Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (1): 100-108.DOI: 10.13304/j.nykjdb.2021.1002
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Fangliang LI(), Qingbo KONG(
), Qing ZHANG
Received:
2021-11-25
Accepted:
2022-04-15
Online:
2023-01-15
Published:
2023-04-17
Contact:
Qingbo KONG
通讯作者:
孔庆波
作者简介:
栗方亮 E-mail:lifl007@qq.com;
基金资助:
CLC Number:
Fangliang LI, Qingbo KONG, Qing ZHANG. Estimation Models of Phosphorus Contents in Guanxi Honey Pomelo Leaves Based on Hyperspectral Data[J]. Journal of Agricultural Science and Technology, 2023, 25(1): 100-108.
栗方亮, 孔庆波, 张青. 基于高光谱的琯溪蜜柚叶片磷素含量估算模型研究[J]. 中国农业科技导报, 2023, 25(1): 100-108.
Fig. 1 Correlation between P contents and original spectral reflectance of honey pomelo leavesNote: The solid line in the figure indicates the P<0.01 test level, and the dotted line indicates the P<0.05 test level.
Fig. 2 Correlation between P contents and first-order spectral reflectance of honey pomelo leavesNote: The solid line in the figure indicates the P<0.01 test level, and the dotted line indicates the P<0.05 test level.
高光谱参数 Hyperspectal parameters | 高光谱参数 Hyperspectal parameters | 估测模型 Estimation model | R2 |
---|---|---|---|
原始光谱反射率 Original spectral reflectance 一阶微分光谱反射率 First order differential spectral reflectance 差值植被指数 Difference vegetation index(DVI) 比值植被指数 Ratio vegetation index (RVI) 归一化植被指数 Normalized difference vegetation index (NDVI) | R549 R718 R′528 R′703 R′591 DVI549,718 DVI′528,703 DVI′528,591 DVI′591,703 RVI549,718 RVI′528,703 RVI′528,591 RVI′591,703 NDVI549,718 NDVI′528,703 NDVI′528,591 NDVI′591,703 | y=1.235+1.058x y=1.311-0.215x+1.522x2 y=1.224+63.371x+7 557.861x2 y=1.216+7.188x+1 090.415x2 y=1.229-431.775x+31 262.4x2 y=1.390+1.646x+8.793x2 y=1.176-18.666x+1 428.425x2 y=1.177+92.916x y=1.207-9.167x+886.813x2 y=0.480+4.017x-3.597x2 y=0.296+8.543x-13.194x2 y=e0.133-1.127/x y=1.145-1.722x+129.981x2 y=1.720-0.041x-1.341x2 y=0.69-4.494x-4.989x2 y=2.415-2.431x+1.185x2 y=28.369+55.163x+27.954x2 | 0.380 0.385 0.347 0.275 0.430 0.150 0.221 0.373 0.289 0.510 0.278 0.182 0.563 0.530 0.265 0.242 0.564 |
Table 1 Univariate estimation models of honey pomelo leaves P contents
高光谱参数 Hyperspectal parameters | 高光谱参数 Hyperspectal parameters | 估测模型 Estimation model | R2 |
---|---|---|---|
原始光谱反射率 Original spectral reflectance 一阶微分光谱反射率 First order differential spectral reflectance 差值植被指数 Difference vegetation index(DVI) 比值植被指数 Ratio vegetation index (RVI) 归一化植被指数 Normalized difference vegetation index (NDVI) | R549 R718 R′528 R′703 R′591 DVI549,718 DVI′528,703 DVI′528,591 DVI′591,703 RVI549,718 RVI′528,703 RVI′528,591 RVI′591,703 NDVI549,718 NDVI′528,703 NDVI′528,591 NDVI′591,703 | y=1.235+1.058x y=1.311-0.215x+1.522x2 y=1.224+63.371x+7 557.861x2 y=1.216+7.188x+1 090.415x2 y=1.229-431.775x+31 262.4x2 y=1.390+1.646x+8.793x2 y=1.176-18.666x+1 428.425x2 y=1.177+92.916x y=1.207-9.167x+886.813x2 y=0.480+4.017x-3.597x2 y=0.296+8.543x-13.194x2 y=e0.133-1.127/x y=1.145-1.722x+129.981x2 y=1.720-0.041x-1.341x2 y=0.69-4.494x-4.989x2 y=2.415-2.431x+1.185x2 y=28.369+55.163x+27.954x2 | 0.380 0.385 0.347 0.275 0.430 0.150 0.221 0.373 0.289 0.510 0.278 0.182 0.563 0.530 0.265 0.242 0.564 |
