中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (6): 133-144.DOI: 10.13304/j.nykjdb.2021.0695
• 动植物健康 • 上一篇
收稿日期:
2021-08-13
接受日期:
2021-11-27
出版日期:
2022-06-15
发布日期:
2022-06-21
通讯作者:
李琼
作者简介:
闫宁 E-mail:3355316860@qq.com;
基金资助:
Ning YAN(), Yu ZHAN, Xinyue MIAO, Ergang WANG, Changbao CHEN, Qiong LI(
)
Received:
2021-08-13
Accepted:
2021-11-27
Online:
2022-06-15
Published:
2022-06-21
Contact:
Qiong LI
摘要:
强还原土壤灭菌(reductive soil disinfestation,RSD)和土壤熏蒸(soil fumigation,SF)是缓解人参连作障碍的常用方法。为研究2种方法对土壤细菌群落和土壤酶活性的影响,采用高通量测序技术和化学分析方法对强还原土壤灭菌加氯化苦熏蒸(RSD+SF)、强还原土壤灭菌加复合菌(RSD+F)、氯化苦熏蒸加复合菌(SF+F)3种方式改良的土壤细菌群落和土壤酶活性进行分析。结果表明,RSD+F组细菌群落多样性与丰富度均最高,SF+F组均最低,3组拥有相同细菌菌属431个。RSD+SF组中,丰富度最高的细菌为Gemmatimonas,其丰富度为9.17%;RSD+F组中丰富度最高的细菌为norank_f_noranko_Gaiellales,其丰富度为8.72%;RSD+F组中丰富度最高的细菌为Bacillus,其丰富度为9.16%;Bacillus为3种方式改良土壤前10种优势菌群中共有的优势菌群。土壤酶活性与土壤细菌群落结构存在显著性关系,随着生长时间的增加,不同方式改良后的连作人参土壤酶活性均具有显著性差异(P<0.05)。由此可知,3种土壤改良方式均能在不同程度地增加有益细菌属的丰富度并提高土壤酶活性,其中RSD+SF组和RSD+F组的有益细菌属数量及土壤酶活性均高于SF+F组。
中图分类号:
闫宁, 战宇, 苗馨月, 王二刚, 陈长宝, 李琼. 强还原土壤灭菌处理对人参连作土壤细菌群落结构及土壤酶活的影响[J]. 中国农业科技导报, 2022, 24(6): 133-144.
Ning YAN, Yu ZHAN, Xinyue MIAO, Ergang WANG, Changbao CHEN, Qiong LI. Effects of Reductive Soil Disinfestation on Soil Bacterial Community Structure and Soil Enzyme Activity in Continuous Cropping of Ginseng[J]. Journal of Agricultural Science and Technology, 2022, 24(6): 133-144.
处理组别 Treatment group | 指数Index | |||
---|---|---|---|---|
Ace | Chao | Shannon | Simpson | |
RSD+SF | 643.59 b | 643.85 b | 4.57 b | 0.024 b |
RSD+F | 719.21 a | 743.30 a | 4.79 a | 0.010 c |
SF+F | 555.29 c | 564.38 c | 4.40 c | 0.027 a |
表1 土壤细菌多样性指数
Table 1 Diversity index of soil bacteria
处理组别 Treatment group | 指数Index | |||
---|---|---|---|---|
Ace | Chao | Shannon | Simpson | |
RSD+SF | 643.59 b | 643.85 b | 4.57 b | 0.024 b |
RSD+F | 719.21 a | 743.30 a | 4.79 a | 0.010 c |
SF+F | 555.29 c | 564.38 c | 4.40 c | 0.027 a |
图5 不同方式改良处理人参土壤不同月份的漆酶活性注:同一月份不同小写字母表示P<0.05显著差异。
Fig. 5 Laccase activity in different months of Ginseng soil improved by different methodsNote:Different lowercase letters in the same month indicate significant differences of P<0.05.
