Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (3): 21-29.DOI: 10.13304/j.nykjdb.2022.1091
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Liqing MIAO(), Xuhui MA, Suzhen LI, Rumei CHEN, Xiaoqing LIU(
)
Received:
2022-12-13
Accepted:
2023-03-21
Online:
2023-03-15
Published:
2023-05-22
Contact:
Xiaoqing LIU
通讯作者:
柳小庆
作者简介:
苗丽青 E-mail:miaolq27@163.com;
基金资助:
CLC Number:
Liqing MIAO, Xuhui MA, Suzhen LI, Rumei CHEN, Xiaoqing LIU. Biosynthesis and Industrial Application of Astaxanthin[J]. Journal of Agricultural Science and Technology, 2023, 25(3): 21-29.
苗丽青, 马旭辉, 李素贞, 陈茹梅, 柳小庆. 虾青素的生物合成与产业化应用[J]. 中国农业科技导报, 2023, 25(3): 21-29.
Fig. 1 Main stereoisomers and geometric isomers of astaxanthin moleculesA: Stereoisomers of levoisomer (3S, 3’S); B: Stereoisomers of dextroisomer (3R, 3’R); C: Stereoisomers of mesomer (3R, 3’S); D: Geometric isomer of all trans structures; E: Geometric isomer of 13-cis structures; F: Geometric isomer of 9-cis structures
Fig. 3 Astaxanthin corn and eggs from laying hensA: Eggs from hens fed with the common layer feed; B: Eggs from hens fed with the feed added Haematococcus pluvialis algae powder; C: Eggs from hens fed with high astaxanthin corn; D: White corn; E: Yellow corn; F: Transgenic maize with high level of astaxanthin
物种Species | 基因来源Source of gene | 年份Year | 含量Content |
---|---|---|---|
红发夫酵母 Xanthophyllomyces dendrorhous (Phaffia rhodozyma) | — | 1999[ | 约干物质量的0.5% About 0.5% of dry weight |
红球藻Haematococcus pluvialis | — | 1999[ 2000[ | 干物质量的4%~5% 4%~5% of dry weight |
烟草Tobacco | Haematococcus pluvialis CrtO | 2000[ | 83.90 µg·g-1 FW |
马铃薯Potato | Pantoea ananatiscrtB Haematococcus pluvialis bkt1 | 2006[ | 13.90 μg·g-1 DW |
烟草Tobacco | Marine bacterium Brevundimonas sp., strain SD212 CrtW,CrtZ | 2008[ | 5.44 mg·g-1 DW |
胡萝卜Carrot | Haematococcus pluvialisBKT | 2008[ | 91.60 μg·g-1 FW |
拟南芥Arabidopsis thaliana | ChlamydomonasreinhardtiiBKT | 2011[ | 2.07 mg·g-1 DW |
烟草Tobacco | ChlamydomonasreinhardtiiBKT | 2012[ | 1.60 mg·g-1 DW |
番茄Tomato | ChlamydomonasreinhardtiiBKT Haematococcus pluvialis BHY | 2013[ | 16.10 mg·g-1 DW |
玉米Maize | Zea maysPSY1 Chlamydomonas reinhardtiiBKT Brevundimonas sp. Strain SD212 (MBIC 03018) CrtZ | 2016[ | 16.77 μg·g-1 DW |
水稻Rice | Zea maysPSY1 Pantoea ananatisCrtI Chlamydomonas reinhardtiiBKT Haematococcus pluvialis BHY | 2018[ | 16.23 μg·g-1 DW |
玉米Maize | Zea maysPSY1 Pantoea ananatisCrtI Chlamydomonas reinhardtiiBKT Haematococcus pluvialis BHY | 2021[ | 47.76~111.82 mg·kg-1 DW |
Table 1 Contents of astaxanthin in main studied species
物种Species | 基因来源Source of gene | 年份Year | 含量Content |
---|---|---|---|
红发夫酵母 Xanthophyllomyces dendrorhous (Phaffia rhodozyma) | — | 1999[ | 约干物质量的0.5% About 0.5% of dry weight |
红球藻Haematococcus pluvialis | — | 1999[ 2000[ | 干物质量的4%~5% 4%~5% of dry weight |
烟草Tobacco | Haematococcus pluvialis CrtO | 2000[ | 83.90 µg·g-1 FW |
马铃薯Potato | Pantoea ananatiscrtB Haematococcus pluvialis bkt1 | 2006[ | 13.90 μg·g-1 DW |
烟草Tobacco | Marine bacterium Brevundimonas sp., strain SD212 CrtW,CrtZ | 2008[ | 5.44 mg·g-1 DW |
胡萝卜Carrot | Haematococcus pluvialisBKT | 2008[ | 91.60 μg·g-1 FW |