回归模型方式 Regression model method | R2 | RMSE | RE/% | |
---|---|---|---|---|
单变量回归 Univariate regression | NDVI′591,703 | 0.649 1 | 0.17 | 9.50 |
RVI′591,703 | 0.648 7 | 0.17 | 9.48 | |
NDVI549,718 | 0.602 3 | 1.23 | 8.56 | |
RVI549,718 | 0.606 7 | 0.15 | 8.51 | |
偏最小二乘法PLS | 0.749 9 | 0.14 | 7.11 | |
BP神经网络BPNN | 0.775 9 | 0.13 | 6.99 |
Table 2 Comparison of fitting accuracy between measured and estimated P contents of honey pomelo leaves
回归模型方式 Regression model method | R2 | RMSE | RE/% | |
---|---|---|---|---|
单变量回归 Univariate regression | NDVI′591,703 | 0.649 1 | 0.17 | 9.50 |
RVI′591,703 | 0.648 7 | 0.17 | 9.48 | |
NDVI549,718 | 0.602 3 | 1.23 | 8.56 | |
RVI549,718 | 0.606 7 | 0.15 | 8.51 | |
偏最小二乘法PLS | 0.749 9 | 0.14 | 7.11 | |
BP神经网络BPNN | 0.775 9 | 0.13 | 6.99 |
1 | 平和地方志研究室.平和年鉴(2020)[C].福州:海峡书局, 2021:167. |
2 | 叶林蔚,唐荣年,李创.基于AE-FFNN神经网络的橡胶树叶片磷含量定性研究[J].中国农业科技导报,2021,23(7):117-124. |
YE L W, TANG R N, LI C. Qualitative study on phosphorus content in rubber leaves based on AE-FFNN neural work [J]. J. Agric. Sci. Technol., 2021,23 (7):117-124. | |
3 | SIEDLISKA A, BARANOWSKI P, PASTUSZKA-WOŹNIAK J, et al.. Identification of plant leaf phosphorus content at different growth stages based on hyperspectral reflectance [J]. BMC Plant Biol., 2021, 21(1):28-45. |
4 | 李岚涛,汪善勤,任涛,等.基于高光谱的冬油菜叶片磷含量诊断模型[J].农业工程学报,2016,32(14):209-218. |
LI L T, WANG S Q, REN T, et al.. Evaluating models of leaf phosphorus content of winter oilseed rape based on hyperspectral data [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(14): 209-218. | |
5 | VIÉGAS I D J M, CORDEIRO R A M, ALMEIDA G M D, et al.. Growth and visual symptoms of nutrients deficiency in Mangos teens (Garcinia mangostana L.) [J]. Am. J. Plant Sci., 2018,5:1014-1028. |
6 | DUNN B L, SINGH H, PAYTON M, et al.. Effects of nitrogen, phosphorus, and potassium on SPAD-502 and at LEAF sensor readings of Salvia [J]. J. Plant Nutr., 2018,41(13):1674-1683. |
7 | 栗方亮,孔庆波,张青.光谱分析技术在作物氮素诊断上的应用研究进展[J].江西农业学报,2020,32(9):6-12. |
LI F L, KONG Q B, ZHANG Q. Research progress in application of spectral analysis technology in crop nitrogen diagnosis [J]. Acta Agric. Jiangxi, 2020, 32(9):6-12. | |
8 | KOVAR M, BRESTIC M, SYTAR O, et al.. Evaluation of hyperspectral reflectance parameters to assess the leaf water content in soybean [J]. Water, 2019, 443(11):443-456. |
9 | LI F, WANG L, LIU J, et al.. Evaluation of leaf N concentration in winter wheat based on discrete wavelet transform analysis [J]. Remote Sens., 2019, 11(11): 1331-1341. |
10 | SYTAR O, ZIVCAK M, NEUGART S, et al.. Assessment of hyperspectral indicators related to the content of phenolic compounds and multispectral fluorescence records in chicory leaves exposed to various light environments [J]. Plant Physiol. Biochem., 2020,154: 429-438. |