图6 不同方式改良后人参土壤不同月份的过氧化氢酶活性注:同一月份不同小写字母表示P<0.05显著差异。
Fig. 6 Catalase activity in different months of Ginseng soil improved by different methodsNote:Different lowercase letters in the same month indicate significant differences of P<0.05.
图7 不同方式改良后的人参土壤不同月份的酸性磷酸酶活性注:同一月份不同小写字母表示P<0.05显著差异。
Fig. 7 Acid phosphatase activity in different months of Ginseng soil improved by different methodsNote:Different lowercase letters in the same month indicate significant differences of P<0.05.
图8 不同方式改良后的人参土壤不同月份的蔗糖酶活性注:同一月份不同小写字母表示P<0.05显著差异。
Fig. 8 Sucrase activity in different months of Ginseng soil improved by different methodsNote:Different lowercase letters in the same month indicate significant differences of P<0.05.
图9 不同方式改良后的人参土壤在不同月份的脲酶活性比较注:同一月份不同小写字母表示P<0.05水平差异显著。
Fig. 9 Urease activity in different months of Ginseng soil improved by different methodsNote:Different lowercase letters in the same month indicate significant differences at P<0.05 level.
图10 土壤细菌群落与土壤酶活性相关性注:*和**分别表示P<0.05和P<0.01水平显著相关。
Fig. 10 Correlation between soil bacterial community and soil enzyme activityNote:* and ** indicate significant difference at P <0.05 and P<0.01 levels, respertively.
1 | 孙宝良,孙希.人参栽培技术[J].林业勘查设计, 2017 (1):66-68. |
SUN B L, SUN X. Ginseng cultivation techniques [J]. For. Exploration Design, 2017(1): 66-68. | |
2 | 王一鸣,王兴录.人参多糖提取分离及药理作用研究进展[J].东北农业科学,2021,46(2):103-107. |
WANG Y M, WANG X L. Research progress on extraction, isolation and pharmacological effects of ginseng polysaccharides [J]. J. Northeast Agric. Sci., 2021,46(2):103-107. | |
3 | 刘莹,孙文松,李玲,等.人参连作障碍及防治措施研究进展[J].园艺与种苗,2020,40(7):26-29. |
LIU Y, SUN W S, LI L, et al.. Research progress on continuous cropping obstacles and control measures of ginseng [J]. Hortic. Seedlings, 2020,40 (7): 26-29. | |
4 | 王玲玲.人参连作障碍影响因素及土壤改良技术研究[D].烟台:烟台大学,2016. |
WANG L L. Study on influencing factors of continuous cropping obstacles of ginseng and soil improvement technology [D]. Yantai: Yantai University, 2016. | |
5 | SUN, JUSHENG, GAO, et al.. Parental material and cultivation determine soil bacterial community structure and fertility [J]. FEMS Microbiol. Ecol., 2015. |
6 | 卢宝慧,高成林,赵玥, 等.运用高通量测序技术分析人参不同栽培模式根际土壤微生物多样性[J].东北林业大学学报,2021,49(3):113-119. |
LU B H, GAO C L, ZHAO Y, et al. Analysis of rhizosphere soil microbial diversity in different cultivation modes of Ginseng by high throughput sequencing [J]. J. Northeast For. Univ., 2021,49 (3): 113-119. | |
