中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (10): 133-142.DOI: 10.13304/j.nykjdb.2021.0891
• 动植物健康 • 上一篇
林志坚1(), 陈长江2, 周挺3, 顾钢3(
), 胡方平1, 李春英3, 蔡学清1(
)
收稿日期:
2021-10-20
接受日期:
2021-12-09
出版日期:
2022-10-15
发布日期:
2022-10-25
通讯作者:
顾钢,蔡学清
作者简介:
林志坚 E-mail:lzj06050@163.com
基金资助:
Zhijian LIN1(), Changjiang CHEN2, Ting ZHOU3, Gang GU3(
), Fangping HU1, Chunying LI3, Xueqing CAI1(
)
Received:
2021-10-20
Accepted:
2021-12-09
Online:
2022-10-15
Published:
2022-10-25
Contact:
Gang GU,Xueqing CAI
摘要:
作物青枯病是世界范围的土传维管束细菌性病害,为害重、防治难。以烟草青枯菌TBRS12为宿主菌,采用双层平板法从烟草根际土壤中分离获得一株裂解性噬菌体RPZH6。采用室内盆栽法测定噬菌体RPZH6的生防效果,并通过全基因组测序、比较基因组及系统发育树进行鉴定分析。结果表明,接种后21 d,噬菌体RPZH6对烟草青枯病的防治效果为60.98%;接种后35 d,防治效果为53.85%,显著高于化学药剂氢氧化铜处理。核酸鉴定及全基因组分析显示,噬菌体RPZH6的基因组为双链DNA,全长64 657 bp,GC含量为64.84%,含有92个开放阅读框,1个tRNA,其中47个基因的编码产物为注释功能蛋白,其余为功能未知的假定蛋白。比较基因组及系统发育树分析显示,噬菌体RPZH6是一株新的短尾噬菌体科、Bcep22家族成员。上述结果为该噬菌体的进一步开发应用及生防机制探讨提供了理论基础。
中图分类号:
林志坚, 陈长江, 周挺, 顾钢, 胡方平, 李春英, 蔡学清. 青枯菌噬菌体RPZH6株系对烟草青枯病的生防效果及全基因组测序分析[J]. 中国农业科技导报, 2022, 24(10): 133-142.
Zhijian LIN, Changjiang CHEN, Ting ZHOU, Gang GU, Fangping HU, Chunying LI, Xueqing CAI. Control Effect of Ralstonia Phage RPZH6 Strain on Tobacco Bacterial Wilt and Its Complete Genome Analysis[J]. Journal of Agricultural Science and Technology, 2022, 24(10): 133-142.
处理 Treatment | 7 d | 14 d | 21 d | 28 d | 35 d | |||||
---|---|---|---|---|---|---|---|---|---|---|
病情指数Disease index | 防治效果Control effect/% | 病情指数Disease index | 防治效果Control effect/% | 病情指数Disease index | 防治效果Control effect/% | 病情指数Disease index | 防治效果Control effect/% | 病情指数Disease index | 防治效果Control effect/% | |
RPZH6+TBRS12 | 4.17 b | 57.10 a | 19.44 c | 58.83 a | 22.22 b | 60.98 a | 30.56 b | 55.10 a | 33.33 c | 53.85 a |
Cu(OH)2+TBRS12 | 5.55 b | 42.90 a | 36.11 b | 23.53 b | 54.17 a | 4.86 b | 62.50 a | 8.17 b | 65.28 b | 9.61 b |
TBRS12 | 9.72 a | — | 47.22 a | — | 56.94 a | — | 68.06 a | — | 72.22 a | — |
CK | 0.00 | — | 0.00 | — | 0.00 | — | 0.00 | — | 0.00 | — |
表1 噬菌体RPZH6对烟草青枯病的防治效果
Table 1 Control effect of phage RPZH6 on tobacco bacterial wilt
处理 Treatment | 7 d | 14 d | 21 d | 28 d | 35 d | |||||
---|---|---|---|---|---|---|---|---|---|---|
病情指数Disease index | 防治效果Control effect/% | 病情指数Disease index | 防治效果Control effect/% | 病情指数Disease index | 防治效果Control effect/% | 病情指数Disease index | 防治效果Control effect/% | 病情指数Disease index | 防治效果Control effect/% | |
RPZH6+TBRS12 | 4.17 b | 57.10 a | 19.44 c | 58.83 a | 22.22 b | 60.98 a | 30.56 b | 55.10 a | 33.33 c | 53.85 a |
Cu(OH)2+TBRS12 | 5.55 b | 42.90 a | 36.11 b | 23.53 b | 54.17 a | 4.86 b | 62.50 a | 8.17 b | 65.28 b | 9.61 b |
