Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (6): 170-182.DOI: 10.13304/j.nykjdb.2023.0420
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Hongshuo ZHAO1,2,3(), Hongyu CAO1,2,3, Guanglei GAO1,2,3(
), Zhe SUN4, Ying ZHANG1,2,3, Guodong DING1,2,3
Received:
2023-05-31
Accepted:
2023-09-28
Online:
2024-06-15
Published:
2024-06-12
Contact:
Guanglei GAO
赵鸿硕1,2,3(), 曹红雨1,2,3, 高广磊1,2,3(
), 孙哲4, 张英1,2,3, 丁国栋1,2,3
通讯作者:
高广磊
作者简介:
赵鸿硕 E-mail:zhaohongshuo@bjfu.edu.cn;
基金资助:
CLC Number:
Hongshuo ZHAO, Hongyu CAO, Guanglei GAO, Zhe SUN, Ying ZHANG, Guodong DING. Effects of Sand Fixation Using Microbially Induced Carbonate Precipitation on Leaf Traits and Physiological Characteristics of Typical Psammophytes[J]. Journal of Agricultural Science and Technology, 2024, 26(6): 170-182.
赵鸿硕, 曹红雨, 高广磊, 孙哲, 张英, 丁国栋. 微生物诱导碳酸钙沉淀固沙对典型沙生植物叶片性状和生理特性的影响[J]. 中国农业科技导报, 2024, 26(6): 170-182.
Fig. 2 Soil organic matter content under different microbial agent levels and consolidation layer positionsNote: Different English letters indicate significant differences between different consolidation layer positions of same agent level at P<0.05 level; different Greece letters indicate significant differences between different agent levels of same consolidation layer position at P<0.05 level.
物种 Species | 指标 Index | 土壤有机质SOM | CaCO3 | 比叶 面积SLA | 叶干物质含量 LDMC | 叶绿素Chl | 表观量子效率 AQE | 最大净光合速率 Pnmax | 光饱 和点 LSP | 光补 偿点 LCP | 暗呼吸 速率Rd |
---|---|---|---|---|---|---|---|---|---|---|---|
沙蓬 Agriophyllum squarrosum | FA | 56.722** | 4.497* | 8.981** | 33.056** | 26.627** | 0.067 | 85.477** | 8.068** | 2.502 | 4.390* |
FP | 26.185** | 3.696* | 16.328** | 1.255 | 7.404** | 1.934 | 6.097** | 1.486 | 1.102 | 0.375 | |
FA×P | 60.589** | 2.723* | 5.717** | 6.747** | 18.316** | 3.629* | 5.440** | 7.950** | 0.684 | 1.847 | |
斜茎黄芪 Astragalus laxmannii | FA | 235.105** | 46.306** | 3.942* | 8.066** | 4.082* | 682.761** | 26.192** | 1.081 | 0.735 | 1.153 |
FP | 27.764** | 2.775 | 15.052** | 0.032 | 4.377* | 0.041 | 4.554* | 0.828 | 0.475 | 1.225 | |
FA×P | 47.714** | 8.025** | 2.842* | 1.283 | 0.407 | 1.006 | 8.119** | 1.734 | 1.352 | 0.194 | |
柠条锦鸡儿 Caragana korshinskii | FA | 78.430** | 93.108** | 2.697 | 0.295 | 7.266** | 3.415* | 1.411 | 2.288 | 3.069* | 5.569** |
FP | 18.975** | 3.505* | 27.264** | 1.456 | 12.082** | 0.054 | 4.885* | 1.640 | 5.099* | 1.782 | |
FA×P | 37.335** | 6.595** | 7.154** | 2.344 | 5.803** | 0.013 | 6.237** | 1.545 | 2.770* | 0.694 | |
蒙古羊柴 Corethrodendron fruticosum | FA | 50.673** | 17.879** | 20.995** | 7.381** | 4.962** | 32.300** | 79.186** | 3.428* | 4.370* | 1.040 |
FP | 7.825** | 2.254 | 1.104 | 3.681* | 1.076 | 5.366* | 1.341 | 0.476 | 0.916 | 2.834 | |
FA×P | 11.095** | 1.681 | 2.116 | 4.820** | 0.641 | 2.539* | 3.611* | 2.028 | 1.889 | 2.106 |
Table 1 Two-way ANOVA analysis of effect of microbial agent levels and consolidation layer positions on leaf traits and photosynthetic physiological indexes of four desert plants
物种 Species | 指标 Index | 土壤有机质SOM | CaCO3 | 比叶 面积SLA | 叶干物质含量 LDMC | 叶绿素Chl | 表观量子效率 AQE | 最大净光合速率 Pnmax | 光饱 和点 LSP | 光补 偿点 LCP | 暗呼吸 速率Rd |
---|---|---|---|---|---|---|---|---|---|---|---|
沙蓬 Agriophyllum squarrosum | FA | 56.722** | 4.497* | 8.981** | 33.056** | 26.627** | 0.067 | 85.477** | 8.068** | 2.502 | 4.390* |
FP | 26.185** | 3.696* | 16.328** | 1.255 | 7.404** | 1.934 | 6.097** | 1.486 | 1.102 | 0.375 | |