7 | LI Y, FANG F, WEI J, et al.. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: a three-year experiment [J/OL]. Sci. Rep., 2019, 9(10):12014 [2022-05-06]. . |
8 | GAO Z, HU Y, HAN M, et al.. Effects of continuous cropping of sweet potatoes on the bacterial community structure in rhizospheric soil [J/OL]. Front. Microbiol., 2019, 10:1-11 [2022-05-06]. . |
9 | ZHAO J, ZHANG D, YANG Y, et al.. Dissecting the effect of continuous cropping of potato on soil bacterial communities as revealed by high-throughput sequencing [J]. PLoS One, 2020, 15(5): e0233356. |
10 | ZHANG Y, ZHENG Y, XIA P, et al.. Impact of continuous Panax notoginseng plantation on soil microbial and biochemical properties [J/OL]. Sci. Rep., 2019, 9(1): 13205 [2021-05-06]. . |
11 | 王俊仙.基于有机农业种植技术方法和措施分析[J].种子科技,2019,37(11):14-15. |
WANG J X. Analysis of planting methods and measures based on organic agriculture [J]. Seed Sci. Technol., 2019,37(11):14-15. | |
12 | 宋时丽,吴昊,黄鹏伟,等.秸秆还田土壤改良培肥基质和复合菌剂配施对土壤生态的影响[J].生态学报,2021,41(11):4562-4576. |
SONG S L, WU H, HUANG P W, et al. Effects of straw returning to field soil improvement and fertilization matrix and compound bacterial agent on soil ecology [J]. J. Ecol., 2021,41 (11): 4562-4576. | |
13 | HUANG B, YAN D, OUYANG C, et al. Chloropicrin fumigation alters the soil phosphorus and the composition of the encoding alkaline phosphatase PhoD gene microbial community [J/OL]. Sci. Total Environ., 2019, 711:135080 [2021-11-12]. . |
14 | ZHAO J, LIU S, ZHOU X, et al.. Reductive soil disinfestation incorporated with organic residue combination significantly improves soil microbial activity and functional diversity than sole residue incorporation [J]. Appl. Microbiol. Biotechnol., 2020, 104(7):1-16. |
15 | 朱文娟,王小国.强还原土壤灭菌研究进展[J].土壤,2020,52(2):223-233. |
ZHU W J, WANG X G. Research progress of strong reduction soil sterilization [J]. Soils, 2020,52(2): 223-233. | |
16 | 郭晨曦,周桂芳,陈碧华,等.强还原土壤灭菌法(RSD)对大棚连续三茬蔬菜生长、产量和病虫害的影响[J].河南农业科学,2020,49(11):98-109. |
GUO C X, ZHOU G F, CHEN B H, et al., Effects of strong reduction soil sterilization (RSD) on growth, yield and diseases and pests of three consecutive crops of vegetables in greenhouse [J]. Henan Agric. Sci., 2020,49 (11): 98-109. | |
17 | 刘亮亮,黄新琦,朱睿,等.强还原土壤对尖孢镰刀菌的抑制及微生物区系的影响[J].土壤,2016,48(1):88-94. |
LIU L L, HUANG X Q, ZHU R, et al.. Influences of reductive soil disinfestation of Fusarium oxysporum and soil microbiome [J]. Soils, 2016,48(1):88-94. | |
18 | HUANG X, LIU L, WEN T, et al.. Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation [J]. Appl. Microbiol. Biotechnol., 2016 100(12):5581-5593. |
