中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (9): 24-38.DOI: 10.13304/j.nykjdb.2022.0206
李楠1(), 许哲平2, 郭晓真1, 王友华3, 张学福1(
)
收稿日期:
2022-03-18
接受日期:
2022-05-07
出版日期:
2022-09-15
发布日期:
2022-10-11
通讯作者:
张学福
作者简介:
李楠E-mail: linan@caas.cn;
基金资助:
Nan LI1(), Zheping XU2, Xiaozhen GUO1, Youhua WANG3, Xuefu ZHANG1(
)
Received:
2022-03-18
Accepted:
2022-05-07
Online:
2022-09-15
Published:
2022-10-11
Contact:
Xuefu ZHANG
摘要:
植物合成生物学为解决农作物育种及品质改良等重要农业问题带来新机遇。为了使相关科研和管理人员及时了解植物合成生物学的研究进展、把握领域科技前沿、有效开展科研合作、优化研究布局,从文献计量角度分析合成生物学的发展态势。基于Web of Science 核心集检索到2000—2020年研究文献97 551篇。计量分析结果表明,植物合成生物学领域论文呈现稳定增长趋势,中国学者发表的论文数量及总被引频次位居前列。通过对高被引文献以及文献主题聚类分析可知,重要作用元件如转录因子的调控机制、标准化的遗传元件如启动子、功能基因的挖掘和鉴定、植物天然产物合成与代谢通路的解析、基因编辑技术/多组学分析技术等关键技术是本领域的重要主题内容,将持续推动本领域的创新发展。此外,对比分析了国内外合成生物学的资助及研究布局,针对当前我国在植物合成生物学领域的资助现状提出展望,加强国家顶层设计,加大植物合成生物领域的资助。
中图分类号:
李楠, 许哲平, 郭晓真, 王友华, 张学福. 植物合成生物学领域发展态势分析[J]. 中国农业科技导报, 2022, 24(9): 24-38.
Nan LI, Zheping XU, Xiaozhen GUO, Youhua WANG, Xuefu ZHANG. Development Trend in the Field of Plant Synthetic Biology[J]. Journal of Agricultural Science and Technology, 2022, 24(9): 24-38.
国家 Country | 发文量 Published articles | 总被引频次 Total citations | 篇均被引频次 Citations per article |
---|---|---|---|
中国 China | 11 874 | 147 210 | 12.4 |
美国 USA | 6 501 | 102 992 | 15.8 |
德国 Germany | 2 380 | 38 105 | 16.0 |
日本 Japan | 2 231 | 26 797 | 12.0 |
印度 India | 2 009 | 33 825 | 16.8 |
法国 France | 1 908 | 24 337 | 12.7 |
英国 England | 1 347 | 20 216 | 15.0 |
西班牙 Spain | 1 296 | 16 907 | 13.0 |
加拿大 Canada | 1 283 | 16 078 | 12.5 |
韩国 South Korea | 1 244 | 22 524 | 18.1 |
澳大利亚 Australia | 1 154 | 16 582 | 14.3 |
意大利 Italy | 1 141 | 16 631 | 14.5 |
巴西 Brazil | 965 | 8 678 | 8.9 |
伊朗 Iran | 786 | 9 122 | 11.6 |
荷兰 Netherlands | 525 | 10 157 | 19.3 |
波兰 Poland | 476 | 8 529 | 17.9 |
瑞士 Switzerland | 471 | 8 406 | 17.8 |
比利时 Belgium | 452 | 6 961 | 15.4 |
瑞典 Sweden | 387 | 7 578 | 19.5 |
丹麦 Denmark | 362 | 7 125 | 19.6 |
表1 2015—2021年度植物合成生物学领域TOP20国家发文情况
Table 1 State of published articles of TOP20 countries in the field of plant synthetic biology from 2015 to 2021
国家 Country | 发文量 Published articles | 总被引频次 Total citations | 篇均被引频次 Citations per article |
---|---|---|---|
中国 China | 11 874 | 147 210 | 12.4 |
美国 USA | 6 501 | 102 992 | 15.8 |
德国 Germany | 2 380 | 38 105 | 16.0 |
日本 Japan | 2 231 | 26 797 | 12.0 |
印度 India | 2 009 | 33 825 | 16.8 |
法国 France | 1 908 | 24 337 | 12.7 |
英国 England | 1 347 | 20 216 | 15.0 |
西班牙 Spain | 1 296 | 16 907 | 13.0 |
加拿大 Canada | 1 283 | 16 078 | 12.5 |
韩国 South Korea | 1 244 | 22 524 | 18.1 |
澳大利亚 Australia | 1 154 | 16 582 | 14.3 |
意大利 Italy | 1 141 | 16 631 | 14.5 |
巴西 Brazil | 965 | 8 678 | 8.9 |
伊朗 Iran | 786 | 9 122 | 11.6 |
荷兰 Netherlands | 525 | 10 157 | 19.3 |
波兰 Poland | 476 | 8 529 | 17.9 |
瑞士 Switzerland | 471 | 8 406 | 17.8 |
比利时 Belgium | 452 | 6 961 | 15.4 |
瑞典 Sweden | 387 | 7 578 | 19.5 |
丹麦 Denmark | 362 | 7 125 | 19.6 |
机构 Organization | 发文量 Published articles | 总被引频次 Total citations | 篇均被引频次 Citations per article |
---|---|---|---|
中国科学院 Chinese Academy of Sciences | 1 985 | 41 679 | 21.0 |
中国农业科学院 Chinese Academy of Agricultural Sciences | 1 359 | 17 716 | 13.0 |
加州大学系统 University of California System | 992 | 23 464 | 23.6 |
美国农业部 United States Department of Agriculture | 887 | 14 678 | 16.5 |
南京农业大学 Nanjing Agricultural University | 852 | 10 523 | 12.3 |