FA×P | 60.589** | 2.723* | 5.717** | 6.747** | 18.316** | 3.629* | 5.440** | 7.950** | 0.684 | 1.847 | |
斜茎黄芪 Astragalus laxmannii | FA | 235.105** | 46.306** | 3.942* | 8.066** | 4.082* | 682.761** | 26.192** | 1.081 | 0.735 | 1.153 |
FP | 27.764** | 2.775 | 15.052** | 0.032 | 4.377* | 0.041 | 4.554* | 0.828 | 0.475 | 1.225 | |
FA×P | 47.714** | 8.025** | 2.842* | 1.283 | 0.407 | 1.006 | 8.119** | 1.734 | 1.352 | 0.194 | |
柠条锦鸡儿 Caragana korshinskii | FA | 78.430** | 93.108** | 2.697 | 0.295 | 7.266** | 3.415* | 1.411 | 2.288 | 3.069* | 5.569** |
FP | 18.975** | 3.505* | 27.264** | 1.456 | 12.082** | 0.054 | 4.885* | 1.640 | 5.099* | 1.782 | |
FA×P | 37.335** | 6.595** | 7.154** | 2.344 | 5.803** | 0.013 | 6.237** | 1.545 | 2.770* | 0.694 | |
蒙古羊柴 Corethrodendron fruticosum | FA | 50.673** | 17.879** | 20.995** | 7.381** | 4.962** | 32.300** | 79.186** | 3.428* | 4.370* | 1.040 |
FP | 7.825** | 2.254 | 1.104 | 3.681* | 1.076 | 5.366* | 1.341 | 0.476 | 0.916 | 2.834 | |
FA×P | 11.095** | 1.681 | 2.116 | 4.820** | 0.641 | 2.539* | 3.611* | 2.028 | 1.889 | 2.106 |
Fig. 3 Soil CaCO3 content under different microbial agent levels and consolidation layer positionsNote: Different English letters indicate significant differences between different consolidation layer positions of same agent level at P<0.05 level; different Greece letters indicate significant differences between different agent levels of same consolidation layer position at P<0.05 level.
Fig. 4 Specific leaf area under different microbial agent levels and consolidation layer positionsNote:Different English letters indicate significant differences between different consolidation layer positions of same agent level at P<0.05 level; different Greece letters indicate significant differences between different agent levels of same consolidation layer position at P<0.05 level.
Fig. 5 Dry matter content in leaves under different microbial agent levels and consolidation layer positionsNote: Different English letters indicate significant differences between different consolidation layer positions of same agent level at P<0.05 level; different Greece letters indicate significant differences between different agent levels of same consolidation layer position at P<0.05 level.
Fig. 6 Chlorophyll content under different microbial agent levels and consolidation layer positionsNote: Different English letters indicate significant differences between different consolidation layer positions of same agent level at P<0.05 level; different Greece letters indicate significant differences between different agent levels of same consolidation layer position at P<0.05 level.
物种 Species | 处理 Treatment | 表观量子 效率 AQE | 最大净光合 速率Pnmax/ (μmol·m-2·s-1) | 光饱和点 LSP/ (μmol·m-2·s-1) | 光补偿点 LCP/ (μmol·m-2·s-1) | 暗呼吸 速率 Rd/(μmol·m-2·s-1) | 决定系数 R2 | |
---|---|---|---|---|---|---|---|---|
沙蓬 Agriophyllum squarrosum | CK | B | 0.042 αβa | 11.62 βa | 1 162.28 γa | 63.13 αa | 2.28 αa | 0.992 |
C | 0.036 αba | 11.46 γa | 1 161.86 βa | 61.73 αa | 2.22 αa | 0.991 | ||
T | 0.041 αa | 11.54 γa | 1 155.81 βa | 62.93 αβa | 2.21 αβa | 0.992 | ||
L | B | 0.051 αa | 10.85 βa | 1 609.89 αa | 41.03 αa | 1.77 αa | 0.990 | |
C | 0.025 βb | 10.98 γa | 1 219.24 βb | 39.52 βa | 0.96 βb | 0.997 | ||
T | 0.035 αβab | 9.99 γa | 1 305.60 αβb | 41.93 βa | 1.36 βab | 0.997 | ||
M | B | 0.033 βa | 17.06 αb | 1 184.21 γa | 44.78 αa | 1.43 αa | 0.992 | |
