Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (11): 107-116.DOI: 10.13304/j.nykjdb.2024.0036
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Shirui HUANG(), Tianyi WANG(
), Tao WEN, Jianglong ZHOU
Received:
2024-01-12
Accepted:
2024-06-08
Online:
2024-11-15
Published:
2024-11-19
Contact:
Tianyi WANG
通讯作者:
王天一
作者简介:
黄诗锐 E-mail:995739122@qq.com;
基金资助:
CLC Number:
Shirui HUANG, Tianyi WANG, Tao WEN, Jianglong ZHOU. Crop Insect Identification Based on Improved YOLOv7[J]. Journal of Agricultural Science and Technology, 2024, 26(11): 107-116.
黄诗锐, 王天一, 文韬, 周江龙. 基于改进YOLOv7的农作物虫害识别[J]. 中国农业科技导报, 2024, 26(11): 107-116.
编号 Number | GD | MPDIoU | RFE | 准确率 P/% | 召回率 R/% | 平均准确度均值mAP/% | 参数量 Parameter/M |
---|---|---|---|---|---|---|---|
1 | — | — | — | 82.1 | 72.5 | 77.0 | 37.2 |
2 | √ | — | — | 83.9 | 73.1 | 78.1 | 40.3 |
3 | — | √ | — | 84.4 | 73.6 | 78.3 | 37.2 |
4 | — | — | √ | 83.7 | 73.5 | 77.9 | 38.5 |
5 | √ | √ | — | 84.6 | 73.2 | 78.7 | 40.3 |
6 | √ | — | √ | 85.1 | 72.9 | 79.5 | 41.6 |
7 | — | √ | √ | 84.2 | 73.8 | 78.9 | 38.5 |
8 | √ | √ | √ | 85.3 | 75.1 | 80.4 | 41.6 |
Table 1 Ablation experiment
编号 Number | GD | MPDIoU | RFE | 准确率 P/% | 召回率 R/% | 平均准确度均值mAP/% | 参数量 Parameter/M |
---|---|---|---|---|---|---|---|
1 | — | — | — | 82.1 | 72.5 | 77.0 | 37.2 |
2 | √ | — | — | 83.9 | 73.1 | 78.1 | 40.3 |
3 | — | √ | — | 84.4 | 73.6 | 78.3 | 37.2 |
4 | — | — | √ | 83.7 | 73.5 | 77.9 | 38.5 |
5 | √ | √ | — | 84.6 | 73.2 | 78.7 | 40.3 |
6 | √ | — | √ | 85.1 | 72.9 | 79.5 | 41.6 |
7 | — | √ | √ | 84.2 | 73.8 | 78.9 | 38.5 |
8 | √ | √ | √ | 85.3 | 75.1 | 80.4 | 41.6 |
损失函数 Loss | 损失函数计算方法 Calculation method for loss function | 准确率 P/% | 召回率 R/% | 平均准确度均值 mAP/% |
---|---|---|---|---|
广义交并比GIoU | 基于两框之间的重叠区域 Based on the overlapping area between 2 boxes | 82.9 | 66.5 | 74.1 |
距离交并比DIoU | 基于两框之间的中心点距离 Based on the distance between the center points between 2 boxes | 78.0 | 69.4 | 74.4 |
增强型交并比EIoU | 基于两框之间的中心点距离和长宽比 Based on the center point distance and aspect ratio between 2 boxes | 80.8 | 68.5 | 75.9 |
形状交并比SIoU | 引入方向性 Introduce directionality | 83.6 | 71.4 | 75.7 |
最小点距离交并比MPDIoU | 最小化两框间的左上和右下点距离 Minimize the distance between the top left and bottom right points of 2 boxes | 84.4 | 73.6 | 78.3 |
Table 2 Performance comparison of loss functions
损失函数 Loss | 损失函数计算方法 Calculation method for loss function | 准确率 P/% | 召回率 R/% | 平均准确度均值 mAP/% |
---|---|---|---|---|
广义交并比GIoU | 基于两框之间的重叠区域 Based on the overlapping area between 2 boxes | 82.9 | 66.5 | 74.1 |
距离交并比DIoU | 基于两框之间的中心点距离 Based on the distance between the center points between 2 boxes | 78.0 | 69.4 | 74.4 |
增强型交并比EIoU | 基于两框之间的中心点距离和长宽比 Based on the center point distance and aspect ratio between 2 boxes | 80.8 | 68.5 | 75.9 |
形状交并比SIoU | 引入方向性 Introduce directionality | 83.6 | 71.4 | 75.7 |
最小点距离交并比MPDIoU | 最小化两框间的左上和右下点距离 Minimize the distance between the top left and bottom right points of 2 boxes | 84.4 | 73.6 | 78.3 |
模型 Model | 准确率 P/% | 召回率 R/% | 平均准确度均值 mAP/% | 参数量 Parameter/M |
---|---|---|---|---|
SSD | 77.9 | 70..4 | 73.1 | 24.5 |
Faster R-CNN | 80.3 | 71.5 | 75.2 | 137.8 |
YOLOv5 | 79.9 | 72.8 | 75.7 | 7.0 |
YOLOv8n | 82.6 | 71.9 | 76.6 | 3.0 |
YOLOv7 | 82.1 | 72.5 | 77 | 37.2 |
Ours | 85.3 | 75.1 | 80.4 | 41.6 |
Table 3 Performance comparison of different models
模型 Model | 准确率 P/% | 召回率 R/% | 平均准确度均值 mAP/% | 参数量 Parameter/M |
---|---|---|---|---|
SSD | 77.9 | 70..4 | 73.1 | 24.5 |