法国国家科学研究中心 Centre National de la Recherche Scientifique | 820 | 14 800 | 18.0 |
法国国家农业食品与环境研究院 INRAE | 749 | 14 240 | 19.0 |
西班牙高等学术研究委员会 Consejo Superior de Investigaciones Científicas | 663 | 11 069 | 16.7 |
华中农业大学 Huazhong Agricultural University | 619 | 10 793 | 17.4 |
马克斯·普朗克学会 Max Planck Society | 608 | 13 925 | 22.9 |
西北农林科技大学 Northwest A&F University China | 604 | 8 434 | 13.9 |
中国农业大学 China Agricultural University | 595 | 8 559 | 14.3 |
浙江大学 Zhejiang University | 593 | 9 598 | 16.1 |
美国能源部 United States Department Of Energy Doe | 592 | 14 024 | 23.6 |
英国研究与创新局 Uk Research Innovation Ukri | 438 | 11 865 | 27.0 |
英国生物技术和生物科学研究委员会 The Biotechnology and Biological Sciences Research Council | 425 | 11 661 | 27.4 |
加州大学戴维斯分校 UC Davis | 400 | 7 736 | 19.3 |
佛罗里达州立大学系统 Florida State University | 398 | 5 833 | 14.6 |
印度科学与工业研究理事会 CSIR | 378 | 5 317 | 14.0 |
华南农业大学 South China Agricultural University | 365 | 7 551 | 20.6 |
表2 2015—2021年植物合成生物学领域TOP20机构发文情况
Table 2 Distribution of TOP20 scientific research institutions in the field of plant synthetic biology from 2015 to 2021
机构 Organization | 发文量 Published articles | 总被引频次 Total citations | 篇均被引频次 Citations per article |
---|---|---|---|
中国科学院 Chinese Academy of Sciences | 1 985 | 41 679 | 21.0 |
中国农业科学院 Chinese Academy of Agricultural Sciences | 1 359 | 17 716 | 13.0 |
加州大学系统 University of California System | 992 | 23 464 | 23.6 |
美国农业部 United States Department of Agriculture | 887 | 14 678 | 16.5 |
南京农业大学 Nanjing Agricultural University | 852 | 10 523 | 12.3 |
法国国家科学研究中心 Centre National de la Recherche Scientifique | 820 | 14 800 | 18.0 |
法国国家农业食品与环境研究院 INRAE | 749 | 14 240 | 19.0 |
西班牙高等学术研究委员会 Consejo Superior de Investigaciones Científicas | 663 | 11 069 | 16.7 |
华中农业大学 Huazhong Agricultural University | 619 | 10 793 | 17.4 |
马克斯·普朗克学会 Max Planck Society | 608 | 13 925 | 22.9 |
西北农林科技大学 Northwest A&F University China | 604 | 8 434 | 13.9 |
中国农业大学 China Agricultural University | 595 | 8 559 | 14.3 |
浙江大学 Zhejiang University | 593 | 9 598 | 16.1 |
美国能源部 United States Department Of Energy Doe | 592 | 14 024 | 23.6 |
英国研究与创新局 Uk Research Innovation Ukri | 438 | 11 865 | 27.0 |
英国生物技术和生物科学研究委员会 The Biotechnology and Biological Sciences Research Council | 425 | 11 661 | 27.4 |
加州大学戴维斯分校 UC Davis | 400 | 7 736 | 19.3 |
佛罗里达州立大学系统 Florida State University | 398 | 5 833 | 14.6 |
印度科学与工业研究理事会 CSIR | 378 | 5 317 | 14.0 |
华南农业大学 South China Agricultural University | 365 | 7 551 | 20.6 |
序号 No. | 题名 Title | 通信作者 Corresponding author | 通信作者所在机构 Organization of corresponding author | 出版期刊 Published journal | 被引频次 Citations | 参考文献 Reference |
---|---|---|---|---|---|---|
1 | MYB transcription factors in Arabidopsis | DUBOS C | 法国国家农业科学研究院 Institut National de Recherche Agronomique | Trends in Plant Science | 1 790 | [ |
2 | Proline: a multifunctional amino acid | SZABADOS L | 匈牙利科学院生物研究中心 Institute of Genetics Biological Research Center of the Hungarian Academy of Sciences | Tree Physiology | 2 216 | [ |
3 | Lignin valorization: improving lignin processing in the biorefinery | RAGAUSKAS A J | 佐治亚理工学院 Georgia Institute of Technology | Science | 2 079 | [ |
4 | Phenylpropanoid biosynthesis | VOGT T | 莱布尼茨植物生物化学研究所Leibniz Institute of Plant Biochemistry | Molecular Plant | 1 405 | [ |