C | 0.048 αa | 16.45 αb | 1 545.55 αa | 59.08 αβa | 2.42 αa | 0.998 | ||
T | 0.033 αβa | 21.23 αa | 1 506.53 αa | 85.63 αa | 2.70 αa | 0.996 | ||
H | B | 0.038 αβa | 16.36 αa | 1 467.69 βa | 64.25 αa | 2.05 αa | 0.991 | |
C | 0.038 αβa | 13.84 βa | 1 236.61 βa | 57.35 αβa | 2.06 αa | 0.999 | ||
T | 0.028 βa | 17.18 βa | 1 430.02 αa | 70.41 αβa | 1.88 αβa | 0.997 | ||
斜茎黄芪 Astragalus laxmannii | CK | B | 0.033 αa | 11.75 βa | 1 474.40 αa | 45.81 αβa | 1.41 αa | 0.999 |
C | 0.033 αa | 12.35 βa | 1 456.57 αβa | 44.67 αa | 1.39 αa | 0.992 | ||
T | 0.035 αa | 11.23 γa | 1 459.10 αa | 43.93 αa | 1.43 αa | 0.996 | ||
L | B | 0.030 βa | 9.85 βb | 1 427.10 αa | 62.55 αa | 1.53 αa | 0.997 | |
C | 0.038 βa | 14.92 αa | 1 607.01 αa | 56.70 αa | 1.81 αa | 0.998 | ||
T | 0.057 βa | 15.56 βa | 1 326.04 αa | 39.50 αa | 2.00 αa | 0.997 | ||
M | B | 0.043 βa | 11.48 βa | 1 414.63 αa | 32.75 βa | 1.31 αa | 0.996 | |
C | 0.032 βa | 10.20 βa | 1 371.24 αβa | 57.11 αa | 1.69 αa | 0.996 | ||
T | 0.037 βa | 11.80 γa | 1 323.44 αa | 51.63 αa | 1.78 αa | 0.999 | ||
H | B | 0.039 βa | 20.31 αa | 1 504.00 αa | 46.13 αβa | 1.76 αa | 0.997 | |
C | 0.037 βa | 13.02 αβb | 1 343.88 βb | 51.39 αa | 1.77 αa | 0.995 | ||
T | 0.033 βa | 18.48 αa | 1 475.26 αab | 62.87 αa | 1.89 αa | 0.996 | ||
柠条锦鸡儿Caragana korshinskii | CK | B | 0.035 αa | 9.36 αβa | 1 433.48 αa | 82.32 αa | 2.12 αa | 0.990 |
C | 0.034 αa | 9.43 βa | 1 445.71 αa | 81.71 αβa | 2.17 αa | 0.998 | ||
T | 0.034 αa | 8.57 αa | 1 435.846 αa | 79.88 αa | 2.03 αa | 0.994 | ||
L | B | 0.024 αa | 6.26 βb | 1 145.02 αa | 51.07 αa | 1.10 αa | 0.995 | |
C | 0.031 αa | 12.76 αa | 1 341.10 αa | 53.48 βa | 1.48 αβa | 0.999 | ||
T | 0.033 αa | 10.77 αa | 1 435.52 αa | 31.16 βa | 0.93 βa | 0.994 | ||
M | B | 0.018 αa | 9.09 αβa | 1 314.52 αa | 100.03 αa | 1.68 αa | 0.990 | |
C | 0.024 αa | 12.13 αa | 1 607.39 αa | 44.03 βb | 0.90 βa | 0.997 | ||
T | 0.022 αa | 12.08 αa | 1 278.94 αa | 23.31 βb | 0.48 βa | 0.989 | ||
H | B | 0.029 αab | 11.21 αa | 1 305.68 αa | 67.75 αa | 2.07 αa | 0.992 | |
C | 0.023 αb | 6.37 γb | 1 339.84 αa | 119.96 αa | 2.25 αa | 0.990 | ||
T | 0.041 αa | 12.85 αa | 968.37 βb | 33.81 βa | 1.36 βa | 0.996 | ||
蒙古羊柴Corethrodendron fruticosum | CK | B | 0.049 αa | 24.10 αa | 1 250.73 αa | 32.55 βa | 1.53 αa | 0.996 |
C | 0.045 αa | 23.38 αa | 1 280.05 αa | 32.63 βa | 1.43 αa | 0.992 | ||
T | 0.044 αa | 22.94 αa | 1 265.46 γa | 33.61 βa | 1.47 αβa | 0.995 | ||
L | B | 0.018 βa | 9.15 αa | 1 416.87 αa | 103.06 αa | 1.72 αa | 0.997 | |
C | 0.020 γa | 12.77 γa | 1 452.36 αa | 88.36 αa | 1.73 αa | 0.990 | ||
T | 0.020 γa | 12.32 γa | 1 363.30 βa | 61.05 αβa | 1.22 βa | 0.997 | ||
M | B | 0.040 αa | 18.18 βa | 1 318.29 αa | 49.33 αβa | 1.81 αab | 0.998 | |
C | 0.020 γb | 13.59 βγb | 1 436.83 αa | 56.18 αβa | 1.09 αb | 0.986 | ||
T | 0.029 βγab | 14.82 γab | 1 401.00 βa | 118.09 αa | 3.14 αa | 0.990 | ||
H | B | 0.036 αa | 19.81 βa | 1 323.05 αb | 39.66 βa | 1.41 αa | 0.996 | |
C | 0.027 βa | 16.48 βb | 1 346.72 αb | 57.09 αβa | 1.55 αa | 0.991 | ||
T | 0.034 βa | 19.97 βa | 1 548.12 αa | 78.29 αβa | 2.56 αβa | 0.995 |
Table 2 Characteristic parameters of light response curve under different microbial agent levels and consolidation layer positions
物种 Species | 处理 Treatment | 表观量子 效率 AQE | 最大净光合 速率Pnmax/ (μmol·m-2·s-1) | 光饱和点 LSP/ (μmol·m-2·s-1) | 光补偿点 LCP/ (μmol·m-2·s-1) | 暗呼吸 速率 Rd/(μmol·m-2·s-1) | 决定系数 R2 | |
