中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (1): 14-23.DOI: 10.13304/j.nykjdb.2021.0188
庄重1(), 赵龙1, 白皓2, 毕瑜林1, 黄应权3, 陈国宏1, 常国斌1(
)
收稿日期:
2021-03-07
接受日期:
2021-06-21
出版日期:
2022-01-15
发布日期:
2022-01-25
通讯作者:
常国斌
作者简介:
庄重 E-mail:1175007549@qq.com;
基金资助:
Zhong ZHUANG1(), Long ZHAO1, Hao BAI2, Yulin BI1, Yingquan HUANG3, Guohong CHEN1, Guobin CHANG1(
)
Received:
2021-03-07
Accepted:
2021-06-21
Online:
2022-01-15
Published:
2022-01-25
Contact:
Guobin CHANG
摘要:
作为一种重要的基因工程技术,基因编辑自出现以来一直倍受关注。近年来,基因编辑技术发展更为迅速,从锌指核酸酶技术(ZFN)的开发利用到转录激活因子效应物核酸酶(TALEN)技术的熟练运用,再到规律成簇间隔短回文重复序列(CRISPR)技术的发现,基因编辑技术在不断地自我更新和完善的过程中推动着生命科学的发展和进步。综述了基因编辑技术的发展以及CRISPR/Cas9系统的组成和作用机制,介绍了其在家禽功能基因研究上的应用,及其在具有经济价值的基因模型制备中的应用,并探讨了目前CRISPR/Cas9技术在家禽方面存在的一些不足之处,旨在为家禽育种相关研究提供参考。
中图分类号:
庄重, 赵龙, 白皓, 毕瑜林, 黄应权, 陈国宏, 常国斌. CRISPR/Cas9技术在家禽育种方面的应用[J]. 中国农业科技导报, 2022, 24(1): 14-23.
Zhong ZHUANG, Long ZHAO, Hao BAI, Yulin BI, Yingquan HUANG, Guohong CHEN, Guobin CHANG. Development of CRISPR/Cas9 and Its Application in Poultry[J]. Journal of Agricultural Science and Technology, 2022, 24(1): 14-23.
家禽细胞模型 Poultry cell model | 靶基因 Target gene | 参考文献Reference |
---|---|---|
鸡淋巴瘤细胞(DT40)、鸡成纤维细胞(DF-1) Chicken lymphoma cell(DT40), chicken fibroblast(DF-1) | DROSHA,DICER,MBD3,KIAA1279,CDKN1B,EZH2,HIRA,TYRP1,STMN2,RET,DGCR | [ |
DF-1、鸡胚胎干细胞(ESCs) DF-1,chicken embryonic stem cells(ESCs) | C2EIP (2号染色体PGCs中表达) C2EIP (expression in PGCs on chromosome 2) | [ |
DF-1 | PPAR⁃γ (过氧化物酶体增殖物激活受体-γ)、ATP5E (ATP合成酶ε亚基)、OVA(卵清蛋白) PPAR⁃γ (peroxisome proliferator-activated receptor-γ),ATP5E (ATP synthase epsilon subunit),OVA(ovalbumin) | [ |
DF-1 | 肌肉生长抑制素Myostatin | [ |
鹌鹑肌肉细胞(QM7) Quail muscle cells(QM7) | MLPH (亲黑素位点) MLPH (melanophilin locus) | [ |
鸡原始生殖细胞(PGCs) Chicken primordial germ cells(PGCs) | CXCR4 (C-X-C趋化因子受体4型) CXCR4 (C-X-C chemokine receptor type 4) | [ |
ESCs | Stra8 (视黄酸激活基因8) Stra8 (stimulated by retinoic acid 8 gene) | [ |
DF-1 | GAPDH (甘油醛-3-磷酸脱氢酶) GAPDH (glyceraldehyde-3-phosphate dehydrogenase) | [ |
DF-1 | TVA (抗A亚群禽白血病病毒受体)、TVC(抗C亚群禽白血病病毒受体)、TVJ(抗J亚群禽白血病病毒受体) TVA (anti A subgroup of avian leukemia virus receptor),TVC(anti C subgroup of avian leukemia virus receptor),TVJ(anti J subgroup of avian leukemia virus receptor) | [ |
DF-1 | TBK1 (TANK结合激酶1) TBK1 (TANK binding kinase 1) | [ |
DF-1 | DAZL (精症缺失样) DAZL (deleted in AZoospermia-like) | [ |
DF-1 | ANP32A (性核磷蛋白32A) ANP32A (acidic nuclear phosphoprotein 32 family,member A) | [ |
DF-1 | IRF7 (扰素调节因子7) IRF7(interferon regulator factor 7) | [ |
DF-1 | AMHR (缪勒管激素2型受体) AMHR (anti-mullerian hormone receptor type 2) | [ |
DF-1 | Apob (载脂蛋白B) Apob (apolipoprotein B) | [ |
表1 CRISPR/Cas9系统在家禽细胞系模型上的应用
Table 1 Application of CRISPR/Cas9 system in poultry basal cell model
家禽细胞模型 Poultry cell model | 靶基因 Target gene | 参考文献Reference |