TBRS12 | 9.72 a | — | 47.22 a | — | 56.94 a | — | 68.06 a | — | 72.22 a | — |
CK | 0.00 | — | 0.00 | — | 0.00 | — | 0.00 | — | 0.00 | — |
图1 噬菌体RPZH6核酸酶切注:M—λ HindⅢ DNA marker;1—DNase Ⅰ处理;2—RNase A处理;3—EcoRⅠ处理;4—噬菌体RPZH6核酸。
Fig. 1 Enzyme digestion of nuclear acid of phage RPZH6Note:M—λ HindⅢ DNA marker; 1—DNase Ⅰ treatment; 2—RNase A treatment; 3—EcoRⅠ treatment; 4—RPZH6 nucleic acid.
开放阅读框ORF | 开放阅读框位置 Position of ORF/bp | 蛋白大小 Protein size/aa | 链 Strand | 起始密码子 Start codon | 功能预测 Possible function |
---|---|---|---|---|---|
1 | 1~262 | 86 | + | GTG | 转录调节蛋白 Putative transcription regulator protein |
2 | 296~478 | 60 | - | ATG | 含甘氨酸拉链2TM结构域的蛋白质 Glycine zipper 2TM domain-containing protein |
4 | 1 069~1 542 | 157 | - | ATG | 病毒粒子相关蛋白 Virion associated protein |
5 | 1 620~2 729 | 369 | - | ATG | 主要衣壳蛋白 Major capsid protein |
6 | 2 831~3 283 | 150 | - | ATG | 含AP2结构域蛋白AP2 domain-containing protein |
7 | 3 328~3 525 | 65 | - | ATG | 碳储存调节器 Carbon storage regulator |
11 | 4 844~7 189 | 781 | - | GTG | 门脉蛋白 Portal protein |
14 | 8 170~9 915 | 581 | - | ATG | 末端酶大亚基蛋白 Terminase large subunit protein |
16 | 10 578~10 769 | 63 | - | ATG | 辅酶A酯裂解酶 CoA ester lyase |
17 | 10 769~10 867 | 32 | - | ATG | 类连接蛋白 Connectin-like protein |
24 | 13 090~13 326 | 78 | - | ATG | 转录调节因子 Transcriptional regulator |
32 | 15 480~15 725 | 81 | - | GTG | 末端酶小亚基蛋白 Terminase small subunit protein |
34 | 16 836~17 324 | 162 | - | ATG | HNH归巢核酸内切酶Ⅱ HNH homing endonuclease Ⅱ |
41 | 19 861~20 667 | 268 | - | ATG | DnaC类蛋白 DnaC-like protein |
42 | 20 667~21 437 | 102 | - | TTG | 复制蛋白 Replication protein |
46 | 24 667~25 026 | 119 | - | ATG | DUF1364家族蛋白 DUF1364 family protein |
50 | 26 150~26 731 | 193 | - | ATG | 单链DNA结合蛋白 Single-stranded DNA-binding protein |
52 | 27 410~27 778 | 122 | - | ATG | 转录调节因子 Transcriptional regulator |
53 | 27 805~28 497 | 230 | + | ATG | 转录调节因子 Transcriptional regulator |
54 | 28 570~29 016 | 148 | + | TTG | 转录调节因子 Transcriptional regulator |
55 | 29 183~30 211 | 342 | + | ATG | RecB类核酸内切酶 RecB-like endonuclease |
56 | 30 250~31 203 | 317 | + | ATG | RecT类蛋白酶 RecT-like protein |
57 | 31 209~31 436 | 75 | + | ATG | DNA结合蛋白 DNA-binding protein |
58 | 31 461~31 907 | 148 | + | ATG | DNA结合蛋白 DNA-binding protein |
59 | 31 932~32 996 | 354 | + | ATG | DNA聚合酶Ⅲ β亚基 DNA polymerase Ⅲ subunit beta |
61 | 34 378~34 650 | 90 | + | ATG | Pyocin激活蛋白 PrtN Pyocin activator protein PrtN |
63 | 35 571~36 764 | 397 | + | ATG | 酪氨酸重组酶 Tyrosine recombinase |
64 | 36 838~37 005 | 55 | + | TTG | 酪氨酸重组酶 Tyrosine recombinase |
65 | 37 017~37 553 | 178 | - | ATG | Rz类裂解蛋白 Rz-like lysis protein |