---|---|---|---|---|---|---|---|---|
沙蓬 Agriophyllum squarrosum | CK | B | 0.042 αβa | 11.62 βa | 1 162.28 γa | 63.13 αa | 2.28 αa | 0.992 |
C | 0.036 αba | 11.46 γa | 1 161.86 βa | 61.73 αa | 2.22 αa | 0.991 | ||
T | 0.041 αa | 11.54 γa | 1 155.81 βa | 62.93 αβa | 2.21 αβa | 0.992 | ||
L | B | 0.051 αa | 10.85 βa | 1 609.89 αa | 41.03 αa | 1.77 αa | 0.990 | |
C | 0.025 βb | 10.98 γa | 1 219.24 βb | 39.52 βa | 0.96 βb | 0.997 | ||
T | 0.035 αβab | 9.99 γa | 1 305.60 αβb | 41.93 βa | 1.36 βab | 0.997 | ||
M | B | 0.033 βa | 17.06 αb | 1 184.21 γa | 44.78 αa | 1.43 αa | 0.992 | |
C | 0.048 αa | 16.45 αb | 1 545.55 αa | 59.08 αβa | 2.42 αa | 0.998 | ||
T | 0.033 αβa | 21.23 αa | 1 506.53 αa | 85.63 αa | 2.70 αa | 0.996 | ||
H | B | 0.038 αβa | 16.36 αa | 1 467.69 βa | 64.25 αa | 2.05 αa | 0.991 | |
C | 0.038 αβa | 13.84 βa | 1 236.61 βa | 57.35 αβa | 2.06 αa | 0.999 | ||
T | 0.028 βa | 17.18 βa | 1 430.02 αa | 70.41 αβa | 1.88 αβa | 0.997 | ||
斜茎黄芪 Astragalus laxmannii | CK | B | 0.033 αa | 11.75 βa | 1 474.40 αa | 45.81 αβa | 1.41 αa | 0.999 |
C | 0.033 αa | 12.35 βa | 1 456.57 αβa | 44.67 αa | 1.39 αa | 0.992 | ||
T | 0.035 αa | 11.23 γa | 1 459.10 αa | 43.93 αa | 1.43 αa | 0.996 | ||
L | B | 0.030 βa | 9.85 βb | 1 427.10 αa | 62.55 αa | 1.53 αa | 0.997 | |
C | 0.038 βa | 14.92 αa | 1 607.01 αa | 56.70 αa | 1.81 αa | 0.998 | ||
T | 0.057 βa | 15.56 βa | 1 326.04 αa | 39.50 αa | 2.00 αa | 0.997 | ||
M | B | 0.043 βa | 11.48 βa | 1 414.63 αa | 32.75 βa | 1.31 αa | 0.996 | |
C | 0.032 βa | 10.20 βa | 1 371.24 αβa | 57.11 αa | 1.69 αa | 0.996 | ||
T | 0.037 βa | 11.80 γa | 1 323.44 αa | 51.63 αa | 1.78 αa | 0.999 | ||
H | B | 0.039 βa | 20.31 αa | 1 504.00 αa | 46.13 αβa | 1.76 αa | 0.997 | |
C | 0.037 βa | 13.02 αβb | 1 343.88 βb | 51.39 αa | 1.77 αa | 0.995 | ||
T | 0.033 βa | 18.48 αa | 1 475.26 αab | 62.87 αa | 1.89 αa | 0.996 | ||
柠条锦鸡儿Caragana korshinskii | CK | B | 0.035 αa | 9.36 αβa | 1 433.48 αa | 82.32 αa | 2.12 αa | 0.990 |
C | 0.034 αa | 9.43 βa | 1 445.71 αa | 81.71 αβa | 2.17 αa | 0.998 | ||
T | 0.034 αa | 8.57 αa | 1 435.846 αa | 79.88 αa | 2.03 αa | 0.994 | ||
L | B | 0.024 αa | 6.26 βb | 1 145.02 αa | 51.07 αa | 1.10 αa | 0.995 | |
C | 0.031 αa | 12.76 αa | 1 341.10 αa | 53.48 βa | 1.48 αβa | 0.999 | ||
T | 0.033 αa | 10.77 αa | 1 435.52 αa | 31.16 βa | 0.93 βa | 0.994 | ||
M | B | 0.018 αa | 9.09 αβa | 1 314.52 αa | 100.03 αa | 1.68 αa | 0.990 | |
C | 0.024 αa | 12.13 αa | 1 607.39 αa | 44.03 βb | 0.90 βa | 0.997 | ||
T | 0.022 αa | 12.08 αa | 1 278.94 αa | 23.31 βb | 0.48 βa | 0.989 | ||
H | B | 0.029 αab | 11.21 αa | 1 305.68 αa | 67.75 αa | 2.07 αa | 0.992 | |
C | 0.023 αb | 6.37 γb | 1 339.84 αa | 119.96 αa | 2.25 αa | 0.990 | ||
T | 0.041 αa | 12.85 αa | 968.37 βb | 33.81 βa | 1.36 βa | 0.996 | ||
蒙古羊柴Corethrodendron fruticosum | CK | B | 0.049 αa | 24.10 αa | 1 250.73 αa | 32.55 βa | 1.53 αa | 0.996 |
C | 0.045 αa | 23.38 αa | 1 280.05 αa | 32.63 βa | 1.43 αa | 0.992 | ||
T | 0.044 αa | 22.94 αa | 1 265.46 γa | 33.61 βa | 1.47 αβa | 0.995 | ||
L | B | 0.018 βa | 9.15 αa | 1 416.87 αa | 103.06 αa | 1.72 αa | 0.997 | |
C | 0.020 γa | 12.77 γa | 1 452.36 αa | 88.36 αa | 1.73 αa | 0.990 | ||
T | 0.020 γa | 12.32 γa | 1 363.30 βa | 61.05 αβa | 1.22 βa | 0.997 | ||
M | B | 0.040 αa | 18.18 βa | 1 318.29 αa | 49.33 αβa | 1.81 αab | 0.998 | |
C | 0.020 γb | 13.59 βγb | 1 436.83 αa | 56.18 αβa | 1.09 αb | 0.986 | ||
