Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (9): 83-92.DOI: 10.13304/j.nykjdb.2024.0120
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Xiaofei XIONG1,2(), Xiuqin WANG2, Cuizhen ZHUANG3, Jiaxian GUO3, Xinrui XIE4, Jianwei WU1,2(), Qifeng LI1()
Received:
2024-02-21
Accepted:
2024-04-11
Online:
2024-09-15
Published:
2024-09-13
Contact:
Jianwei WU,Qifeng LI
熊晓菲1,2(), 王秀琴2, 庄翠珍3, 郭家贤3, 谢新锐4, 吴建伟1,2(), 李奇峰1()
通讯作者:
吴建伟,李奇峰
作者简介:
熊晓菲E-mail:xiongxf@pdwy.com.cn
基金资助:
CLC Number:
Xiaofei XIONG, Xiuqin WANG, Cuizhen ZHUANG, Jiaxian GUO, Xinrui XIE, Jianwei WU, Qifeng LI. Research on Diagnostic Method of Citrus Anthracnose Based on Image ROI Fusion Feature[J]. Journal of Agricultural Science and Technology, 2024, 26(9): 83-92.
熊晓菲, 王秀琴, 庄翠珍, 郭家贤, 谢新锐, 吴建伟, 李奇峰. 基于ROI融合特征的柑橘炭疽病诊断方法[J]. 中国农业科技导报, 2024, 26(9): 83-92.
发病部位 Location of disease | 发病阶段 Stage of disease | 正确检测数/测试样本数 Number of correct tests/test samples | 平均识别准确率 Average recognition accuracy/% |
---|---|---|---|
果实 Fruit | 初期 Initial stage | 19/20 | 95 |
中期 Medium stage | 19/20 | 95 | |
后期 Late stage | 20/20 | 100 | |
枝条 Branch | 初期 Initial stage | 18/20 | 90 |
中期 Medium stage | 18/20 | 90 | |
后期 Late stage | 19/20 | 95 | |
叶片 Leaf | 初期 Initial stage | 18/20 | 90 |
中期 Medium stage | 19/20 | 95 | |
后期 Late stage | 19/20 | 95 | |
总计 Total | 169/180 | 94 |
Table 1 Detection results of citrus anthracnose
发病部位 Location of disease | 发病阶段 Stage of disease | 正确检测数/测试样本数 Number of correct tests/test samples | 平均识别准确率 Average recognition accuracy/% |
---|---|---|---|
果实 Fruit | 初期 Initial stage | 19/20 | 95 |
中期 Medium stage | 19/20 | 95 | |
后期 Late stage | 20/20 | 100 | |
枝条 Branch | 初期 Initial stage | 18/20 | 90 |
中期 Medium stage | 18/20 | 90 | |
后期 Late stage | 19/20 | 95 | |
叶片 Leaf | 初期 Initial stage | 18/20 | 90 |
中期 Medium stage | 19/20 | 95 | |
后期 Late stage | 19/20 | 95 | |
总计 Total | 169/180 | 94 |
1 | 祁春节,顾雨檬,曾彦.我国柑橘产业经济研究进展[J].华中农业大学学报,2021,40(1):58-69. |
QI C J, GU Y M, ZENG Y. Progress of citrus industry economy in China [J]. J. Huazhong Agric. Univ., 2021, 40(1): 58-69. | |
2 | 李建明,何莲,孔玄庆,等.苯醚甲环唑和吡唑醚菌酯对柑橘炭疽病菌的联合毒力及防效[J].现代农药,2022,21(5):60-64. |
LI J M, HE L, KONG X Q, et al.. Co-toxicity and field control efficacy of difenoconazole and pyraclostrobin against citrus anthracnose [J]. Modern Agrochem., 2022, 21(5): 60-64. | |
3 | 潘一凡,刘永忠,黄钰轩,等.我国柑橘栽培管理技术现状调查和发展思考[J].华中农业大学学报,2023,42(4):140-149. |
PAN Y F, LIU Y Z, HUANG Y X, et al.. Investigation and development thinking on the cultivation situation and management techniques of citrus in China [J]. J. Huazhong Agric. Univ.,2023, 42(4): 140-149. | |
4 | 刘冰卿,陈霞,凌金锋,等.氯氟醚菌唑·吡唑醚菌酯对柑橘炭疽病的田间防治效果[J].热带农业科学,2023,43(7):53-56. |
LIU B Q, CHEN X, LING J F, et al.. Evaluation of the field control effect of mefentrifluconazole·pyraclostrobin against citrus anthracnose [J]. Chin. J. Tropical Agric., 2023, 43(7): 53-56. | |
5 | 伊华林,刘慧宇.我国柑橘品种分布特点及适地适栽品种选择探讨[J].中国果树,2022(1):1-7. |
YI H L, LIU H Y. Distribution characteristics of citrus varieties and selection of varieties suitable for planting in China [J]. China Fruits, 2022(1): 1-7. | |
6 | 肖晓华,周天云,刘春,等.柑橘病虫害危害损失评估方法初探[J].农业科学, 2018(11):35-37. |
XIAO X H, ZHOU T Y, LIU C, et al.. Primary study on the evaluation methods of citrus diseases and insect pests [J]. Agric. Sci., 2018(11): 35-37. | |
7 | 孙兴旭,李威.黔东南州柑橘炭疽病和疮痂病发生情况及防治措施[J].农技服务,2024, 41(1):84-87. |
8 | 辛德育,林作晓,檀志全,等.2022年广西农作物主要病虫害发生实况[J].广西植保,2023,36(3):29-38. |
9 | 王春山,赵春江,吴华瑞,等.采用双模态联合表征学习方法识别作物病害[J].农业工程学报,2021,37(11):180-188. |