67 | 37 929~38 309 | 126 | - | ATG | 趋化蛋白 Chemotaxis protein |
69 | 38 626~39 291 | 221 | - | TTG | 含DUF3380结构域蛋白 DUF3380 domain-containing protein |
72 | 40 455~46 457 | 2 000 | - | ATG | DarB类抗抑制蛋白 DarB-like antirestriction protein |
73 | 46 436~50 134 | 1 232 | - | GTG | DarB类抗抑制蛋白 DarB-like antirestriction protein |
74 | 50 192~51 736 | 514 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
75 | 51 733~52 458 | 241 | - | ATG | PAPS还原酶类蛋白 PAPS reductase-like protein |
76 | 52 470~53 303 | 277 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
77 | 53 293~53 850 | 185 | - | ATG | 酰基辅酶A N-酰基转移酶 Acyl-CoA N-acyltransferase |
79 | 54 246~55 979 | 577 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
80 | 55 991~56 977 | 328 | - | ATG | 尾纤蛋白 Tail fiber protein |
81 | 57 063~58 382 | 439 | - | ATG | 推定尾纤蛋白 Putative tail fiber protein |
82 | 58 382~58 663 | 93 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
84 | 60 366~61 343 | 325 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
85 | 61 350~61 772 | 140 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
88 | 62 505~63 167 | 220 | - | ATG | 病毒粒子相关蛋白 Virion associated protein |
90 | 63 713~64 150 | 145 | - | GTG | DarB类抗抑制蛋白 DarB-like antirestriction protein |
91 | 64 147~64 512 | 121 | - | GTG | 钼蝶呤结合蛋白 Molybdopterin-binding protein |
92 | 64 534~64 657 | 40 | - | TAT | 细胞色素B Cytochrome B |
表2 噬菌体RPZH6基因组47个ORF功能预测
Table 2 ORF function prediction of the phage RPZH6 genome
开放阅读框ORF | 开放阅读框位置 Position of ORF/bp | 蛋白大小 Protein size/aa | 链 Strand | 起始密码子 Start codon | 功能预测 Possible function |
---|---|---|---|---|---|
1 | 1~262 | 86 | + | GTG | 转录调节蛋白 Putative transcription regulator protein |
2 | 296~478 | 60 | - | ATG | 含甘氨酸拉链2TM结构域的蛋白质 Glycine zipper 2TM domain-containing protein |
4 | 1 069~1 542 | 157 | - | ATG | 病毒粒子相关蛋白 Virion associated protein |
5 | 1 620~2 729 | 369 | - | ATG | 主要衣壳蛋白 Major capsid protein |
6 | 2 831~3 283 | 150 | - | ATG | 含AP2结构域蛋白AP2 domain-containing protein |
7 | 3 328~3 525 | 65 | - | ATG | 碳储存调节器 Carbon storage regulator |
11 | 4 844~7 189 | 781 | - | GTG | 门脉蛋白 Portal protein |
14 | 8 170~9 915 | 581 | - | ATG | 末端酶大亚基蛋白 Terminase large subunit protein |
16 | 10 578~10 769 | 63 | - | ATG | 辅酶A酯裂解酶 CoA ester lyase |
17 | 10 769~10 867 | 32 | - | ATG | 类连接蛋白 Connectin-like protein |
24 | 13 090~13 326 | 78 | - | ATG | 转录调节因子 Transcriptional regulator |
32 | 15 480~15 725 | 81 | - | GTG | 末端酶小亚基蛋白 Terminase small subunit protein |
34 | 16 836~17 324 | 162 | - | ATG | HNH归巢核酸内切酶Ⅱ HNH homing endonuclease Ⅱ |
41 | 19 861~20 667 | 268 | - | ATG | DnaC类蛋白 DnaC-like protein |