---|---|---|
鸡淋巴瘤细胞(DT40)、鸡成纤维细胞(DF-1) Chicken lymphoma cell(DT40), chicken fibroblast(DF-1) | DROSHA,DICER,MBD3,KIAA1279,CDKN1B,EZH2,HIRA,TYRP1,STMN2,RET,DGCR | [ |
DF-1、鸡胚胎干细胞(ESCs) DF-1,chicken embryonic stem cells(ESCs) | C2EIP (2号染色体PGCs中表达) C2EIP (expression in PGCs on chromosome 2) | [ |
DF-1 | PPAR⁃γ (过氧化物酶体增殖物激活受体-γ)、ATP5E (ATP合成酶ε亚基)、OVA(卵清蛋白) PPAR⁃γ (peroxisome proliferator-activated receptor-γ),ATP5E (ATP synthase epsilon subunit),OVA(ovalbumin) | [ |
DF-1 | 肌肉生长抑制素Myostatin | [ |
鹌鹑肌肉细胞(QM7) Quail muscle cells(QM7) | MLPH (亲黑素位点) MLPH (melanophilin locus) | [ |
鸡原始生殖细胞(PGCs) Chicken primordial germ cells(PGCs) | CXCR4 (C-X-C趋化因子受体4型) CXCR4 (C-X-C chemokine receptor type 4) | [ |
ESCs | Stra8 (视黄酸激活基因8) Stra8 (stimulated by retinoic acid 8 gene) | [ |
DF-1 | GAPDH (甘油醛-3-磷酸脱氢酶) GAPDH (glyceraldehyde-3-phosphate dehydrogenase) | [ |
DF-1 | TVA (抗A亚群禽白血病病毒受体)、TVC(抗C亚群禽白血病病毒受体)、TVJ(抗J亚群禽白血病病毒受体) TVA (anti A subgroup of avian leukemia virus receptor),TVC(anti C subgroup of avian leukemia virus receptor),TVJ(anti J subgroup of avian leukemia virus receptor) | [ |
DF-1 | TBK1 (TANK结合激酶1) TBK1 (TANK binding kinase 1) | [ |
DF-1 | DAZL (精症缺失样) DAZL (deleted in AZoospermia-like) | [ |
DF-1 | ANP32A (性核磷蛋白32A) ANP32A (acidic nuclear phosphoprotein 32 family,member A) | [ |
DF-1 | IRF7 (扰素调节因子7) IRF7(interferon regulator factor 7) | [ |
DF-1 | AMHR (缪勒管激素2型受体) AMHR (anti-mullerian hormone receptor type 2) | [ |
DF-1 | Apob (载脂蛋白B) Apob (apolipoprotein B) | [ |
1 | CLEAR P. Genetic microsurgery for the masses [J]. Science, 2013, 342(6165): 1434-1435. |
2 | TRAVIS J. Breakthrough of the year: CRISPR makes the cut [J]. Science, 2015, 350(6267):1456-1457. |
3 | MAGALENA S, RITU D, HELEN P, et al.. The scientific events that shaped the decade [J]. Nature,2019,576(7787): 337-338. |
4 | WHYTE J J, ZHAO J, WELLS K D, et al.. Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs [J]. Mol. Reprod. Dev., 2011, 78(1):2. |
5 | BOCH J, SCHOLZE H, SCHORNACK S, et al.. Breaking the code of DNA binding specificity of TAL-type Ⅲ effectors [J]. Science, 2009, 326(5959):1509-1512. |
6 | MALI P, YANG L, ESVELT K M, et al.. RNA-guided human genome engineering via Cas9 [J]. Science, 2013, 339(6121):823-826. |
7 | ISHINO Y, SHINAGAWA H, MAKINO K, et al.. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichiacoli, and identification of the gene product [J]. J. Bacteriol., 1987, 169(12):5429-5433. |
8 | JANSEN R, EMBDEN J D A, GAASTRA W, et al.. Identification of genes that are associated with DNA repeats in prokaryotes [J]. Mol. Microbiol., 2002, 43(6):1565-1575. |
9 | BOLOTIN A, QUINQUIS B, SOROKIN A, et al.. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin [J]. Microbiology, 2005, 151(8):2551-2561. |
