | WRIGHT S. Evolution and Genetics of Populations: Variability within and among Natural Populations Vol. 4 [M]. Chicago: University Chicago Press, 1978:465. |
18 | PAN Y Z, WANG X Q, SUN G L, et al.. Application of RAD sequencing for evaluating the genetic diversity of domesticated Panax notoginseng (Araliaceae) [J/OL]. PLoS One, 2016, 11(11):e0166419 [2021-06-10]. . |
19 | 王松琳,马春雷,黄丹娟,等.基于SSR标记的白化和黄化茶树品种遗传多样性分析及指纹图谱构建[J].茶叶科学,2018,38(1):58-68. |
WANG S L, MA C L, HUANG D J, et al.. Analysis of genetic diversity and construction of DNA fingerprints of chlorophyll-deficient tea cultivars by SSR markers [J]. J. Tea Sci., 2018, 38(1):58-68. | |
20 | 张明泽,姚玉仙,陈世军.黔南60份茶树种质资源遗传多样性的SSR分析[J].西北植物学报,2016,36(6):1117-1124. |
ZHANG M Z, YAO Y X, CHEN S J. Genetic diversity analysis of tea germplasm in Qiannan prefecture by SSR markers [J]. Acta Bot. Bor-Occid. Sin., 2016, 36(6):1117-1124. | |
21 | 郭燕,刘声传,曹雨,等.基于SSR标记贵州古茶树资源的遗传多样性分析及指纹图谱构建[J].西南农业学报,2016,29(3):491-497. |
GUO Y, LIU S C, CAO Y, et al.. Analysis of genetic diversity and construction of molecular fingerprinting with SSR markers for ancient tea germplasms in Guizhou [J]. Southwest China J. Agric. Sci., 2016, 29(3):491-497. | |
22 | 樊晓静,于文涛,蔡春平,等.利用SNP标记构建茶树品种资源分子身份证[J].中国农业科学,2021,54(8):1751-1760. |
FAN X J, YU W T, CAI C P, et al.. Construction of molecular ID for tea cultivars by using of single-nucleotide polymorphism (SNP) markers [J]. Sci. Agric. Sin., 2021, 54(8):1751-1760. | |
23 | 张凯歌,胡倩梅,靳志恒,等.219份甜瓜种质资源的遗传多样性分析[J].河南农业大学学报,2020,54(2):216-230. |
ZHANG K G, HU Q M, JIN Z H, et al.. Genetic diversity analysis of 219 melon germplasms [J]. J. Henan Agric. Univ., 2020, 54(2):216-230. | |
24 | 高源,王大江,王昆,等.苹果属植物种质多样性的SLAF-seq分析[J].园艺学报,2020,47(10):1869-1882. |
GAO Y, WANG D J, WANG K, et al.. Analysis of genetic diversity of apple germplasms of Malus using SLAF-seq technology [J]. Acta Hortic. Sin., 2020, 47(10):1869-1882. | |
25 | 黄福平.茶树遗传多样性分析与遗传图谱构建[D].杭州:浙江大学,2005. |
HUANG F P. Genetic diversity analysis and genetic map construction of tea tree [D]. Hangzhou: Zhejiang University, 2005. | |
26 | 周炎花.基于叶片形态和EST-SSR茶树遗传多样性与遗传演化研究[D].福州:福建农林大学,2010. |
ZHOU Y H. Genetic diversity and evolution of tea plant based on leaf morphology and EST-SSR [D]. Fuzhou: Fujian A&F University, 2010. | |
27 | TILMAN D, DAILY G C. Biodiversity and ecosystem functioning [J]. Biodiversity Ecosyst. Funct., 2009, 21(5):998-1002. |
28 | 刘声传,曹雨,鄢东海,等. 贵州野生茶树资源地理分布和形态特征与气候要素的关系[J]. 茶叶科学,2013,33(6):517-525. |
LIU S C, CAO Y, YAN D H, et al.. Geographical distribution and morphology of wild tea germplasm resources in Guizhou and its relationship with climatic factors [J]. J. Tea Sci., 2013,33(6):517-525. | |
29 | BROWN A. The estimation of Wright’s fixation index from genotypic frequencies [J]. Genetica, 1970, 41(3):399-406. |
30 | VRANCKX A H, JACQUEMYN H, MUYS B, et al.. Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation [J]. Conserv. Biol., 2012, 26(2):228-237. |
31 | 陈亮,虞富莲,杨亚军.茶树种质资源与遗传改良[M].北京:中国农业科学技术出版社, 2006:26-27. |
32 | 鄢东海.贵州茶树种质资源研究进展及野生茶树资源调查[J].贵州农业科学,2009,37(7):184-187. |
YAN D H. Research progress on tea germplasm resources and investigation of wild tea resource in Guizhou [J]. Guizhou Agric. Sci., 2009, 37(7):184-187. |