T | 0.029 βγab | 14.82 γab | 1 401.00 βa | 118.09 αa | 3.14 αa | 0.990 | ||
H | B | 0.036 αa | 19.81 βa | 1 323.05 αb | 39.66 βa | 1.41 αa | 0.996 | |
C | 0.027 βa | 16.48 βb | 1 346.72 αb | 57.09 αβa | 1.55 αa | 0.991 | ||
T | 0.034 βa | 19.97 βa | 1 548.12 αa | 78.29 αβa | 2.56 αβa | 0.995 |
1 | 杜宇佳,高广磊,陈丽华,等.土壤微生物膜对风沙土固沙保水特性的影响[J].农业工程学报,2020,36(17):98-105. |
DU Y J, GAO G L, CHEN L H, et al.. Effects of soil microbial films on sand fixation and water retention characteristics of aeolian soils [J]. Trans. Chin. Soc. Agric. Eng., 2020, 36(17):98-105. | |
2 | ZHAO Y, GAO G L, DING G D, et al.. Assessing the influencing factors of soil susceptibility to wind erosion: a wind tunnel experiment with a machine learning and model-agnostic interpretation approach [J/OL]. Catena, 2022, 215:106324 [2023-04-30]. . |
3 | CHEN Y X, GAO G L, WANG L, et al.. Wind erodibility of arenosols and its driving factors during sand dune fixation: a wind tunnel experiment [J/OL]. Catena, 2022, 214: 106237 [2023-04-30]. . |
4 | 高广磊,殷小琳,丁国栋,等.土壤风蚀可蚀性研究进展评述[J].中国水土保持科学,2022,20(1):143-150. |
GAO G L, YIN X L, DING G D, et al.. Soil erodibility for wind erosion: a critical review [J]. Sci. Soil Water. Conserv. China, 2022, 20(1):143-150. | |
5 | JANSSON J K, PROSSER J I. Microbiology: the life beneath our feet [J]. Nature, 2013, 494:40-41. |
6 | 阿拉萨,高广磊,丁国栋,等.土壤微生物膜生理生态功能研究进展[J].应用生态学报,2022,33(7):1885-1892. |
A L S, GAO G L, DING G D, et al.. Eco-physiological functions of soil microbial biofilms: a review [J]. Chin. J. Appl. Ecol., 2022, 33(7):1885-1892. | |
7 | 王雨,刘振婷,高广磊,等.干旱胁迫下枯草芽孢杆菌(Bacillus subtilis)对柠条(Caragana korshinskii)和沙冬青(Ammopiptanthus mongolicus)种子萌发及幼苗生长的影响[J].中国沙漠,2022,42(5):73-81. |
WANG Y, LIU Z T, GAO G L, et al.. Effects of Bacillus subtilis on seed germination,seedling growth of Caragana korshinskii and Ammopiptanthus mongolicus under drought stress [J]. J. Desert. Res., 2022, 42(5):73-81. | |
8 | SEIFAN M, BERENJIAN A. Microbially induced calcium carbonate precipitation a widespread phenomenon in the biological world [J]. Appl. Microbiol. Biotechnol., 2019, 103:4693-4708. |
9 | LIU Z, SUN Y F, ZHANG Y Q, et al. Desert soil sequesters atmospheric CO2 by microbial mineral formation [J/OL]. Geoderma, 2020, 361: 114104 [2023-04-30]. . |
10 | MONDAL S, GHOSH A. Review on microbial induced calcite precipitation mechanisms leading to bacterial selection for microbial concrete [J]. Constr. Build. Mater., 2019, 225:67-75. |
11 | CHOI S G, CHANG I, LEE M, et al.. Review on geotechnical engineering properties of sands treated by micp and biopolymers [J/OL]. Constr. Build. Mater., 2020, 246:118415 [2023-04-30]. . |
12 | MENG H, GAO Y F, HE J, et al.. Microbially induced carbonate precipitation for wind erosion control of desert soil: field-scale tests [J/OL]. Geoderma, 2021, 383:114723 [2023-04-30]. . |
13 | TIAN K L, WU Y Y, ZHANG H L, et al.. Increasing wind erosion resistance of aeolian sand soil by microbial induced calcium carbonate precipitation [J]. Land. Degrad. Dev., 2018, 29:4271-4281. |
14 | 李驰,王硕,王燕星,等.沙漠微生物矿化覆膜及其稳定性的现场试验研究[J].岩土力学,2019,40(4):1-8. |
LI C, WANG S, WANG Y X, et al.. Field experimental study on stability of bio-mineralization crust in the desert [J]. Rock Soil Mech., 2019, 40(4):1-8. | |
15 | 吴才武,夏建新,段峥嵘.土壤有机质测定方法述评与展望[J].土壤,2015,47(3):453-460. |