拟南芥Arabidopsis thaliana | ChlamydomonasreinhardtiiBKT | 2011[ | 2.07 mg·g-1 DW |
烟草Tobacco | ChlamydomonasreinhardtiiBKT | 2012[ | 1.60 mg·g-1 DW |
番茄Tomato | ChlamydomonasreinhardtiiBKT Haematococcus pluvialis BHY | 2013[ | 16.10 mg·g-1 DW |
玉米Maize | Zea maysPSY1 Chlamydomonas reinhardtiiBKT Brevundimonas sp. Strain SD212 (MBIC 03018) CrtZ | 2016[ | 16.77 μg·g-1 DW |
水稻Rice | Zea maysPSY1 Pantoea ananatisCrtI Chlamydomonas reinhardtiiBKT Haematococcus pluvialis BHY | 2018[ | 16.23 μg·g-1 DW |
玉米Maize | Zea maysPSY1 Pantoea ananatisCrtI Chlamydomonas reinhardtiiBKT Haematococcus pluvialis BHY | 2021[ | 47.76~111.82 mg·kg-1 DW |
1 | KUHN R, SOERENSEN N. The coloring matters of the lobster (Astacus gammarus L.) [J]. Z Angew Chem., 1938, 51:465-466. |
2 | CUNNINGHAM F X, GANTT E. Elucidation of the pathway to astaxanthin in the flowers of Adonis aestivalis [J]. Plant Cell, 2011, 23(8):3055-3069. |
3 | MUSSAGY C U, PEREIRA J F B, DUFOSSÉ L, et al.. Advances and trends in biotechnological production of natural astaxanthin by Phaffia rhodozyma yeast [J/OL]. Critical Rev. Food Sci. Nutr., 2021:1968788 [2022-11-08].. |
4 | MULARCZYK M, MICHALAK I, MARYCZ K. Astaxanthin and other nutrients from Haematococcus pluvialis-multifunctional applications [J]. Marine Drugs, 2020, 18(9):459-468. |
5 | LI J, ZHU D, NIU J, et al.. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis [J]. Biotechnol. Adv., 2011, 29(6):568-74. |
6 | LIM K C, YUSOFF F M, SHARIFF M, et al.. Astaxanthin as feed supplement in aquatic animals [J]. Rev. Aquac., 2018, 10(3):738-773. |
7 | BAKER R T M, PFEIFFER A M, SCHÖNER F J, et al.. Pigmenting efficacy of astaxanthin and canthaxanthin in fresh-water reared Atlantic salmon, Salmo salar [J]. Animal Feed Sci. Technol., 2002, 99(1) 97-106. |
8 | HIRSCHBERG J. Carotenoid biosynthesis in flowering plants [J]. Curr. Opinion Plant Biol., 2001, 4(3):210-218. |
9 | CUNNINGHAM F X, GANTT E. A study in scarlet:enzymes of ketocarotenoid biosynthesis in the flowers of Adonis aestivalis [J]. Plant J., 2005, 41(3):478-492. |
10 | KAJIWARA S, KAKIZONO T, SAITO T, et al.. Isolation and functional identification of a novel cDNA for astaxanthin biosynthesis from Haematococcus pluvialis, and astaxanthin synthesis in Escherichia coli [J]. Plant Mol. Biol., 1995, 29(2):343-352. |
11 | SCHOEFS B T, N-ERMIKI, RACHADI J, et al.. Astaxanthin accumulation in Haematococcus requires a cytochrome P450 hydroxylase and an active synthesis of fatty acids [J]. FEBS Lett., 2001, 500(3):125-128. |
12 | OJIMA K, BREITENBACH J, VISSER H, et al.. Cloning of the astaxanthin synthase gene from Xanthophyllomyces dendrorhous (Phaffia rhodozyma) and its assignment as a β-carotene 3-hydroxylase/4-ketolase [J]. Mol. Genet. Genomics, 2006, 275(2):148-158. |
13 | ÁLVAREZ V, RODRíGUEZ-SáIZ M, DE LA FUENTE J L, et al.. The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of β-carotene into astaxanthin and other xanthophylls [J]. Fungal Genetics Biol., 2006, 43(4):261-272. |
14 | ALCAÍNO J, BARAHONA S, CARMONA M, et al.. Cloning of the cytochrome p450 reductase (crtR) gene and its involvement in the astaxanthin biosynthesis of Xanthophyllomyces dendrorhous [J/OL]. BMC Microbiol, 2008, 8:169 [2022-11-08]. . |