11 | WANG J, WANG T, SKIDMORE A K, et al.. Evaluating different methods for grass nutrient estimation from canopy hyperspectral reflectance [J]. Remote Sens., 2015,7(5): 5901-5917. |
12 | MAHAJAN G R, SAHOO R N, PANDEY R N, et al.. Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.) [J]. Precision Agric., 2014,15: 499-522. |
13 | 冯海宽,杨福芹,李振海,等.最优权重组合模型和高光谱估算苹果叶片全磷含量[J].农业工程学报,2016,32(7):173-180. |
FENG H K, YANG F Q, LI Z H, et al.. Hyperspectral estimation of leaf total phosphorus content in apple tree based on optimal weights combination model [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(7): 173-180. | |
14 | 程立真,朱西存,高璐璐,等.基于随机森林模型的苹果叶片磷素含量高光谱估测[J].果树学报,2016,33(10):1219-1229. |
CHENG L Z, ZHU X C, GAO L L, et al.. Hyperspectral estimation of phosphorus content for apple leaves based on the random forest model [J]. J. Fruit Sci., 2016,33(10):1219-1229. | |
15 | LIU J, HAN J C, CHEN X, et al.. Nondestructive detection of rape leaf chlorophyll level based on Vis-NIR spectroscopy [J/OL]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 222: 117202 [2022-10-22]. 2. |
16 | 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学技术出版社,2000:312-314. |
LU R K. Agrochemical Analysis Methods of Soil [M]. Beijing: China Agricultural Science and Technology Press, 2000: 312-314. | |
17 | 刘冰峰,李军,贺佳.玉米叶片全磷含量高光谱遥感监测诊断模型研究[J].农业机械学报,2015,46(8):252-280. |
LIU B F, LI J, HE J. Total phosphorus content estimation models of summer maize leaves based on hyperspectral remote sensing [J]. Trans. Chin. Soc. Agric. Mach., 2015, 46(8): 252-280. | |
18 | 潘蓓,赵庚星,朱西存,等.基于高光谱的苹果树冠层磷素状况估测模型研究[J].红外,2012,33(6):27-31. |
PAN B, ZHAO G X, ZHU X C, et al.. Estimation of phosphorus content in apple tree canopy based on hyperspectral [J]. Infrared, 2012, 33(6): 27-31. | |
19 | 岳学军,全东平,洪添胜,等.不同生长期柑橘叶片磷含量的高光谱预测模型[J].农业工程学报,2015,31(8):207-213. |
YUE X J, QUAN D P, HONG T S, et al.. Prediction model of phosphorus content for citrus leaves during different growth periods based on hyperspectrum [J]. Trans. Chin. Soc. Agric. Eng., 2015, 31(8): 207-213. | |
20 | 柴仲平,王雪梅,陈波浪,等.库尔勒香梨叶片全磷含量高光谱估算模型研究[J].西部林业科学,2013,42(5):7-12. |
CHAI Z P, WANG X M, CHEN B L, et al.. Hyperspectral estimation models for total phosphorus content of Kuerle Fragrant pear leaves [J]. J. West China For. Sci., 2013, 42(5): 7-12. | |
21 | WANG J, SHI T, LIU H, et al.. Successive projections algorithm-based three-band vegetation index for foliar phosphorus estimation [J]. Ecol. Indic., 2016, 67:12-20. |
22 | 邢东兴,常庆瑞.基于光谱分析的果树叶片全氮、全磷、全钾含量估测研究-以红富士苹果树为例[J].西北农林科技大学学报(自然科学版),2009,37(2):141-154. |
XING D X, CHANG Q R. Research on predicting the TN, TP, TK contents of fresh fruit tree leaves by spectral analysis with Red Fuji Apple tree as an example [J]. J. Northwest A&F Univ. (Nat. Sci.), 2009, 37(2): 141-154. | |
23 | 易时来,邓烈,何绍兰,等.基于冠层光谱的锦橙叶片磷素营养监测研究[J].核农学报,2013,27(2):225-230. |