10 | MOJICA F J M, GARCÍA-MARTÍNEZ J, SORIA E, et al.. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements [J]. J. Mol. Evol., 2005, 60(2):174-182. |
11 | POURCEL C, SALVIGNOL G, VERGNAUD G. CRISPR elements in Yersiniapestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies [J]. Microbiology, 2005, 151(3):653-663. |
12 | MAKAROVA K S, GRISHIN N V, SHABALINA S A, et al.. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action [J/OL]. Biol. Direct, 2006, 1(1): 7[2021-07-24]. . |
13 | BARRANGOU R, FREMAUX C, DEVEAU H, et al.. CRISPR provides acquired resistance against viruses in prokaryotes [J]. Science, 2007, 315(5819):1709-1712. |
14 | MARRAFFINI L A, SONTHEIMER E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA [J]. Science, 2008, 322(5909):1843-1845. |
15 | GARNEAU J E, DUPUIS M È, VILLION M, et al.. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA [J]. Nature, 2010, 468(7320):67-71. |
16 | CONG L, RAN F A, COX D, et al.. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013, 339(6121):819-823. |
17 | HAI T, TENG F, GUO R, et al.. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system [J]. Cell Res., 2014, 24(8):372-375. |
18 | HAN H, MA Y, WANG T, et al.. One-step generation of myostatin gene knockout sheep via the CRISPR/Cas9 system [J]. Front. Agric. Sci. Eng., 2014, 1(1):2-5. |
19 | WANG X, CAI B, ZHOU J, et al.. Disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers [J/OL]. PLoS ONE, 2016, 11(10): e0164640 [2021-07-24]. . |
20 | HEO Y T, QUAN X, XU Y N, et al.. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells [J]. Stem Cells Dev., 2015, 24(3):393-402. |
21 | NIU Y, SHEN B, CUI Y, et al.. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos [J]. Cell, 2014, 156(4):836-843. |
22 | SHIN J, JIANG F, LIU J J, et al.. Disabling Cas9 by an anti-CRISPR DNA mimic [J/OL]. Science, 2017, 3(7):e1701620[2021-07-24]. . |
23 | CHEN S, SANJANA N E, ZHENG K, et al.. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis [J]. Cell, 2015, 160(6):1246-1260. |
24 | JIANG W, BIKARD D, COX D, et al.. RNA-guided editing of bacterial genomes using CRISPR-Cas systems [J]. Nat. Biotechnol., 2013, 31(3):233-239. |
25 | FENG Z, ZHANG B, DING W, et al.. Efficient genome editing in plants using a CRISPR/Cas system [J]. Cell Res., 2013, 23(6096):1229-1232. |
26 | HU X, HAO F, Li X, et al.. Generation of VEGF knock-in Cashmere goat via the CRISPR/Cas9 system [J]. Int. J. Biol. Sci., 2021, 17(4):1026-1040. |
27 | SINGINA GN, SERGIEV PV, LOPUKHOV AV, et al.. Production of a cloned offspring and CRISPR/Cas9 genome editing of embryonic fibroblasts in cattle [J]. Dokl Biochem. Biophys., 2021, 496(1):48-51. |