WU C W, XIA J X, DUAN Z R. Review on detection methods of soil organic matter (SOM) [J]. Soil, 2015, 47(3):453-460. | |
16 | 叶子飘,段世华,安婷,等.C4作物电子传递速率对CO2响应模型的构建及应用[J].植物生态学报 2018,42(10):1000-1008. |
YE Z P, DUAN S H, AN T, et al.. Construction of CO2-response model of electron transport rate in C4 crop and its application [J]. Chin. J. Plant Ecol., 2018, 42(10):1000-1008. | |
17 | 铁生年,姜雄,汪长安.化学固沙材料研究进展[J].材料导报,2013,27(5):71-75. |
TIE S N, JIANG X, WANG C A, et al.. Advances in chemical sand-fixing materials [J]. Mater. Rep., 2013, 27(5):71-75. | |
18 | MA G F, FENG E K, RAN F T, et al.. Preparation and sand-fixing property of a novel and eco-friendly organic-inorganic composite [J]. Polym-Plastics Technol. Eng., 2015, 54(7):703-710. |
19 | MENDOZA-AGUILAR D O, CORTINA J, PANDO-MORENO M. Biological soil crust influence on germination and rooting of two key species in a Stipa tenacissima steppe [J]. Plant. Soil., 2014, 375(1/2):267-274. |
20 | LIU Z G, DONG N, ZHANG H X, et al.. Divergent long- and short-term responses toenvironmental gradients in specific leaf area of grassland species [J/OL]. Ecol. Indic., 2021, 130:108058 [2023-04-30]. . |
21 | 杨洋,赵杏花,左合君.羊柴叶形态结构的地域分异特征及其与生态因子间的关系[J].广西植物,2019,39(9):1233-1242. |
YANG Y, ZHAO X H, ZUO H J, et al. Regional differentiation of Hedysarum laeve leaf morphological structure and its relation with ecological factors [J]. Guihaia, 2019, 39(9):1233-1242. | |
22 | 陈宇轩,丁国栋,高广磊,等.呼伦贝尔沙地风沙土有机质和碳酸钙含量特征[J].中国水土保持科学,2019,17(4):104-111. |
CHEN Y X, DING G D, GAO G L, et al. Content characteristics of organic matter and calcium carbonate of aeolian soils in Hulun Buir sandy land [J]. Sci. Soil. Water. Conserv. China., 2019, 17(4):104-111. | |
23 | 檀龙颜,马洪娜.植物响应钙离子胁迫的研究进展[J].植物生理学报,2017,53(7):1150-1158. |
TAN L Y, MA H N. Advance in the research of plant in response to calcium ions stress [J]. Plant Physiol. J., 2017, 53(7):1150-1158. | |
24 | LIU T, LIU Y P, FU G, et al.. Identification of genes involved in drought tolerance in seedlings of the desert grass, Psammochloa villosa (poaceae), based on full-length isoform sequencing and de novo assembly from short reads [J/OL]. J. Plant Physiol., 2022, 271:153630 [2023-04-30]. . |
25 | 刘国花,兰建彬,刘奕清,等.外源钙对低温胁迫下尾巨桉幼苗生理特性及内源激素的影响[J].西北林学院学报,2017,32(6):101-106. |
LIU G H, LAN J B, LIU Y Q, et al.. Effects of exogenous calcium on seeding physiological characteristics and enddogenous hormone of Euccalyptus urophylla ×E. grandis under low temperature stress [J]. J. Northwest. For. Univ., 2017, 32(6):101-106. | |
26 | MENG H, GAO Y F, HE J, et al.. Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests [J/OL]. Geoderma, 2021, 383: 114723 [2023-04-30]. . |
27 | 马洋,王雪芹,韩章勇,等.风蚀沙埋对疏叶骆驼刺(Alhagi sparsifolia)和花花柴(Karelinia caspica)幼苗的生理影响[J].中国沙漠,2015,35(5):1254-1261. |
MA Y, WANG X Q, HAN Z Y, et al.. Effect of wind erosion and sand burial on physiological characters in Alhagi sparsifolia and Karelinia capsica seedings in the southern margin of the Taklimakan desert [J]. J. Desert Res., 2015, 35(5):1254-1261. | |
28 | 郑曼曼,王超,沈仁芳.碳酸钙和根际作用对酸性红壤解磷微生物丰度的影响[J].土壤,2020,52(4):704-709. |
ZHENG M M, WANG C, SHEN R F. Effects of calcium carbonate and rhizosphere on abundance of phosphate-solubilizing microorganisms in acidic red soil [J]. Soil, 2020, 52(4):704-709. | |
29 | 钟帅,韩致文,李爱敏.GS-3生态固沙剂性能及其浓度对植物生长的影响[J].农业工程学报,2018,34(24):107-114. |
ZHONG S, HAN Z W, LI A M. Effects of performance and concentration of GS-3 sand-fixing agent on plant growth [J]. Trans. Chin. Soc. Agric. Eng., 2018, 34(24):107-114. | |