42 | 20 667~21 437 | 102 | - | TTG | 复制蛋白 Replication protein |
46 | 24 667~25 026 | 119 | - | ATG | DUF1364家族蛋白 DUF1364 family protein |
50 | 26 150~26 731 | 193 | - | ATG | 单链DNA结合蛋白 Single-stranded DNA-binding protein |
52 | 27 410~27 778 | 122 | - | ATG | 转录调节因子 Transcriptional regulator |
53 | 27 805~28 497 | 230 | + | ATG | 转录调节因子 Transcriptional regulator |
54 | 28 570~29 016 | 148 | + | TTG | 转录调节因子 Transcriptional regulator |
55 | 29 183~30 211 | 342 | + | ATG | RecB类核酸内切酶 RecB-like endonuclease |
56 | 30 250~31 203 | 317 | + | ATG | RecT类蛋白酶 RecT-like protein |
57 | 31 209~31 436 | 75 | + | ATG | DNA结合蛋白 DNA-binding protein |
58 | 31 461~31 907 | 148 | + | ATG | DNA结合蛋白 DNA-binding protein |
59 | 31 932~32 996 | 354 | + | ATG | DNA聚合酶Ⅲ β亚基 DNA polymerase Ⅲ subunit beta |
61 | 34 378~34 650 | 90 | + | ATG | Pyocin激活蛋白 PrtN Pyocin activator protein PrtN |
63 | 35 571~36 764 | 397 | + | ATG | 酪氨酸重组酶 Tyrosine recombinase |
64 | 36 838~37 005 | 55 | + | TTG | 酪氨酸重组酶 Tyrosine recombinase |
65 | 37 017~37 553 | 178 | - | ATG | Rz类裂解蛋白 Rz-like lysis protein |
67 | 37 929~38 309 | 126 | - | ATG | 趋化蛋白 Chemotaxis protein |
69 | 38 626~39 291 | 221 | - | TTG | 含DUF3380结构域蛋白 DUF3380 domain-containing protein |
72 | 40 455~46 457 | 2 000 | - | ATG | DarB类抗抑制蛋白 DarB-like antirestriction protein |
73 | 46 436~50 134 | 1 232 | - | GTG | DarB类抗抑制蛋白 DarB-like antirestriction protein |
74 | 50 192~51 736 | 514 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
75 | 51 733~52 458 | 241 | - | ATG | PAPS还原酶类蛋白 PAPS reductase-like protein |
76 | 52 470~53 303 | 277 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
77 | 53 293~53 850 | 185 | - | ATG | 酰基辅酶A N-酰基转移酶 Acyl-CoA N-acyltransferase |
79 | 54 246~55 979 | 577 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
80 | 55 991~56 977 | 328 | - | ATG | 尾纤蛋白 Tail fiber protein |
81 | 57 063~58 382 | 439 | - | ATG | 推定尾纤蛋白 Putative tail fiber protein |
82 | 58 382~58 663 | 93 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
84 | 60 366~61 343 | 325 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
85 | 61 350~61 772 | 140 | - | ATG | 病毒粒子相关噬菌体蛋白 Virion-associated phage protein |
88 | 62 505~63 167 | 220 | - | ATG | 病毒粒子相关蛋白 Virion associated protein |
90 | 63 713~64 150 | 145 | - | GTG | DarB类抗抑制蛋白 DarB-like antirestriction protein |
91 | 64 147~64 512 | 121 | - | GTG | 钼蝶呤结合蛋白 Molybdopterin-binding protein |
92 | 64 534~64 657 | 40 | - | TAT | 细胞色素B Cytochrome B |
图4 基于衣壳蛋白序列和尾纤蛋白序列构建的系统发育树A: 衣壳蛋白序列;B:尾纤蛋白序列
Fig. 4 Phylogenetics tree were based on major capsid protein and tail fiber proteinA: Major capsid protein; B: Tail fiber protein