YI S L, DENG L, HE S L, et al.. Monitoring leaf phosphorus nutrition based on canopy spectrum of Jincheng orange[Citrus sinensis ( L. )] [J]. Acta Agric. Nucl. Sin., 2013, 27(2):225-230. | |
24 | 朱西存,赵庚星,董芳,等.基于高光谱的苹果花磷素含量监测模型[J].应用生态学报,2009,20(10):2424-2430. |
ZHU X C, ZHAO G X, DONG F, et al.. Monitoring models for phosphorus content of apple flowers based on hyperspectrum [J]. Chin. J. Appl. Ecol., 2009, 20(10): 2424-2430. | |
25 | 刘云根,余哲修,张超,等.基于高光谱技术剑湖湿地茭草磷含量估算模型研究[J].西南林业大学学报(自然科学),2019,39(1): 123-131. |
LIU Y G, YU Z X, ZHANG C, et al..The estimation model for phosphorus content of Zizania Cuciflora in Jianhu wetland based on hyperspectral technology [J]. J. Southwest For. Univ., 2019, 39(1): 123-131. | |
26 | 黄双萍,洪添胜,岳学军,等.基于高光谱的柑橘叶片磷含量估算模型实验[J].农业机械学报,2013,44(4):202-207. |
HUANG S P, HONG T S, YUE X J,et al.. Hyperspectral estimation model of total phosphorus content for citrus leaves [J]. Trans. Chin. Soc. Agric. Mach., 2013,44(4):202-207. | |
27 | CHEN L, HUANG J F, WANG F M, et al.. Comparison between back propagation neural network and regression models for the estimation of pigment content in rice leaves and panicles using hyperspectral data [J]. Int. J. Remote Sens., 2007, 28(16):3457-3478. |
28 | 高洪燕,毛罕平,张晓东.生菜叶中磷含量的光谱定量分析[J].农业机械学报,2014,45(增):276-280. |
GAO H Y, MAO H P, ZHANG X D. Quantitative determination of phosphorus in lettuce leaf using spectroscopy [J]. Trans. Chin. Soc. Agric. Mach., 2014, 45(S):276-280. |
[1] | Ruiqi JIA, Ziang GUO, Chen YAO, Pu LI, Guixiao LA, Xiazi LU, Hongyu GUO, Xuanzhen LI. Effect of Low Phosphorus Stress on Cadmium Uptake in Wheat [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 154-160. |
[2] | Lijuan ZHANG, Yukun QIN, Huihuang CHENG, Yongqi LI, Haihua LUO. Research on Characteristics of Nitrogen and Phosphorus Loss from Surface Runoff of Cotton Field in Northern Jiangxi Province of Poyang Lake Region [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 166-175. |
[3] | Chenchen SUN, Lan MA, Yonghong WU, Yuanchun YU. Effects and Mechanism of Indoleacetic Acid on the Removal of Nitrogen and Phosphorus from Water by Peripheral Organisms [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 204-209. |
[4] | Xiaohui LIU, Xiaomei GAO, Miao YU, Yang LI, Jing AO, Yulu SUN, Zhixue WANG. Effects of Straw Returning Amount on Soil Phosphorus Leaching and Corn Yield in Dryland of Northeast China [J]. Journal of Agricultural Science and Technology, 2022, 24(10): 154-160. |
[5] | Shuwei ZHANG, Lili ZHAO, Chao CHEN, Jingchen TAN, Li ZHANG, Yi XI. Growth and Physiological Response of 3 Different Provenances of Pueraria lobate Under Low Phosphorus Stress [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 71-82. |
[6] | YE Linwei, TANG Rongnian, LI Chuang. Qualitative Study on Phosphorus Content in Rubber Leaves Based on AE-FFNN Neural Network [J]. Journal of Agricultural Science and Technology, 2021, 23(7): 117-124. |
[7] |
WEN Yifu, CHEN Dafei, SHAN Guilian, ZHAO Xiaoxue, DUAN Xinhui, HAN Bo, ZHOU Kai.