30 | 赵哈林,曲浩,周瑞莲,等.沙埋对沙米幼苗生长及生理过程的影响[J].应用生态学报,2013,24(12):3367-3372. |
ZHAO H L, QU H, ZHOU R L, et al.. Effects of sand burial on growth and physiological process of Agriophyllum squarrosum seedlings in Horqin sand land of Inner Mongolia, North China [J]. Chin. J. Appl. Ecol., 2013, 24(12):3367-3372. | |
31 | GUO J J, GONG X W, FANG L D, et al.. Switching of dominant positions between two sand-fixing shrub species during the dune revegetation process is underlain by their contrasting xylem hydraulics and water-use strategies [J]. Land. Degrad. De., 2020, 31(10):1195-1205. |
32 | BASILE A, SORBO S, PISANI T, et al.. Bioacumulation and ultrastructural effects of Cd, Cu, Pb and Zn in the moss Scorpiurum circinatum (Brid.) Fleisch & Loeske [J]. Environ. Pollut., 2012, 166:208-211. |
33 | 刘军,张宇清,秦树高,等.不同喷洒浓度沙蒿胶固沙效果试验[J].农业工程学报,2016,32(5):149-155. |
LIU J, ZHANG Y Q, QIN S G, et al.. Sand fixation experiment of Artemisia Sphaerocephala krasch. Gum with different concentrations [J]. Trans. Chin. Soc. Agri. Eng., 2016, 32(5):149-155. | |
34 | YANG J, CAO H, WANG F, et al.. Application and appreciation of chemical sand fixing agent-poly (aspartic acid) and its composites [J]. Environ. Pollut., 2007, 150(3):381-384. |
35 | 谭雪红,郭小平,赵廷宁.陶粒覆盖对土壤水分、植物光合作用及生长状况的影响[J].生态学报,2013,33(19):6097-6106. |
TAN X H, GUO X P, ZHAO T N. Effects of ceramsite mulching on soil water content,photosynthetic physiological characteristics and growth of plants [J]. Acta Ecol. Sin., 2013, 33(19):6097-6106. | |
36 | LIU J, SHI B, LU Y, et al.. Effectiveness of a new organic polymer sand-fixing agent on sand fixation [J]. Environ. Earth. Sci., 2012, 65(3):589-595. |
37 | 王蕊,朱清科,赵磊磊,等.黄土高原土壤生物结皮对植物种子出苗和生长的影响[J].干旱区研究,2011,28(5):800-807. |
WANG R, ZHU Q K, ZHAO L L, et al.. Effects of biological soil crusts on seed emergence and seedling growth in loess plateau,north Shaanxi province [J]. Arid. Zone. Res., 2011, 28(5):800-807. | |
38 | SONG G, LI X R, HUI R. Biological soil crusts determine the germination and growth of two exotic plants [J]. Ecol. Evol., 2017, 7(22):9441-9450. |
39 | 李浩铭,李青丰,曲艳,等.不同植物生长调剂对八宝景天株型和生理特性的影响[J].草地学报,2022,30(12):3294-3301. |
LI H M, LI Q F, QU Y, et al.. Effects of different plant growth regulators on plant type and physiological characteristics of Hylotelephium erythrostictum [J]. Acta Agrestia Sin., 2022, 30(12):3294-3301. |
[1] | Rongrong CHU, Guoqing FENG, Zhongyi ZHANG, Huijiao LIU, Jiaxin DONG, Zhangzhen WEN, Xiangbin GAO, Xiaoman XIE, Dan LIU. Study on Leaf Traits and Adaptation Strategies of Sophora japonica at Different Ages [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 48-56. |
[2] | Shengmei LI, Bo PANG, Shiwei GENG, Wu SONG, Hongmei LI, Maosen MA, Ru ZHANG, Xinyan WANG, Wenwei GAO. Photosynthetic and Physiological Characteristics of Gossypium hirsutum L. × Gossypium barbadense L. Backross Populations in Full Boll Stage [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 40-51. |
[3] | Yongyan LIU, Zhengxiong SONG, Jiawei JIN, Jing WANG, Min XU, Junxue ZHOU, Zhanmin LI, Shimin ZHAO, Yunpeng FU, Xiaoyan DAI. Effects of Molybdenum and Zinc Nutrition on Physiological Characteristics and Quality of Flue-cured Tobacco [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 216-224. |