1 | 乔俊卿,陈志谊,刘邮洲,等.茄科作物青枯病研究进展[J].植物病理学报, 2013, 43(1): 1-10. |
QIAO J Q, CHEN Z Y, LIU Y Z, et al.. Research progress on bacterial wilt of nightshade family [J]. Acta Phytopathol. Sin., 2013, 43(1): 1-10. | |
2 | 黎妍妍,刘海龙,郑露,等.我国植物青枯菌遗传多样性研究进展[J].安徽农业科学, 2015, 43(14): 107-110, 112. |
LI Y Y, LIU H L, ZHENG L, et al.. Research progress on genetic diversity of Ralstonia Solanacearum in China [J]. J. Anhui Agric. Sci., 2015, 43(14): 107-110, 112. | |
3 | 徐进,冯洁.植物青枯菌遗传多样性及致病基因组学研究进展[J].中国农业科学, 2013, 46(14): 2902-2909. |
XU J, FENG J. Advances in research of genetic diversity and pathogenome of Ralstonia solanacearum species complex [J]. Sci. Agric. Sin., 2013, 46(14): 2902-2909. | |
4 | VOS M, BIRKETT P J, BIRCH E, et al.. Local adaptation of bacteriophages to their bacterial hosts in soil [J]. Science, 2009, 325(14): 833. |
5 | 苏靖芳,于浩,刘俊杰,等.青枯雷尔氏菌噬菌体研究进展[J].土壤与作物, 2017, 6(1): 61-66. |
SU J F, YU H, LIU J J, et al.. Research progress of bacteriophages infecting Ralstonia solanacearum [J]. Soil Crop, 2017, 6(1): 61-66. | |
6 | 胡重怡,蔡刘体.噬菌体治疗作物细菌性病害的研究进展[J].贵州农业科学, 2011, 39(3): 101-103. |
HU C Y, CAI L T. Research progress on phage therapy of bacterial plant disease [J]. Guizhou Agric. Sci., 2011, 39(3): 101-103. | |
7 | ADDY H S, AHMAD A A, QI H. Molecular and biological characterization of ralstonia phage RsoM1USA, a new species of P2virus, isolated in the United States [J/OL]. Front. Microbiol., 2019, 10:267 [2021-11-22]. . |
8 | WANG R, CONG Y, MI Z, et al.. Characterization and complete genome sequence analysis of phage GP4, a novel lytic Bcep22-like podovirus [J]. Archives Virol., 2019, 164(9): 2339-2343. |
9 | VAN TRUONG T B, KHANH N H P, NAMIKAWA R, et al.. Genomic characterization of Ralstonia solanacearum phage varphiRS138 of the family Siphoviridae [J]. Archives Virol., 2016, 161(2): 483-486. |
10 | AHMAD A A, STULBERG M J, MERSHON J P, et al.. Molecular and biological characterization of varphiRs 551, a filamentous bacteriophage isolated from a race 3 biovar 2 strain of Ralstonia solanacearum [J/OL]. PLoS One, 2017, 12(9): e0185034 [2021-11-22]. . |
11 | 林志坚,夏志辉,顾钢,等.繁殖青枯菌噬菌体无毒菌株的筛选及应用[J].中国生物防治学报, 2018, 34(6): 906-913. |
LIN Z J, XIA Z H, GU G, et al.. Screening avirulent Ralstonia solanacearum strain to culture bacteriophage and its application [J]. Chin. J. Biol. Control, 2018, 34(6): 906-913. | |
12 | 林志坚, 吴秀琴, 梁颁捷,等.青枯病菌噬菌体P3株系的生物学特性及其应用研究[J]. 中国生物防治学报, 2020, 36(4): 611-618. |
LIN Z J, WU X Q, LIANG B J, et al.. The biological characteristics of ralstonia phage P3 strain and its application [J]. Chin. J. Biol. Control, 2020, 36(4): 611-618. | |