28 | LAI S, WEI S, ZHAO B, et al.. Generation of knock-in pigs carrying Oct4-tdTomato reporter through CRISPR/Cas9-mediated genome engineering [J/OL]. PLoS ONE, 2016, 11(1):e0146562 [2021-07-24]. . |
29 | BARRANGOU R, MARRAFFINI L A. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity [J]. Mol. Cell, 2014, 54(2):234-244. |
30 | DEVEAU H, BARRANGOU R, GARNEAU J E, et al.. Phage response to CRISPR-encoded resistance in streptococcus thermophilus [J]. J. Bacteriol., 2008, 190(4):1390-1400. |
31 | NISHIMASU H, RAN F A, HSU P D, et al.. Crystal structure of Cas9 in complex with guide RNA and target DNA [J]. Cell, 2014, 156(5):935-949. |
32 | JINEK M, JIANG F, TAYLOR D W, et al.. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation [J/OL]. Science, 2014, 343(6176):1247997 [2021-07-24]. . |
33 | SPEEDY A W. Global production and consumption of animal source foods [J]. J. Nutr., 2003, 133():4048S-4053S. |
34 | YASUGI S, NAKAMURA H. Gene transfer into chicken embryos as an effective system of analysis in developmental biology [J]. Dev. Growth Differ., 2000, 42(3):195-197. |
35 | ABU-BONSRAH K D, ZHANG D,NEWGREEN D F. CRISPR/Cas9 targets chicken embryonic somatic cells In vitro and In vivo and generates phenotypic abnormalities [J/OL]. Sci. Rep., 2016, 6: 34524 [2021-07-24]. . |
36 | ZUO Q, WANG Y, CHENG S, et al.. Site-directed genome knockout in chicken cell line and embryos can use crispr/cas gene editing technology [J]. G3 (Bethesda), 2016, 6(6):1787-1792. |
37 | BAI Y, HE L, LI P, et al.. Efficient genome editing in chicken df-1 cells using the crispr/cas9 system [J]. G3 (Bethesda), 2016, 6(4):917-923. |
38 | LEE J H, KIM S W, PARK T S. Myostatin gene knockout mediated by Cas9-D10A nickase in chicken DF1 cells without off-target effect [J]. Asian-Australas J. Anim. Sci., 2017, 30(5):743-748. |
39 | AHN J, LEE J, PARK J Y, et al.. Targeted genome editing in a quail cell line using a customized CRISPR/Cas9 system [J]. Poult. Sci., 2017, 96(5):1445-1450. |
40 | LEE J H, PARK J W, KIM S W, et al.. C-X-C chemokine receptor type 4 (CXCR4) is a key receptor for chicken primordial germ cell migration [J]. J. Reprod. Dev., 2017, 63(6):555-562. |
41 | ZHANG Y, WANG Y, ZUO Q, et al.. CRISPR/Cas9 mediated chicken Stra8 gene knockout and inhibition of male germ cell differentiation [J/OL]. PLoS ONE, 2017, 12(2):e0172207 [2021-07-24]. . |
42 | ANTONOVA E, GLAZOVA O, GAPONOVA A, et al.. Successful CRISPR/Cas9 mediated homologous recombination in a chicken cell line [J/OL]. F1000 Res., 2018, 7:238 [2021-07-24]. . |
43 | KOSLOVÁ A, KUCEROVÁ D, REINIŠOVÁ M, et al.. Genetic resistance to avian leukosis viruses induced by CRISPR/CAS9 editing of specific receptor genes in chicken cells [J/OL]. Viruses, 2018, 10(11):605[2021-07-24]. . |