WANG C S, ZHAO C J, WU H R, et al.. Recognizing crop diseases using bimodal joint representation learning [J]. Trans. Chin. Soc. Agric. Eng., 2021, 37(11): 180-188. | |
10 | 李云红,张蕾涛,谢蓉蓉,等.基于AT-DenseNet网络的番茄叶片病害识别方法[J].江苏农业科学,2023,51(21):209-217. |
LI Y H, ZHANG L T, XIE R R, et al.. An identification method for tomato leaf disease based on AT-DenseNet network [J]. Jiangsu Agric. Sci., 2023,51(21): 209-217. | |
11 | 刘敏,周丽.基于多尺度特征融合网络的苹果病害叶片检测[J].中国农机化学报,2023,44(8):184-190. |
LIU M, ZHOU L. Apple disease leaf detection based on multi-scale feature fusion network [J]. J. Chin. Agric. Mech., 2023, 44(8): 184-190. | |
12 | XU L X, CAO B X, ZHAO F J, et al.. Wheat leaf disease identification based on deep learning algorithms [J/OL]. Physiol. Mol. Plant Pathol., 2023(123):101940 [2024-05-22]. . |
13 | 吴建伟,黄杰,熊晓菲,等.基于AI的桃树病害智能识别方法研究与应用[J].中国农业科技导报,2022,24(5):111-118. |
WU J W, HUANG J, XIONG X F, et al.. Research and application of intelligent recognition method of peach tree diseases based on AI [J]. J. Agric. Sci. Technol., 2022,24(5): 111-118. | |
14 | 张德健.基于图像识别的农作物病害诊断技术研究[D].哈尔滨:哈尔滨工程大学,2020. |
ZHANG D J. Research on crop disease diagnosis technology based on image recognition [D]. Harbin: Harbin Engineering University, 2020. | |
15 | 张建敏,于冬雪.柑橘叶面病害监测颜色空间改进算法研究[J].农机化研究,2019,41(6):38-42, 47. |
ZHANG J M, YU D X. Improved algorithm of color space for citrus leaf disease monitoring [J]. J. Agric. Mech. Res., 2019, 41(6): 38-42, 47. | |
16 | 卫雅娜,王志彬,乔晓军,等.基于注意力机制与EfficientNet的轻量化水稻病害识别方法[J].中国农机化学报, 2022,43(11):172-181. |
WEI Y N, WANG Z B, QIAO X J, et al.. Lightweight rice disease identification method based on attention mechanism and EfficientNet [J]. J. Chin. Agric. Mech., 2022,43(11): 172-181. | |
17 | YOSHIDA T, FUKAO T, HASEGAWA T. Cutting point detection using a robot with point clouds for tomato harvesting [J]. J. Rob. Mechatronics, 2020, 32(2): 437-444. |
18 | 张勤,庞月生,李彬.基于实例分割的番茄串视觉定位与采摘姿态估算方法[J].农业机械学报,2023,54(10):205-215. |
ZHANG Q, PANG Y S, LI B. Visual positioning and picking pose estimation of tomato clusters based on instance segmentation [J]. Trans. Chin. Soc. Agric. Mach., 2023, 54(10): 205-215. | |
19 | XUAN G, LI Q, SHAO Y, et al.. Early diagnosis and pathogenesis monitoring of wheatpowdery mildew caused by blumeria graminis using hyperspectral imaging [J/OL]. Comput. Electron. Agric., 2022, 197: 106921 [2024-05-22]. . |
20 | 张春艳.番茄病害图像特征分析与识别[J].农业与技术,2020,40(23):40-41. |
ZHANG C Y. Image feature analysis and recognition of tomato diseases [J]. Agric. Technol., 2020,40(23): 40-41. | |
21 | SON C H. Leaf spot attention networks based on spot feature encoding for leaf disease identification and detection [J/OL]. Appl. Sci., 2021, 11(17): 7960 [2024-05-22]. . |
22 | 秦彩杰,李勇.作物病虫害自动识别技术研究-基于视频监控和无人机平台[J].农机化研究,2021,43(10):42-45, 50. |
QIN C J, LI Y. Research on automatic identification technology of crop diseases and insect pests —based on video monitoring and UAV platform [J]. J. Agric. Mech. Res., 2021, 43(10): 42-45, 50. | |
23 | 宋中山,汪进,郑禄,等.基于二值化的Faster R-CNN柑橘病虫害识别研究[J].中国农机化学报,2022,43(6):150-158. |
SONG Z S, WANG J, ZHENG L, et al.. Research on citrus pest identification based on Binary faster R-CNN [J]. J. Chin. Agric. Mech., 2022, 43(6): 150-158. | |
24 | 王瑞鹏,陈锋军,朱学岩,等.采用改进的EfficientNet识别苹果叶片病害[J].农业工程学报,2023,39(18):201-210. |
WANG R P, CHEN F J, ZHU X Y, et al.. Identifying apple leaf diseases using improved EfficientNet [J]. Trans. Chin. Soc. Agric. Eng., 2023, 39(18): 201-210. | |
25 | 耿利川,苏松志,李绍滋.基于透视不变二值特征描述子的图像匹配算法[J].通信学报,2015,36(4):105-114. |
GENG L C, SU S Z, LI S Z. Perspective invariant binary feature descriptor based image matching algorithm [J]. J. Commun., 2015, 36(4): 105-114. | |