19 | HUANG X, WEN T, ZHANG J, et al.. Toxic organic acids produced in biological soil disinfestation mainly caused the suppression of Fusarium oxysporum f. sp. Cubense [J]. BioControl, 2015, 60(1):113-124. |
20 | MOMMA N, MMOMMAet al K.. Fe2+ and Mn2+, potential agents to induce suppression of Fusarium oxysporum for biological soil disinfestation [J]. J. Gen. Plant Pathol., 2011, 77(6):331-335. |
21 | HUANG X, LIU L, WEN T, et al.. Illumina MiSeq investigations on the changes of microbial community in the Fusarium oxysporum f.sp. cubense infected soil during and after reductive soil disinfestation [J]. Microbiol. Res., 2015, 181:33-42. |
22 | 檀兴燕.强还原土壤灭菌法缓解番茄连作障碍的效果及其土壤微生物群落的响应机制[D].安徽淮北:淮北师范大学,2019. |
TAN X Y. Effect of strong reduction soil sterilization on alleviating continuous cropping obstacle of tomato and its response mechanism of soil microbial community [D]. Anhui Huaibei: Huaibei Normal University, 2019. | |
23 | 蔡祖聪,张金波,黄新琦,等.强还原土壤灭菌防控作物土传病的应用研究[J].土壤学报,2015,52(3):469-476. |
CAI Z C, ZHANG J B, HUANG X Q, et al.. Application of strong reduction soil sterilization to prevent and control crop soil borne diseases [J]. J. Soil, 2015,52 (3): 469-476. | |
24 | 韩晓磊,严莲荷,周申范.漆酶分泌及其活性影响因素综述[J].化学与生物工程,2005(7):10-13. |
HAN X L, YAN L H, ZHOU S F. The influences on the production and activity of laccase: a review [J]. Chem. Bioeng., 2005(7):10-13. | |
25 | 李冰,李玉双,陈琳,等.沈北新区不同土地利用类型土壤过氧化氢酶活性特征及其影响因素分析[J].沈阳大学学报(自然科学版),2019,31(6):465-473. |
LI B, LI Y S, CHEN L, et al.. Activity and influencing factors of soils CAT in different utilization types of land in Shenbei area [J]. J. Shenyang Univ. (Nat. Sci.), 2019,31(6):465-473. | |
26 | 王涵,王果,黄颖颖,等.pH变化对酸性土壤酶活性的影响[J].生态环境,2008,17(6):2401-2406. |
WANG H, WANG G, HUANG Y Y, et al.. The effects of pH change on the activities of enzymes in an acid soil [J]. Chin. J. Appl. Ecol., 2008,17(6):2401-2406. | |
27 | 谢洪宝,于贺,陈一民,等.秸秆深埋对不同氮肥水平土壤蔗糖酶活性的影响[J].中国农学通报,2021,37(24):79-83. |
XIE H B, YU H, CHEN Y M, et al.. Effects of straw deep burial on soil invertase activity at different nitrogen levels [J]. Chin. Agron. Bull., 2021,37 (24): 79-83. | |
28 | 郭继勋,姜世成,林海俊,等.不同草原植被碱化草甸土的酶活性[J].应用生态学报,1997(4):412-416. |
GUO J X, JIANG S C, LIN H J, et al.. Enzyme activities in alkalized meadow soil of different steppe vegetation [J]. Chin. J. Appl. Ecol.,1997(4):412-416. | |
29 | 李琼.人参皂苷对连作土壤锈腐病趋重发生的作用及其机理[D].长春:吉林农业大学,2020. |
LI Q. Effect and mechanism of Ginsenoside on the aggravation of soil rust rot in continuous cropping [D]. Changchun: Jilin Agricultural University, 2020. | |