15 | CHOUBERT G, MILICUA J C G, GOMEZ R. The transport of astaxanthin in immature rainbow trout Oncorhynchus mykiss serum [J]. Comparative Biochem. Physiol. Part A: Physiol., 1994, 108(2):245-248. |
16 | HENMI H, HATA M, HATA M. Astaxanthin and/or canthaxanthin-actomyosin complex in salmon muscle [J]. Nippon Suisan Gakkaishi, 1989, 55(9):1583-1589. |
17 | MATTHEWS S, ROSS N, LALL S, et al.. Astaxanthin binding protein in Atlantic salmon [J]. Comparative Biochem. Physiol. Part B: Biochem. Mol. Biol., 2006, 144(2):206-214. |
18 | AMBATI R R, GOGISETTY D, ASWATHANARAYANA R G, et al.. Industrial potential of carotenoid pigments from microalgae:current trends and future prospects [J]. Critical Rev. Food Sci. Nutr., 2019, 59(12):1880-1902. |
19 | 李新杰,朱伟,姜威,等.天然虾青素对鸭肉品质和脂质氧化稳定性的影响[J].粮食与食品工业, 2012(6):43-45. |
LI X J, ZHU W, JIANG W, et al.. Effect of natural astaxanthin on the quality and lipid oxidation stability of duck meat [J]. Cereal Feed Ind., 2012(6):43-45. | |
20 | LIU X, MA X, WANG H, et al.. Metabolic engineering of astaxanthin-rich maize and its use in the production of biofortified eggs [J]. Plant Biotechnol. J., 2021, 19(9):1812-1823. |
21 | RANGA RAO A, BASKARAN V, SARADA R, et al.. In vivo bioavailability and antioxidant activity of carotenoids from microalgal biomass - a repeated dose study [J]. Food Res. Int., 2013, 54(1):711-717. |
22 | MIKI W. Biological functions and activities of animal carotenoids [J]. Pure Appl. Chem., 1991, 63(1):141-156. |
23 | 国家市场监督管理总局.特殊食品信息查询平台[Z].[2022-11-08]. http://ypzsx.gsxt.gov.cn/specialfood/#/food. |
24 | 中国物品编码中心.中国商品信息服务平台[Z].[2022-11-08]. https://www.gds.org.cn/#/home/index. |
25 | OTA T. Prevention of NAFLD/NASH by astaxanthin and β-Cryptoxanthin [J/OL]. Adv. Exp. Med. Biol., 2021, 1261:21. [2022-11-08]. |
26 | FAKHRI S, ABBASZADEH F, DARGAHI L, et al.. Astaxanthin:a mechanistic review on its biological activities and health benefits [J]. Pharmacol. Res., 2018, 136(10):1-20. |
27 | LIGNELL A K E. Medicament for improvement of duration of muscle function or treatment of muscle disorders or diseases [P]. United States, US6245818. |
28 | 皮士卿,陈新志,胡四平,等.虾青素的合成[J].有机化学, 2007, 27(9):1126-1129. |
PI S Q, CHEN X Z, HU S P, et al.. The synthesis of astaxanthin [J]. Chin. J. Organic Chem., 2007, 27(9):1126-1129. | |
29 | SOUKUP M, WIDMER E, LUKÁČ T. Technical procedures for the syntheses of Carotenoids and related compounds from 6-Oxo-isophorone: syntheses of (3R,3′R)-zeaxanthin. part Ⅱ [J]. Helvetica Chimica Acta, 1990, 73(4):868-873. |
30 | 陈丹,汪锋,蒋珊,等.虾青素化学和生物合成研究进展[J].食品工业科技, 2021, 42(21):445-453. |
CHEN D, WANG F, JIANG S, et al.. Progress in the chemistry and biosynthesis of astaxanthin [J]. Sci. Technol. Food Ind., 2021, 42(21):445-453. | |
31 | BAUER A, MINCEVA M. Direct extraction of astaxanthin from the microalgae Haematococcus pluvialis using liquid-liquid chromatography [J]. RSC Adv., 2019, 9(40):22779-22789. |
32 | SANDMANN G, ALBRECHT M, SCHNURR G, et al.. The biotechnological potential and design of novel carotenoids by gene combination in Escherichia coli [J]. Trends Biotechnol., 1999, 17(6):233-237. |