[4] | Qian YANG, Na WU, Cong ZHAO, Yu HAN, Zhonghua MA, Yongsen YANG, Jili LIU. Effects of Zinc Fertilizer Application on Physiological Characteristics and Grain Zn Content of Maize in Saline-alkali Soil [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 166-176. |
[5] | Zhidan WANG, Jili LIU, Na WU. Effects of Fenlong Tillage on Photosynthetic Physiological Characteristics and Yield of Sweet Sorghum [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 148-156. |
[6] | SHI Lihong, TANG Haiming, XIAO Xiaoping, LI Chao, Liu Qu, CHENG Aiwu, CHENG Kaikai, LI Weiyan, WEN Li. Effects of Crop Residue and Mineral Fertilizer on Physiological Characteristics of Barley Leaves and Yield under Double-cropping Rice Field [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 143-152. |
[7] | GU Huimin1, CHEN Bolang1*, SUN Jin2. Influences of Mycorrhizal Seedling on Growth and Physiological Characteristics of Processing Tomato Under Salt Stress#br# [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 166-177. |
[8] | WANG Zhiheng, YANG Xiuliu, ZOU Fang, HUANG Siqi, ZHOU Wuyan, XU Zhongwei, WEI Yuqing*. Effects of Salt and Drought Cross Stress on Germination and Physiological Characteristics of Sweet Sorghum Seeds [J]. Journal of Agricultural Science and Technology, 2021, 23(2): 37-49. |
[9] | LI Yanmei1, ZHOU Yawen2, ZHANG Lin1, LIAO Shangqiang1*, SUN Yanxin1*. Coupling Effects of Stress-resistant Substances and Osmotic Regulators on Tomato Yield and Water Use Efficiency and Its Possible Mechanism [J]. Journal of Agricultural Science and Technology, 2021, 23(1): 43-50. |
[10] | TANG Haiming, LI Chao, XIAO Xiaoping*, TANG Wenguang, CHENG Kaikai, PAN Xiaochen, WANG Ke, LI Weiyan. Impacts of Different Manure and Chemical Fertilizer N Input Ratios on Physiological Characteristics of Leaves and Yield of Rice under Doublecropping Rice Field [J]. Journal of Agricultural Science and Technology, 2020, 22(6): 149-160. |
[11] | ZHENG Miao, GUO Yi, WANG Limin. Effect of Drought Stress on Root Morphology and Physiological Characteristics of Malus micromalus cv. ‘Ruby’ [J]. Journal of Agricultural Science and Technology, 2020, 22(3): 24-30. |
[12] | LI Jichao, ZHANG Jinyu, YANG Tianmei, YANG Meiquan, YANG Weize, XU Zongliang, ZUO Yingmei*. Comprehensive Evaluation and Physiological Mechanism of Drought Resistance of Paris polyphylla Smith var. yunnanensis (Franch.) Hand.-Mazz Germplasm Resources [J]. Journal of Agricultural Science and Technology, 2020, 22(10): 49-59. |
[13] | LI Penghui1§, XIANG Jinyou2§, WANG Lin3, XU Jianqiang4, LI Changjun5, LEI Qiang6, YANG Yide2, ZHANG Xuewei7, LI Huaiqi8, ZHANG Qiming9, JING Yanqiu1*, XIONG Bin3*. Effects of Exogenous Melatonin on Physiological Characteristics of Tobacco Seedlings Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2019, 21(5): 41-48. |
[14] | ZHANG Xiao1, ZHANG Huanwei1, CHEN Biao1, WANG Kaiyue1, ZHOU Zifang2, SHAO Huifang1, XU Zicheng1, HUANG Wuxing1*. Effect of Exogenous Silicon and Salicylic Acid on the Growth and Physiological Characteristics of Tobacco Seedlings Under Cadmium Stress [J]. Journal of Agricultural Science and Technology, 2019, 21(3): 133-140. |
[15] | FAN Haixia1, GUO Ruoxu1, XIN Guoqi2, LI Fengqin3. Effects of Exogenous Melatonin on Growth and Physiological Characteristics of Reed Seedlings under Salt Stress [J]. Journal of Agricultural Science and Technology, 2019, 21(11): 51-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||