30 | ALI A, GHANI M I, LI Y, et al.. Hiseq base molecular characterization of soil microbial community, diversity structure, and predictive functional profiling in continuous cucumber planted soil affected by diverse cropping systems in an intensive greenhouse region of Northern China [J]. Int. J. Mol. Sci., 2019, 20(11): 1-22. |
31 | 刘海娇,苏应威,方岚,等.茴香轮作调控土壤细菌群落缓解三七连作障碍的效应及机制[J].中国生物防治学报,2021,37(1):139-149. |
LIU H J, SU Y W, FANG L, et al. Effect and mechanism of fennel rotation on regulating soil bacterial community and alleviating continuous cropping obstacle of Panax notoginseng [J]. Chin. J. Biol. Control, 2021,37 (1): 139-149. | |
32 | SAXENA A K, KUMAR M, CHAKDAR H, et al. Bacillus species in soil as a natural resource for plant health and nutrition [J]. Appl. Microbiol., 2020, 128(6):1583-1594. |
33 | GOSWAMI D, THAKKER J N, DHANDHUKIA P C, et al. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review [J/OL]. Cogent Food Agric., 2016, 2(1):1127500 [2022-05-06]. . |
34 | MELO A L, SOCCOL V T, SOCCOL C R. Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review [J]. Crit. Rev. Biotechnol., 2016, 36(2):317-326. |
35 | QIN S, YEBOAH S, CAO L, et al.. Breaking continuous potato cropping with legumes improves soil microbial communities, enzyme activities and tuber yield [J/OL]. PLoS One, 2017, 12(5):e0175934 [2022-05-06]. . |
36 | SINGH R, CABRERA M, RADCLIFFE D E,et al.. Laccase mediated transformation of 17 beta-estradiol in soil [J]. Environ. Poll., 2015, 197: 28-35. |
37 | FENG S, SU Y, DONG M,et al.. Laccase activity is proportional to the abundance of bacterial laccase-like genes in soil from subtropical arable land [J]. World J. Microbiol. Biotechnol., 2015, 31(12):2039-2045. |
38 | 朱文娟,王小国.强还原土壤灭菌研究进展[J].土壤,2020,52(2):223-233. |
ZHU W J, WANG X G. Research progress of strong reduction soil sterilization [J]. Soils, 2020,52 (2): 223-233. | |
39 | 刘晨阳,高成林,赵玥,等.农田栽参土壤改良中肥料对土壤元素及酶活性的影响[J].生态科学,2021,40(2):40-47. |
LIU C Y, GAO C L, ZHAO Y, et al. Effects of fertilizer on soil elements and enzyme activities in farmland Ginseng soil improvement [J]. Ecol. Sci., 2021,40 (2): 40-47. | |
40 | 黄雪琳,杨静,贺宇纯.土壤酶活性的主要影响因素分析[J].现代园艺,2018(11):92-93. |
Huang X L, Yang J, HE Y C. Analysis of main factors affecting soil enzyme activity [J]. Modern Hortic.,2018(11): 92-93. | |
41 | 黄宇,张海伟,徐芳森.植物酸性磷酸酶的研究进展[J].华中农业大学学报,2008(1):148-154. |
HUANG Y, ZHANG H W, XU F S. Research progress on plant acid phosphatase [J]. J. Huazhong Agric.Univ., 2008(1):148-154. | |