44 | CHENG Y, LUN M, LIU Y, et al.. CRISPR/Cas9-mediated chicken TBK1 gene knockout and its essential role in sting-mediated IFN-Β induction in chicken cells [J/OL]. Front. Immunol., 2019, 9(1):3010 [2021-07-24]. . |
45 | XIE L, SUN J, MO L, et al.. HMEJ-mediated efficient site-specific gene integration in chicken cells [J]. J. Biol. Eng., 2019, 13(9):274-285. |
46 | PARK Y H, CHUNGU K, LEE S B, et al.. Host-Specific restriction of avian influenza virus caused by differential dynamics of ANP32 family members [J]. J. Infect. Dis., 2020, 221(1):71-80. |
47 | KIM T H, KERN C, ZHOU H. Knockout of IRF7 highlights its modulator function of host response against avian influenza virus and the involvement of MAPK and TOR signaling pathways in chicken [J/OL]. Genes, 2020, 11(4):385 [2021-07-24]. . |
48 | 黄思嘉,祝梦琦,李鹏程,等.利用CRISPR/Cas9技术对鸡AMHR2基因进行精确编辑[J]. 家畜生态学报,2020,41(6):12-18. |
HUANG S J, ZHU M Q, LI P C, et al.. Precise editing of chicken AMHR2 gene by CRISPR/Cas9 [J]. J. Dom. Anim. Ecol., 2020, 41(6):12-18. | |
49 | 吉琳,杨秋月,方斐旻,等.鸡Apob基因组织表达与CRISPR/Cas9敲除系统的构建[J]. 畜牧兽医学报,2021,52(3):630-640. |
JI L, YANG Q Y, FANG F M, et al.. Tissue expression and construction of CRISPR/Cas9 knockout system of Apob in chicken [J]. Chin. J. Anim. Veterinary Sci., 2021, 52(3):630-640. | |
50 | 王恒,殷慧群,章孝荣.鸡胚模型在生物研究中的应用进展[J]. 生命科学,2009,21(2):312-315. |
WANG H, YIN H Q, ZHANG X R. Research advances of chick embryo model in biological experiments [J]. Chin. Bull. Life Sci., 2009, 21(2):312-315. | |
51 | PARK T S, KANG K S, HAN J Y. Current genomic editing approaches in avian transgenesis [J]. Gen. Comp. Endocrinol., 2013, 190:144-148. |
52 | SMITH S M, FLENTKE G R, GARIC A. Avian models in teratology and developmental toxicology [J]. Methods Mol. Biol., 2012, 889:85-103. |
53 | VÉRON N, QU Z, KIPEN P A, et al.. CRISPR mediated somatic cell genome engineering in the chicken [J]. Dev. Biol., 2015, 407(1):68-74. |
54 | WILLIAMS R M, SENANAYAKE U, ARTIBANI M, et al.. Genome and epigenome engineering CRISPR toolkit for in vivo modulation of cis-regulatory interactions and gene expression in the chicken embryo [J/OL]. Development, 2018, 145(4):dev160333[2021-07-24]. . |
55 | SCHUSSER B, COLLARINI E J, YI H, et al.. Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells [J]. Proc. Natl. Acad. Sci. USA, 2013, 110(50):20170-20175. |
56 | OISHI I, YOSHII K, MIYAHARA D, et al.. Targeted mutagenesis in chicken using CRISPR/Cas9 system [J/OL]. Sci. Rep., 2016, 6:23980 [2021-07-24]. . |
57 | LEE H J, LEE K Y, PARK Y H, et al.. Acquisition of resistance to avian leukosis virus subgroup B through mutations on tvb cysteine-rich domains in DF-1 chicken fibroblasts [J/OL]. Vet. Res., 2017, 48(1):48[2021-07-24]. . |