33 | BOUSSIBA S, BING W, YUAN J P, et al.. Changes in pigments profile in the green alga Haeamtococcus pluvialis exposed to environmental stresses [J]. Biotechnol. Letters, 1999, 21(7):601-604. |
34 | YUAN J P, CHEN F. Purification of trans-astaxanthin from a high-yielding astaxanthin ester-producing strain of the microalga Haematococcus pluvialis [J]. Food Chem., 2000, 68(4):443-448. |
35 | MANN V, HARKER M, PECKER I, et al.. Metabolic engineering of astaxanthin production in tobacco flowers [J]. Nat. Biotechnol., 2000, 18(8):888-892. |
36 | MORRIS W L, DUCREUX L J, FRASER P D, et al.. Engineering ketocarotenoid biosynthesis in potato tubers [J]. Metabolic Eng., 2006, 8(3):253-263. |
37 | HASUNUMA T, MIYAZAWA S, YOSHIMURA S, et al.. Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering [J]. Plant J., 2008, 55(5):857-868. |
38 | JAYARAJ J, DEVLIN R, PUNJA Z. Metabolic engineering of novel ketocarotenoid production in carrot plants [J]. Transgenic Res., 2008, 17(4):489-501. |
39 | ZHONG Y J, HUANG J C, LIU J, et al.. Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis [J]. J. Exp. Bot., 2011, 62(10):3659-3669. |
40 | HUANG J, ZHONG Y, SANDMANN G, et al.. Cloning and selection of carotenoid ketolase genes for the engineering of high-yield astaxanthin in plants [J]. Planta, 2012, 236(2):691-699. |
41 | HUANG J C, ZHONG Y J, LIU J, et al.. Metabolic engineering of tomato for high-yield production of astaxanthin [J]. Metabolic Eng., 2013, 17:59-67. |
42 | FARRÉ G, PEREZ-FONS L, DECOURCELLE M, et al.. Metabolic engineering of astaxanthin biosynthesis in maize endosperm and characterization of a prototype high oil hybrid [J]. Transgenic Res., 2016, 25(4):477-849. |
43 | ZHU Q, ZENG D, YU S, et al.. From golden rice to aSTARice: bioengineering astaxanthin biosynthesis in rice endosperm [J]. Mol. Plant, 2018, 11(12):1440-1448. |
44 | ZHU C, GERJETS T, SANDMANN G. Nicotiana glauca engineered for the production of ketocarotenoids in flowers and leaves by expressing the cyanobacterial crtO ketolase gene [J]. Transgenic Res., 2007, 16(6):813-821. |
45 | RALLEY L, ENFISSI E M, MISAWA N, et al.. Metabolic engineering of ketocarotenoid formation in higher plants [J]. Plant J., 2004, 39(4):477-486. |
46 | KHALID N, SHU G, HOLLAND B J, et al.. Formulation and characterization of O/W nanoemulsions encapsulating high concentration of astaxanthin [J]. Food Res. Int., 2017, 102(12):364-371. |
47 | RIBEIRO H S, RICO L G, BADOLATO G G, et al.. Production of O/W emulsions containing astaxanthin by repeated premix membrane emulsification [J]. J. Food Sci., 2005, 70(2):117-123. |
48 | HAMA S, UENISHI S, YAMADA A, et al.. Scavenging of hydroxyl radicals in aqueous solution by astaxanthin encapsulated in liposomes [J]. Biol. Pharmaceutical Bull., 2012, 35(12):2238-2242. |
49 | PAN L, ZHANG S W, GU K R, et al.. Preparation of astaxanthin-loaded liposomes:characterization, storage stability and antioxidant activity [J]. CyTA-J. Food, 2018, 16(1):607-618. |
50 | HIGUERA-CIAPARA I, FELIX-VALENZUELA L, GOYCOOLEA F, et al.. Microencapsulation of astaxanthin in a chitosan matrix [J]. Carbohydrate Polymers, 2004, 56(1):41-45. |