Faster R-CNN | 80.3 | 71.5 | 75.2 | 137.8 |
YOLOv5 | 79.9 | 72.8 | 75.7 | 7.0 |
YOLOv8n | 82.6 | 71.9 | 76.6 | 3.0 |
YOLOv7 | 82.1 | 72.5 | 77 | 37.2 |
Ours | 85.3 | 75.1 | 80.4 | 41.6 |
1 | 农业农村部办公厅关于印发《2021年全国“虫口夺粮”保丰收行动方案》的通知(农办农〔2021〕4号) [J].中华人民共和国农业部公报,2021,2:48-54. |
2 | 邹修国.基于计算机视觉的农作物病虫害识别研究现状[J].计算机系统应用,2011,20(6):238-242. |
ZOU X G.Research status of crop pests recognition over computer vision [J]. Comput. Syst. Appl., 2011,20(6):238-242. | |
3 | 周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251. |
ZHOU F Y, JIN L P, DONG J.Review of convolutional neural network [J]. Chin. J. Comput., 2017,40(6):1229-1251. | |
4 | 高雄,王海超.甘蓝菜青虫害自动识别系统的开发与试验研究:基于机器视觉[J].农机化研究,2015,37(1):205-208, 222. |
GAO X, WANG H C. Research on cabbage rapae pests automatic recognition system based on machine vision [J]. J. Agric. Mech. Res., 2015,37(1):205-208, 222. | |
5 | 苏鸿,温国泉,谢玮,等.基于区域卷积神经网络模型的广西柑橘病虫害识别方法研究[J].西南农业学报,2020,33(4):805-810. |
SU H, WEN G Q, XIE W, et al.. Research on Citrus pest and disease recognition method in Guangxi based on regional convolutional neural network model [J]. Southwest China J. Agric. Sci., 2020,33(4):805-810. | |
6 | ALI F, QAYYUM H, IQBAL M J. Faster-PestNet: a lightweight deep learning framework for crop pest detection and classification [J/OL]. IEEE Access, 2023, 11: 104016-104027 [2024-07-11]. . |
7 | 姜敏,沈一鸣,张敬尧,等.基于深度学习的水稻病虫害诊断方法研究[J].洛阳理工学院学报(自然科学版),2019,29(4):78-83. |
JIANG M, SHEN Y M, ZHANG J Y, et al.. Research on rice diseases and pests diagnosis based on deep learning [J]. J. Luoyang Inst. Sci. Technol. (Nat. Sci.), 2019, 29(4):78-83. | |
8 | 郭阳,许贝贝,陈桂鹏,等.基于卷积神经网络的水稻虫害识别方法[J].中国农业科技导报,2021,23(11):99-109. |
GUO Y, XU B B, CHEN G P, et al.. Rice insect pest recognition method based on convolutional neural network [J]. J. Agric. Sci. Technol., 2021,23(11):99-109. | |
9 | 施杰,林双双,罗建刚,等.基于YOLO v5s改进模型的玉米作物病虫害检测方法[J].江苏农业科学,2023,51(24):175-183. |
10 | LIKITH S, REDDY B R, REDDY K S. A smart system for detection and classification of pests using YOLO and CNN techniques [C]// Proceedings of International Conference on Computational Performance Evaluation (ComPE). IEEE, 2021: 049-052. |
11 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M.YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [EB/OL].(2022-07-06) [2024-07-11]. . |
12 | WANG C C, HE W, NIE Y, et al.. Gold-YOLO:efficient object detector via gather-and-distribute mechanism [EB/OL]. (2023-09-20) [2024-07-11]. . |
13 | YU Z P, HUANG H B, CHEN W J, et al.. YOLO-FaceV2:a scale and occlusion aware face detector [EB/OL].(2022-08-03) [2024-07-11] . . |
14 | MA S L, XU Y, MA S L, et al.. MPDIoU: a loss for efficient and accurate bounding box regression [J/OL]. (2023-07-14) [2024-07-11]. . |
15 | WU X, ZHAN C, LAI Y K, et al.. Ip102: a large-scale benchmark dataset for insect pest recognition [C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019: 8787-8796. |
16 | 农业农村部.中华人民共和国农业农村部公告第654号[J].中华人民共和国农业部公报,2021,2:48-54. |
17 | YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions [EB/OL]. (2015-11-23) [2024-07-11]. . |
18 | VASWANI A, SHAZEER N, PARMAR N, et al.. Attention is all you need [EB/OL]. (2017-06-12) [2024-07-11]. . |
19 | REZATOFIGHI H, TSOI N, GWAK J Y, et al.. Generalized intersection over union: A metric and a loss for bounding box regression [C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. IEEE, 2019: 658-666. |