58 | LEE H J, PARK K J, LEE K Y, et al.. Sequential disruption of ALV host receptor genes reveals no sharing of receptors between ALV subgroups A, B, and J [J/OL]. J. Anim. Sci. Biotechnol., 2019, 10:23[2021-07-24]. . |
59 | KOSLOVÁ A, TREFIL P, MUCKSOVÁ J, et al.. Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus [J]. Proc. Natl. Acad. Sci. USA, 2020, 117(4):2108-2112. |
60 | TANG N, ZHANG Y, PEDRERA M, et al.. A simple and rapid approach to develop recombinant avian herpesvirus vectored vaccines using CRISPR/Cas9 system [J]. Vaccine, 2018, 36(5):716-722. |
61 | TANG N, ZHANG Y, SADIGH Y, et al.. Generation of a triple insert live avian herpesvirus vectored vaccine using CRISPR/Cas9-based gene editing [J/OL]. Vaccines, 2020, 8(1):97 [2021-07-24]. . |
62 | LIN S R, YANG H C, KUO Y T, et al.. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo [J/OL]. Mol. Ther. Nucleic Acids, 2014, 3(8):e186 [2021-07-24]. . |
63 | ROTH S M, MARTEL G F, FERRELL R E, et al.. Myostatin gene expression is reduced in humans with heavy-resistance strength training: a brief communication [J]. Exp. Biol. Med., 2003, 228(6):706-709. |
64 | 邱桂如,金四华,王政,等.CRISPR/Cas9介导鸡IHH基因载体构建及其敲除效率检测[J]. 中国家禽,2017,39(19):6-10. |
QIU G R, JIN S H, WANG Z, et al.. Construction and efficiency testing of IHH CRISPR/Cas9 vector in chicken [J]. Chin. Poult., 2017, 39(19):6-10. | |
65 | ZHANG S, LI H, SHI H. Single marker and haplotype analysis of the chicken apolipoprotein B gene T123G and D9500D9-polymorphism reveals association with body growth and obesity [J]. Poult. Sci., 2006, 85(2):178-184. |
66 | ZUO Q, JIN K, WANG Y, et al.. CRISPR/Cas9-mediated deletion of C1EIS inhibits chicken embryonic stem cell differentiation into male germ cells (Gallus gallus) [J]. J. Cell Biochem., 2017, 118(8):2380-2386. |
67 | 杨秀荣,邓继贤,赵德彪,等.鸡DMRT1基因CRISPR/Cas9载体构建及打靶效率的检测[J]. 中国家禽,2017,39(2):6-9. |
YANG X R, DENG J X, ZHAO D B, et al.. Construction and testing of DMRT1 CRISPR/Cas9 plasmid in chicken [J]. Chin. Poult., 2017, 39(2):6-9. | |
68 | KUMAR N, STANFORD W, SOLIS D C, et al.. The development of an aav-based CRISPR SaCas9 genome editing system that can be delivered to neurons in vivo and regulated via doxycycline and cre-recombinase [J]. Front. Mol. Neurosci., 2018, 11:413[2021-07-24]. . |
69 | HU J H, MILLER S M, GEURTS M H, et al.. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity [J]. Nature, 2018, 556(7699):57-63. |
70 | NISHIMASU H, SHI X, ISHIGURO S, et al.. Engineered CRISPR-Cas9 nuclease with expanded targeting space [J]. Science, 2018, 361(6408):1259-1262. |
71 | KLEINSTIVER B P, PREW M S, TSAI S Q, et al.. Engineered CRISPR-Cas9 nucleases with altered PAM specificities [J]. Nature, 2015, 523(7561):481-485. |
72 | LINO C A, HARPER J C, CARNEY J P, et al.. Delivering CRISPR: a review of the challenges and approaches [J]. Drug Deliv., 2018, 25(1):1234-1257. |