13 | 方中达.植病研究方法[M]. 第3版.北京:中国农业出版社, 1998: 182-183, 224. |
14 | 高苗,杨金广,刘旭,等.一株裂解性青枯雷尔氏菌噬菌体的分离及生物学特性分析[J].中国农业科学, 2015, 48(7): 1330-1338. |
GAO M, YANG J G, LIU X, et al.. Isolation and biological properties of a lytic phage infecting Ralstonia solanacearum [J]. Sci. Agric. Sin., 2015, 48(7): 1330-1338. | |
15 | 王新,吴新儒,王卫锋,等.烟草抗青枯病突变体的室内接种鉴定[J].分子植物育种,2018, 16(19): 6468-6475. |
WANG X, WU X R, WANG W F, et al.. Indoor inoculation identification of tobacco mutants resistant to bacterial wilt [J]. Mol. Plant Breeding, 2018, 16(19): 6468-6475. | |
16 | SAMBROOK J, RUSSELL D W. Molecular Cloning a Laboratory Manual [M]. 3rd Ed n. Beijing: Science Press. 2002. |
17 | 苏靖芳,刘俊杰,于浩,等.一株烟草青枯雷尔氏菌烈性噬菌体RS-PII-1的分离及全基因组分析[J]. 病毒学报, 2017, 33(3): 441-449. |
SU J F, YU H, LIU J J, et al.. Research progress of bacteriophages infecting Ralstonia solanacearum [J]. Chin. J. Virol., 2017, 33(3): 441-449. | |
18 | JIN J, LI Z J, WANG S W, et al.. Isolation and characterization of ZZ 1, a novel lytic phage that infects Acinetobacter baumannii clinical isolates [J/OL]. BMC Microbiol., 2012, 12(1): 156 [2021-11-22]. . |
19 | BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data [J]. Bioinformatics, 2014, 30(15): 2114-2120. |
20 | HAHN C, BACHMANN L, CHEVREUX B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach [J/OL]. Nucleic Acids Res., 2013, 41(13): e129 [2021-11-22]. . |
21 | HALL T A. BioEdit: a user-friendly biological sequence alignment program for Windows 95/98/NT [J]. Nucleic Acids Symposium Series, 1999, 41(41): 95-98. |
22 | BESEMER J, LOMSADZE A, BORODOVSKY M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. implications for finding sequence motifs in regulatory regions [J]. Nucleic Acids Res., 2001, 29(12): 2607-2618. |
23 | STOTHARD P, WISHART D S. Circular genome visualization and exploration using CGView [J]. Bioinformatics, 2005, 21(4): 537-539. |
24 | LOWE T M, CHAN P P. tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes [J]. Nucleic Acids Res., 2016, 44(W1): W54-W57. |
25 | REESE M G. Computational prediction of gene structure and regulation in the genome of Drosophila melanogaster [D]. Baden, Germany: University of Hohenheim, 2000. |
26 | HOFACKER I L, FONTANA W, STADLER P F, et al.. Fast folding and comparison of RNA secondary structures [J]. Monatshefte Für Chemie 1994, 125(2): 167-188. |
27 | SULLIVAN M J, PETTY N K, BEATSON S A. Easyfig: a genome comparison visualizer [J]. Bioinformatics, 2011, 27(7): 1009-1010. |
28 | ZHANG D, GAO F, JAKOVLIĆ I, et al.. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies [J]. Mol. Ecol. Resour., 2020, 20(1): 348-355. |