20 | ZHENG Z H, WANG P, LIU W, et al.. Distance-IoU loss: faster and better learning for bounding box regression [J]. Proc. AAAI Conf. Artif. Intell., 2020, 34(7): 12993-13000. |
21 | ZHANG Y F, REN W, ZHANG Z, et al.. Focal and efficient IOU loss for accurate bounding box regression [EB/OL]. (2021-01-20) [2024-07-11]. . |
22 | GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression [EB/OL]. (2022-05-25) [2024-07-11]. . |
23 | LIU W, ANGUELOV D, ERHAN D, et al.. Ssd: Single shot multibox detector [C]// Proceedings of Computer Vision-ECCV 2016: 14th European Conference. Springer International Publishing, 2016: 21-37. |
24 | GIRSHICK R. Fast r-cnn [C]// Proceedings of the IEEE international conference on computer vision. IEEE, 2015: 1440-1448. |
25 | WU W T, LIU H, LI L L, et al.. Application of local fully convolutional neural network combined with YOLO v5 algorithm in small target detection of remote sensing image [J/OL]. PLoS One, 2021, 16(10): e0259283 [2024-07-11]. . |
26 | TALAAT F M, ZAINELDIN H. An improved fire detection approach based on YOLO-v8 for smart cities [J]. Neural Comput. Appl., 2023, 35(28): 20939-20954. |
[1] | Guoyu HU, Yalan DONG, Gulbahar Tohti, Guang LIU, Jianping ZHOU. Research on Grapevine Structure Segmentation Method Based on Machine Vision [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 105-111. |
[2] | Xiaofei XIONG, Xiuqin WANG, Cuizhen ZHUANG, Jiaxian GUO, Xinrui XIE, Jianwei WU, Qifeng LI. Research on Diagnostic Method of Citrus Anthracnose Based on Image ROI Fusion Feature [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 83-92. |
[3] | Jun TIE, Jie ZHAO, Lu ZHENG, Lifeng WU, Bowen HONG. Application of Improved YOLOv5 Model in Citrus Recognition in Natural Environment [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 111-120. |
[4] | Yue ZHAO, Yong WEI, Huiyong SHAN, Zhimin MU, ZHANGJianxin, Haiyun WU, Hui ZHAO, Jianlong HU. Wheat Ear Detection Method Based on Deep Learning [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 96-105. |
[5] | GENG Zedong1, YANG Wanneng1, LI Feng2, DAI Xiongze3,4, OU Lijun3,4, ZOU Xuexiao3,4, FENG Hui5*. Extraction of Pepper Section Characteristics Based on Machine Vision [J]. Journal of Agricultural Science and Technology, 2021, 23(2): 105-114. |
[6] | YAO Yingfang, LIU Feng, ZHANG Haidong, LI Chao, ZHOU Haijun, WANG Man. Research on Octagon Color and Fruit Shape Recognition Based on Machine Vision [J]. Journal of Agricultural Science and Technology, 2021, 23(11): 110-120. |
[7] | CHEN Junyang, ZHANG Min, XU Youlin*. Analysis of Pesticide In-line-mixing Uniformity Based on Image Processing Technology [J]. Journal of Agricultural Science and Technology, 2019, 21(3): 85-93. |
[8] | WU Di1, WANG Mengke2, YANG Wanneng1, LIU Qian2, HUANG Chenglong1*. Research on Non-destructive Measurement of Surface Root Traits of Rice Plants [J]. Journal of Agricultural Science and Technology, 2017, 19(7): 66-77. |
[9] | YUAN Jie1,2, DU Jian-jun2, GUO Xin-yu2*. Research Progress on Maize Plant Phenotype Detection Based on Visible Image [J]. Journal of Agricultural Science and Technology, 2016, 18(6): 90-96. |
[10] | FANG Wei1, FENG Hui1, YANG Wan-neng1,2, LIU Qian1* . Studies on Non-destructiveoptical Method for Predicting Above-ground Biomass of Individual Rice Plant based on Visible Light Imaging [J]. , 2015, 17(3): 63-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||