73 | VAKULSKAS C A, BEHLKE M A. Evaluation and reduction of CRISPR off-target cleavage events [J]. Nucleic Acid Ther., 2019, 29(4):167-174. |
74 | LAMBETH L S, MORRIS K R, WISE T G, et al.. Transgenic chickens overexpressing aromatase have high estrogen levels but maintain a predominantly male phenotype [J]. Endocrinology, 2016, 157(1):83-90. |
75 | COOPER C A, CHALLAGULLA A, JENKINS K A, et al.. Generation of gene edited birds in one generation using sperm transfection assisted gene editing (STAGE) [J]. Transgenic Res., 2017, 26(3):331-347. |
76 | WANG H, YANG H, SHIVALILA C S, et al.. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering [J]. Cell, 2013, 153(4):910-918. |
77 | FU B X H, SMITH J D, FUCHS R T, et al.. Target-dependent nickase activities of the CRISPR-Cas nucleases Cpf1 and Cas9 [J]. Nat. Microbiol., 2019, 4(5):888-897. |
78 | GUILINGER J P, THOMPSON D B, LIU D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification [J]. Nat. Biotechnol., 2014, 32(6):577-582. |
79 | PAWLUK A, BONDY-DENOMY J, CHEUNG V H, et al.. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa [J/OL]. mBio, 2014, 5(2):e00896 [2021-07-24]. . |
80 | SHIN J, JIANG F, LIU J J, et al.. Disabling Cas9 by an anti-CRISPR DNA mimic [J/OL]. Sci. Adv., 2017, 3(7):e1701620 [2021-07-24]. . |
[1] | 马小倩, 杨涛, 张全, 张洪亮. 水稻新型育种技术研究现状与展望[J]. 中国农业科技导报, 2022, 24(1): 24-30. |
[2] | 邹俊杰, 徐妙云, 张兰, 郑红艳, 王磊. 转基因复合抗虫耐除草剂玉米BFL4-1的分子特征及功能评价[J]. 中国农业科技导报, 2022, 24(1): 31-37. |
[3] | 黄耀辉, 焦悦, 付仲文. 国际转基因产品低水平混杂政策对我国的启示[J]. 中国农业科技导报, 2021, 23(9): 1-11. |
[4] | 李生梅, 张大伟, 迪丽拜尔·迪力买买提, 魏鑫, 芮存, 杨涛, 耿世伟, 高文伟. 减量灌溉对转ScALDH21基因棉花农艺性状、产量和品质的影响[J]. 中国农业科技导报, 2021, 23(9): 152-159. |
[5] | 李文龙1,徐俊锋2,徐琳杰1,孙卓婧1,李鹭1,宋贵文1*. 良好实验室规范(GLP)应用于我国农业转基因生物安全管理的探讨[J]. 中国农业科技导报, 2021, 23(4): 20-26. |
[6] | 廖嘉明, §, 李春梅§, 张石虎, 李布野, 欧阳昆唏, 陈晓阳. CRISPR/Cas9基因编辑技术的发展及其在植物中的应用[J]. 中国农业科技导报, 2021, 23(12): 20-28. |
[7] | 董美,胡晓颖,孟丽霞,宛煜嵩,刘卫晓,金芜军,李亮*. cry1A基因通用检测方法的建立[J]. 中国农业科技导报, 2020, 22(7): 174-180. |
[8] | 马硕1,焦悦2,王旭静1,翟勇2,王志兴1*. 高通量测序技术在转基因植物分子特征评价中的应用[J]. 中国农业科技导报, 2020, 22(5): 6-14. |
[9] | 辛红佳,李鹏程,滕守振,李圣彦,汪海,郎志宏*. 拟南芥SWEET1/2/3基因突变体构建及功能鉴定[J]. 中国农业科技导报, 2020, 22(2): 39-49. |
[10] | 李夏莹1,武玉花2,李俊2,肖晓琳1,张飞燕1,梁晋刚1,王顥潜1,张旭冬1,张秀杰1*. 转基因玉米T25数字PCR方法的建立与验证[J]. 中国农业科技导报, 2020, 22(2): 173-178. |
[11] | 刘杜娟,黄火清*,苏小运* . 低纤维素酶背景里氏木霉菌株的构建和应用[J]. 中国农业科技导报, 2020, 22(12): 50-57. |
[12] | 徐晓丽1,姜媛媛1,王鹏飞2,来勇敏1,陈笑芸1,徐俊锋1*. 表达Cry1Ab和Cry2Ab蛋白的转基因玉米GAB-3对四种主要鳞翅目害虫的抗性评价[J]. 中国农业科技导报, 2020, 22(12): 97-104. |
[13] | 吴珊,庞俊琴,庄军红,陈丽梅*. 我国转基因作物的研发与安全管理[J]. 中国农业科技导报, 2020, 22(11): 11-16. |
[14] | 孙卓婧1,宋贵文1*,周霆2,汪启明2*,叶纪明1. 我国转基因风险交流分析[J]. 中国农业科技导报, 2019, 21(9): 20-24. |
[15] | 王静1,杨艳萍2,3*. 主要国家新型植物育种技术监管现状综述[J]. 中国农业科技导报, 2019, 21(5): 1-7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||