29 | NGUYEN L T, SCHMIDT H A, VON HAESELER A, et al.. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies [J]. Mol. Biol. Evol., 2015, 32(1): 268-274. |
30 | MISAWA K, KATOH K, KUMA K I, et al.. MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform [J]. Nucleic Acids Res., 2002, 30(14): 3059-3066. |
31 | BREITBART M, ROHWER F. Here a virus, there a virus, everywhere the same virus? [J]. Trends Microbiol., 2005, 13(6): 278-284. |
32 | TANAKA H, NEGISHI H, MAEDA H. Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearum M4S and its bacteriophage [J]. Jap. J. Phytopathol. 1990, 56(2): 243-246. |
33 | WEI C, LIU J, MAINA A N, et al.. Developing a bacteriophage cocktail for biocontrol of potato bacterial wilt [J]. Virologica Sin., 2017, 32(6): 476-484. |
34 | 冯烨,刘军,孙洋,等.噬菌体最新分类与命名[J].中国兽医学报, 2013, 33(12): 1954-1958. |
FENG Y, LIU J, SUN Y, et al.. An Introduction to current classification and nomenclature of bacterial viruses [J]. Chin. J. Veterin. Sci., 2013, 33(12): 1954-1958. | |
35 | SILVA XAVIER A DA, SILVA F P DA, VIDIGAL P M P, et al.. Genomic and biological characterization of a new member of the genus Phikmvvirus infecting phytopathogenic Ralstonia bacteria [J]. Archs Virol., 2018, 163(12): 3275-3290. |
36 | BHUNCHOTH A, BLANC-MATHIEU R, MIHARA T, et al.. Two asian jumbo phages, ϕRSL2 and ϕRSF1, infect Ralstonia solanacearum and show common features of ϕKZ-related phages [J]. Virology, 2016, 494: 56-66. |
[1] | 金辉, 王伟, 颜尘栋, 王薇, 李熙英. 水稻纹枯病生防木霉菌分离鉴定及适应性研究[J]. 中国农业科技导报, 2022, 24(9): 139-148. |
[2] | 赵兴丽1,陶刚2,3*,娄璇4,顾金刚5*. 钩状木霉在辣椒根际定殖动态及其对辣椒疫病的生物防治[J]. 中国农业科技导报, 2020, 22(5): 106-114. |
[3] | 周红姿1,周方园1,赵晓燕1,吴翠霞2,张广志1,苑伟伟3,吴晓青1,谢雪迎1,范素素1,张新建1*. 小麦赤霉病生防菌的筛选及其田间防效研究[J]. 中国农业科技导报, 2020, 22(1): 67-77. |
[4] | 路露1,2,张孟丽2,狄怡琳2,朱凯1*,石宝俊2*. 百里香酚对不同时期秀丽线虫杀虫效果探究[J]. 中国农业科技导报, 2019, 21(9): 97-103. |
[5] | 吴晓青1,赵晓燕1,徐元章2,王加宁1,周方园1,周红姿1,张广志1,谢雪迎1,颜坤3,张新建1*. 植物生物防治精准化施药技术的研究进展[J]. 中国农业科技导报, 2019, 21(3): 13-21. |
[6] | 李新宇1,孜力汗1,2*,张宝会1,杨闯1,徐永平1,2,李淑英2. 噬菌体在水产养殖中应用的研究进展[J]. 中国农业科技导报, 2016, 18(5): 187-192. |
[7] | 程亮1,2,郭青云1,2*. 燕麦镰刀菌GD\|2菌株作为生物除草剂的潜力研究(英文)[J]. , 2014, 16(3): 70-80. |
[8] | 邱德文. 生物农药与生物防治发展战略浅谈[J]. , 2011, 13(5): 88-92. |
[9] | 吕宁*,王祺*,宋娟,张一名,周洪友. 甜瓜采后病害生防菌遗传改良及其相关性状初步分析[J]. , 2011, 13(2): 25-30. |
[10] | 路雪君1,2,廖晓兰1,成飞雪2,刘勇2. 根结线虫的生物防治研究进展[J]. , 2010, 12(4): 44-48. |
[11] | 闫培生,曹立新,王凯,王琢. 真菌毒素生物防治研究进展[J]. , 2008, 10(6): 89-94. |
[12] | 宋晓妍 孙彩云 陈秀兰 张玉忠. 木霉生防作用机制的研究进展[J]. , 2006, 8(6): 20-25. |
[13] | 江洪涛 张红梅. 国内外水葫芦防治研究综述[J]. , 2003, 5(3): 72-75. |
[14] | 顾晓军 田素芬. 发挥联合作用优势  |实现害虫持续控制[J]. , 2002, 4(2): 60-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||