51 | WANG Q, ZHAO Y Y, GUAN L, et al.. Preparation of astaxanthin-loaded DNA/chitosan nanoparticles for improved cellular uptake and antioxidation capability [J]. Food Chem., 2017, 227(7):9-15. |
52 | HU Q, HU S, FLEMING E, et al.. Chitosan-caseinate-dextran ternary complex nanoparticles for potential oral delivery of astaxanthin with significantly improved bioactivity [J]. Int. J. Biol. Macromol., 2020, 151(5):747-756. |
53 | WANG T, HU Q, LEE J Y, et al.. Solid lipid-polymer hybrid nanoparticles by in situ conjugation for oral delivery of astaxanthin [J]. J. Agric. Food Chem., 2018, 66(36):9473-9480. |
54 | HUANG L, LI D, MA Y, et al.. Dietary fatty acid-mediated protein encapsulation simultaneously improving the water-solubility, storage stability, and oral absorption of astaxanthin [J/OL]. Food Hydrocolloids, 2022, 123(2):107152 [2022-11-08].. |
55 | EDELMAN R, ENGELBERG S, FAHOUM L, et al.. Potato protein-based carriers for enhancing bioavailability of astaxanthin [J]. Food Hydrocolloids, 2019, 96(11):72-80. |
56 | LEVINSON Y, ISRAELI-LEV G, LIVNEY Y. Soybean β-conglycinin nanoparticles for delivery of hydrophobic nutraceuticals [J]. Food Biophysics, 2014, 9(4):332-340. |
[1] | Min LIN, Lei WANG, Xiaofeng GU, Yongliang YAN, Zhu LIU, Tao TU, Bin YAO. Development Trends and Strategies of Gene Circuit Design and Synthesis Technologies in Agricultural Organisms [J]. Journal of Agricultural Science and Technology, 2022, 24(12): 101-111. |
[2] | WANG Heng, DING Jun. Mechanism of Polyunsaturated Fatty Acids Biosynthesis and Metabolism in Marine Invertebrates: A Review [J]. Journal of Agricultural Science and Technology, 2021, 23(10): 181-191. |
[3] | DONG Jie, LI Gezi, HAN Qiaoxia, XIE Yingxin, WANG Yonghua, FENG Wei, MA Dongyun, WANG Chenyang, GUO Tiancai, KANG Guozhang*. Isolation and Function of TabHLH39 Transcription Factor Regulating Expression of the TaAGPL1 Gene in Bread Wheat [J]. Journal of Agricultural Science and Technology, 2020, 22(10): 18-26. |
[4] | HUANG Juan, DENG Jiao, CHEN Qingfu*. Transcriptome Analysis of Fagopyrum Root and Identification of Genes Involved in Flavonoid Biosynthesis [J]. Journal of Agricultural Science and Technology, 2017, 19(2): 9-19. |
[5] |
LEI Cai-yan, LI Jing-jing, YAN Feng-ming*.
Research Advances in Plant Saponins Biosynthesis and Its Regulation [J]. , 2014, 16(4): 50-58. |
[6] | LIU Nan1, ZHANG Xiao\|yan2, ZHOU De\|qing1*. Preparation and Properties Research of Astaxanthin Loaded Nanocapsules [J]. , 2013, 15(6): 35-39. |
[7] | ZONG Yuanyuan, LI Boqiang, QIN Guozheng, ZHANG Zhanquan, TIAN Shiping*. Toxicity of Patulin on Fruit Quality and its Research Progress [J]. , 2013, 15(4): 36-41. |
[8] | LIU Huan-huan, JIAO Wei, QIAO Bao-ming, DONG Ning-yu, JIANG Shi-jun. Method of Using Iron-ion Chelator to Recover the Flourenscent Pigment of Pseudomonas syringase [J]. , 2012, 14(4): 142-147. |
[9] | JIANG Wei, TIAN Jie-sheng, LI Ying, LI Ji-lun . Characteristics of Magnetotactic Bacteria and Biosynthesis Conditions of |Nano-magnetosomes [J]. , 2007, 9(3): 24-31. |
[10] | ZHANG Xiao-rong, YANG Su-ping. Carotenoids in the Photosynthetic Bacteria [J]. , 2005, 7(6): 26-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||