Study on Phosphorus Efficiency and Root Architecture of Stylosanthes spp. Under Different Phosphorus Levels Treatments
[J]. Journal of Agricultural Science and Technology, 2020, 22(7): 51-60.
|
[8] | ZHANG Shengnan1, NIE Zhaojun1*, ZHAO Peng1, LI Jinfeng1, LI Yongge2, LIU Hongen1*, QIN Xiaoming1, QIN Shiyu1. Impact of Phosphorus and Sulfur Combined ApplicatIon on Selenium Uptake and Translocation in Winter Wheat [J]. Journal of Agricultural Science and Technology, 2020, 22(5): 137-144. |
[9] | XU Yanhong, ZUO Yicai, XI Yi*, XU Zhongdan, LI Bin. Influences of Different Ca/P Ratios and Concentrations on Growth Characteristics of Lolium multiflorum [J]. Journal of Agricultural Science and Technology, 2020, 22(5): 174-180. |
[10] | CHU Xu1, LI Shuai1, ZHAO Yanan1, YE Youliang1, SUN Xiaomei2, HUANG Yufang1*. Effects of Nitrogen Application Amount and Planting Density on Maize Yield, Phosphorus and Potassium Uptake and Utilization [J]. Journal of Agricultural Science and Technology, 2020, 22(12): 115-126. |
[11] | CHEN Qinghua1, XU Zhuo1, TANG Jichao1,2, JIN Weibin2, SUN Zhigui1, LU Bilin1*. Influences of Adding Biochar on Loss of Nitrogen and Phosphorus and Yield of Rape in Soil [J]. Journal of Agricultural Science and Technology, 2019, 21(11): 130-137. |
[12] | YAN Jinyao1, LU Junming2, HOU Wenfeng1, LI Xiaokun1*. Influence of Phosphorus Application Dosage on the Yield and Phosphorus Recovery Efficiency of Different Rice Varieties [J]. Journal of Agricultural Science and Technology, 2018, 20(8): 74-81. |
[13] | ZHU Xi1, LIN Jie2*. Soil Erosion and Soil Nutrients Response to Erosion Based on 137Cs in Southern Hilly Area [J]. Journal of Agricultural Science and Technology, 2018, 20(8): 134-141. |
[14] | LIANG Zhen1,2, LIU Zhimei3*. Studies on Stabilization of Phosphorus in Dredged Sediment by Red Mud and Fly Ash [J]. Journal of Agricultural Science and Technology, 2018, 20(6): 136-141. |
[15] | WANG Xue1, FAN Junpeng1, LI Haitao2, SHI Lei1,2, CAI Hongmei1, XU Fangsen1,2, LIU Kede2, DING Guangda1* . Effects of Phosphorus Deficiency on Seed Yield and Quality of A Brassica napus Natural Population [J]. Journal of Agricultural Science and Technology, 2018, 20(2): 93-100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||