42 | 骆爱兰,余向阳.氟啶胺对土壤中蔗糖酶活性及呼吸作用的影响[J].中国生态农业学报,2011,19(4):902-906. |
43 | LUO A L, YU X Y. Effects of haloperidol on invertase activity and respiration in soil [J]. Chin. J. Ecol. Agric., 2011,19 (4): 902-906. |
44 | 王启宇,吕怡颖,杨敏,等.烤烟根结线虫病发生与土壤酶活性的相关性研究[J].湖南农业科学,2021(8):32-35. |
45 | WANG Q Y, LYU Y Y, YANG M, et al.. Study on the correlation between the occurrence of flue-cured tobacco root knot nematode and soil enzyme activity [J]. Hunan Agric. Sci., 2021 (8): 32-35. |
46 | 焦治芳.长期施肥对黄土高原小麦农田土壤酶活性的影响[D].兰州:兰州大学,2010. |
JIAO Z F. Effect of long-term fertilization on soil enzyme activity of wheat farmland in the loess plateau [D]. Lanzhou: Lanzhou University, 2010. | |
47 | 徐彬,徐健,祁建杭,等.枯草芽孢杆菌1013对连作障碍土壤的改良及对番茄的促生作用[J].扬州大学学报(农业与生命科学版),2021,42(2):111-116. |
XU B, XU J, QI J H, et al. Improvement of continuous cropping barrier soil and growth promoting effect of Bacillus subtilis 1013 on tomato [J]. J. Yangzhou Univ (Agric. Life Sci.), 2021,42 (2): 111-116. |
[1] | 赵宏岩, 谭君伟, 张杰, 陈浩楠, 王春旭, 赵地, 李海鹏, 朱李霞, 韩毅强. 小豆和绿豆茎基感病部位真菌群落结构研究[J]. 中国农业科技导报, 2022, 24(5): 129-136. |
[2] | 魏艳晨, 陈吉祥, 王永刚, 孟彤彤, 韩亚龙, 李美. 荒漠植物珍珠猪毛菜根际土壤细菌多样性与土壤理化性质相关性分析[J]. 中国农业科技导报, 2022, 24(5): 209-217. |
[3] | 李舒欣, 张浩, 郑厚胜, 郑培和, 逄世峰, 许世泉. 转录组分析二马牙和长脖类型林下参表型差异[J]. 中国农业科技导报, 2021, 23(9): 56-68. |
[4] | 苏雨萌§,张旭婷§,特日格乐,田敏,尚晓蕊,李国婧,王瑞刚*. 高通量测序鉴定中间锦鸡儿干旱条件下的microRNA[J]. 中国农业科技导报, 2021, 23(3): 51-57. |
[5] | 刘璐1,名晓东1,张晓艳2,郝俊杰2,付丽平1,王乾坤1,吕鑫1,陈旺1,刘全兰1*. 高通量测序分析蚕豆种子内生细菌的多样性[J]. 中国农业科技导报, 2021, 23(2): 73-80. |
[6] | 范娜,彭之东,白文斌*,赵建武. 微生物菌剂对土壤酶活性及高粱生长的影响[J]. 中国农业科技导报, 2021, 23(2): 185-192. |
[7] | 王思霁, 国艳春, 曾路生, 孙显旻, 初庆刚, 王胜. 碱蓬播种量对滨海盐碱地土壤酶活性和团聚性的影响[J]. 中国农业科技导报, 2021, 23(12): 179-185. |
[8] | 高日平, §, 刘小月, §, 杜二小, 韩云飞, 任永峰, 高宇, 赵沛义, 李焕春, 张鹏, . 垄膜沟播与秸秆还田对内蒙古黄土高原玉米农田土壤水分、酶活性及产量的影响[J]. 中国农业科技导报, 2021, 23(11): 181-190. |
[9] | 杨晶晶,张青青*,吐尔逊娜依·热依木,阿马努拉·依明尼亚孜,雪热提江·麦提努日. 游牧和定居对伊犁绢蒿荒漠草地土壤真菌群落多样性的影响[J]. 中国农业科技导报, 2020, 22(7): 166-173. |
[10] | 刘松涛1,田春丽1,曹雯梅1,郑贝贝1,李鹏程2,董合林2. 基于不同土壤质地棉花根际微生物和酶活性特征分析[J]. 中国农业科技导报, 2020, 22(2): 73-79. |
[11] | 史芳芳,李向泉*. 葡萄根际土壤真菌群落多样性分析[J]. 中国农业科技导报, 2019, 21(7): 47-58. |
[12] | 李海涛1,黄曦漫1,李玉1,刘广娜1,奚广生2*. 人参单体皂苷对桃蚜取食、解毒酶及乙酰胆碱酯酶活性的影响[J]. 中国农业科技导报, 2019, 21(11): 103-110. |
[13] | 王梦园1,杜延全2,朱建强1*. 复合促生菌对小麦苗期生长和土壤酶活的影响[J]. 中国农业科技导报, 2019, 21(10): 98-106. |
[14] | 张萌1,赵欢1,肖厚军1,王正银2,芶久兰1,秦松1*. 新型肥料对小白菜养分积累特征及黄壤酶活性的影响[J]. 中国农业科技导报, 2018, 20(6): 142-152. |
[15] | 张艺洁,邵惠芳*,张珂,贾宏昉,黄五星,韩丹. 基于高通量测序研究施肥对连作植烟土壤环境及微生物的影响[J]. 中国农业科技导报, 2018, 20(5): 16-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||