26 | 范振军,李小霞.基于ROI快速检测与融合特征的马铃薯病害识别[J].西南农业学报,2019,32(3):544-550. |
FAN Z J, LI X X. Recognition of potato diseases based on fast detection and fusion features of ROI [J]. Southwest China J. Agric. Sci., 2019, 32(3): 544-550. | |
27 | 张铮,徐超,任淑霞,等.数字图像处理与机器视觉:Visual C++与Matlab实现 [M]. 第2版.北京:人民邮电出版社, 2014: 282-283. |
[1] | Guoyu HU, Yalan DONG, Gulbahar Tohti, Guang LIU, Jianping ZHOU. Research on Grapevine Structure Segmentation Method Based on Machine Vision [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 105-111. |
[2] | Huiping JIN, Haiwen MOU, Teng LIU, Jialin YU, Xiaojun JIN. Bok Choy and Weed Identification Based on Deep Convolutional Neural Networks [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 122-130. |
[3] | Jun TIE, Jie ZHAO, Lu ZHENG, Lifeng WU, Bowen HONG. Application of Improved YOLOv5 Model in Citrus Recognition in Natural Environment [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 111-120. |
[4] | Guo ZHENG, Yusong JIANG. Diagnosis of Crop Disease Based on Multi-task Learning [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 89-98. |
[5] | Chunping HE, Lanyan FAN, He WU, Yanqiong LIANG, Weihuai WU, Rui LI, Fucong ZHENG. Study on Inhibitory Effect of Lipopeptides Produced by Bacillus subtilis Czk1 on Anthracnose and Powdery Mildewof Rubber Tree [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 126-134. |
[6] | Kaiyan LIN, Fei MEI, Junhui WU, Wengang GUO, Jie CHEN, Huiping SI. Design and Research of Crop Disease Monitoring Service Platform Based on Computer Vision [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 89-96. |
[7] | Chao YANG, Haibin HAN, Bo WEI, Heng ZHANG, Chen SHANG, Bing SU, Siyuan LIU, Peiwei JIANG, Delong XIANG. Construction of Method for Age Identification of Sardinops sagax in the North Pacific Ocean [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 225-233. |
[8] | Yue ZHAO, Yong WEI, Huiyong SHAN, Zhimin MU, ZHANGJianxin, Haiyun WU, Hui ZHAO, Jianlong HU. Wheat Ear Detection Method Based on Deep Learning [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 96-105. |
[9] | Haitao LIU, Xin HAN, Yubin LAN, Lili YI, Baoju WANG, Lihua CUI. Precise Recognition Method of Cotton Top Buds Based on YOLOv4 Network [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 99-108. |
[10] | Jianwei WU, Jie HUANG, Xiaofei XIONG, Han GAO, Xiangyang QIN. Research and Application of Intelligent Recognition Method of Peach Tree Diseases Based on AI [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 111-118. |
[11] | Yinyan GAO, Yi SUN, Baochun LI. Estimating of Wheat Ears Number in Field Based on RGB Images Using Unmanned Aerial Vehicle [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 103-110. |
[12] | Hao HUANG, Shengqiao XIE, Du CHEN, Heng WANG. Application and Research Advances on Deep Learning in Apple’s Industry Chain [J]. Journal of Agricultural Science and Technology, 2022, 24(10): 79-89. |
[13] | ZHOU Huiru, WU Boming. Advances in Research on Deep Learning for Crop Disease Image Recognition [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 61-68. |
[14] | LYU Chunyang, LIU Shengping, GUO Xiuming, XIAO Shunfu, LIU Dazhong, YANG Feifei, LI Luhua. Detection of Honeybee Based on SSD Model [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 98-107. |
[15] | XU Beibei1, WANG Wensheng1,2*, GUO Leifeng1, CHEN Guipeng3. A Review and Future Prospects on Cattle Recognition Based on Non-contact Identification [J]. Journal of Agricultural Science and Technology, 2020, 22(7): 79-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||