[1] | Qing LU, Ting LIANG, Weiwei WANG, Dezhou WANG, Xian WU, Xiaoyan WANG, Yimiao TANG. Cloning and Expression Analysis of Wheat Heat Shock Protein Gene TaHSP90-1 [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 44-54. |
[2] | Chenke CUI, Tao LIN, Yanbo AN, Peng CUI. Genetic Diversity Analysis of Different Characteristics of Sweetpotato Varieties by ISSR Molecular Marker [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 68-75. |
[3] | Ruixia WANG, Xiaoling ZHAI, Yugang LI, Qiuhuan MU, Yingying SUN, Xianyin SUN, Yong MI, Guangde LYU, Hongmei GE, Zhaoguo QIAN. Genetic Composition of Taishan 22 Using High-density 90K SNP Array [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 21-29. |
[4] | Xixi ZUO, Yingjie SONG, Xinyan MA, Yunhui YANG, Yifei WANG, Zeguang GUO, Xiongzhi ZHU, Yue LIU. Mining SSR Loci and Analysis the Genetic Diversity of Tartary Buckwheat Based on the Whole Genome Sequence [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 38-51. |
[5] | YU Haitian, LYU Meiyuan, WAN Shuwei, YANG Feng, HU Chaoqin, YANG Xin, ZHANG Xiaoyan, WANG Yubao, HE Chunhua, LIN Deming, WANG Liping. Genetic Diversity Analysis of Indian Chickpea (Cicer arietinum L.) Resources and Screening of Excellent Germplasm [J]. Journal of Agricultural Science and Technology, 2021, 23(7): 54-64. |
[6] | LI Danyang, SUN Lingwei, WU Caifeng, ZHANG Shushan, ZHANG Defu, DAI Jianjun. SSR Genetic Diversity Analysis of Yangtze River Delta White Goats from Conservation Populations [J]. Journal of Agricultural Science and Technology, 2021, 23(10): 74-81. |
[7] | LIU Lihua§, LIU Yangna§, ZHANG Mingming, LI Hongbo, PANG Binshuang*, ZHAO Changping*. Construction and Comparative Analysis of SNP and SSR Fingerprints of 75 Wheat Cultivars in China [J]. Journal of Agricultural Science and Technology, 2020, 22(5): 15-23. |
[8] | LI Yang1,2, ZOU Junjie2, YU Jia2, XU Yu2,3, XU Miaoyun2, LUO Hongfa1*, WANG Lei2*. Construction of Maize Near-Isogenic Lines and Its Application [J]. Journal of Agricultural Science and Technology, 2019, 21(12): 14-22. |
[9] | WANG Xiangdong1, WANG Yongcun1, MA Yanzhi2*, SONG Yushuang2,3, FU Lijun1, LI Jiayao2. Application of ISSR in Genetic Diversity Analysis of Zingiber officinale Rosc.#br# [J]. Journal of Agricultural Science and Technology, 2018, 20(7): 42-47. |
[10] | WANG Jin, LI Yu-rong*, ZHANG Jia-nan, CHENG Zeng-shu, CHEN Si-long, SONG Ya-hui,. Identification of Drought Resistance in Peanut (Arachis hypogaea L.) Main Cultivar in China and Analysis of its Genetic Diversity [J]. , 2015, 17(1): 57-64. |
[11] | ZHANG San-yan1,2, MA Rui2, SHI Peng-jun2, HUANG Huo-qing2, XU Bo1*. Preliminary Studies on Genetic Diversity of L-arabinose Isomerase in Sheep Rumen Bacteria [J]. , 2015, 17(1): 95-101. |
[12] | LI Peng-fei, HUO Xiu-ai, CHENG Yong-qiang, DAI Liang, YANG Bing-yan, DUAN Hui-ju. Assessment of Genetic Diversity in Watermelon Based on SRAP Analysis [J]. , 2013, 15(2): 89-96. |
[13] | CONG Xiao-fei, DING Jun*, CHANG Ya-qing. Development and Polymorphism Analysis of SNP |Marker in LYZ of Strongylocentrotus intermedius [J]. , 2012, 14(5): 136-144. |
[14] | HUA Wei, WANG Han-zhong. Application Prospect of SNP Array in Rapeseed Molecular Breeding [J]. , 2011, 13(5): 9-12. |
[15] | WANG Yan-jiu1,2, WANG Chang-fa1, JU Zhi-hua1, HUANG Jin-ming1, LI Jian-bin1, LI . Polymorphisms Analysis of HSF1 and HSBP1 in Cattle [J]. , 2011, 13(3): 67-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||