5 | Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany | WASTERNACK C | 莱布尼茨植物生物化学研究所Leibniz Institute of Plant Biochemistry | Annals of Botany | 1 350 | [ |
6 | Hormone crosstalk in plant disease and defense: more than just JASMONATE-SALICYLATE antagonism | ROBERT-SEILANIANTZ A | 剑桥大学University of Cambridge | Annual Review of Phytopathology | 1 104 | [ |
7 | A TALE nuclease architecture for efficient genome editing | REBAR E J | 桑莫生物科技公司(美国) Sangamo BioSciences, Inc. (USA) | Nature Biotechnology | 1 461 | [ |
8 | Genome editing with engineered zinc finger nucleases | GREGORY P D | 桑莫生物科技公司(美国) Sangamo BioSciences, Inc. (USA) | Nature | [ | |
9 | Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome | CHALHOUB B | 法国国家农业研究院;埃夫里大学 Institut National de Recherche Agronomique (INRA);Université d’Evry Val d’Essone, Unité de Recherche en Génomique Végétale | Science | 1 271 | [ |
10 | Green synthesis of metal nanoparticles using plants | IRAVANI S | 伊斯法罕大学 Isfahan University | Green Chemistry | 1 565 | [ |
表3 2010—2014 年植物合成生物学领域高被引论文TOP10
Table 3 TOP10 highly cited papers in the field of plant synthetic biology from 2010 to 2014
序号 No. | 题名 Title | 通信作者 Corresponding author | 通信作者所在机构 Organization of corresponding author | 出版期刊 Published journal | 被引频次 Citations | 参考文献 Reference |
---|---|---|---|---|---|---|
1 | MYB transcription factors in Arabidopsis | DUBOS C | 法国国家农业科学研究院 Institut National de Recherche Agronomique | Trends in Plant Science | 1 790 | [ |
2 | Proline: a multifunctional amino acid | SZABADOS L | 匈牙利科学院生物研究中心 Institute of Genetics Biological Research Center of the Hungarian Academy of Sciences | Tree Physiology | 2 216 | [ |
3 | Lignin valorization: improving lignin processing in the biorefinery | RAGAUSKAS A J | 佐治亚理工学院 Georgia Institute of Technology | Science | 2 079 | [ |
4 | Phenylpropanoid biosynthesis | VOGT T | 莱布尼茨植物生物化学研究所Leibniz Institute of Plant Biochemistry | Molecular Plant | 1 405 | [ |
5 | Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany | WASTERNACK C | 莱布尼茨植物生物化学研究所Leibniz Institute of Plant Biochemistry | Annals of Botany | 1 350 | [ |
6 | Hormone crosstalk in plant disease and defense: more than just JASMONATE-SALICYLATE antagonism | ROBERT-SEILANIANTZ A | 剑桥大学University of Cambridge | Annual Review of Phytopathology | 1 104 | [ |
7 | A TALE nuclease architecture for efficient genome editing | REBAR E J | 桑莫生物科技公司(美国) Sangamo BioSciences, Inc. (USA) | Nature Biotechnology | 1 461 | [ |
8 | Genome editing with engineered zinc finger nucleases | GREGORY P D | 桑莫生物科技公司(美国) Sangamo BioSciences, Inc. (USA) | Nature | [ | |
9 | Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome | CHALHOUB B | 法国国家农业研究院;埃夫里大学 Institut National de Recherche Agronomique (INRA);Université d’Evry Val d’Essone, Unité de Recherche en Génomique Végétale | Science | 1 271 | [ |
10 | Green synthesis of metal nanoparticles using plants | IRAVANI S | 伊斯法罕大学 Isfahan University | Green Chemistry | 1 565 | [ |
序号 No. | 题名 Title | 通信作者 Corresponding author | 通信作者所在机构 Organization of corresponding author | 出版期刊 Published journal | 被引频次 Citations | 参考文献 Reference |
---|---|---|---|---|---|---|
1 | Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system | YANG Y | 宾夕法尼亚州立大学 The Pennsylvania State University | Proceedings of the National Academy of Sciences | 622 | [ |
2 | A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants | LIU Y G | 广西大学亚热带农业保护与利用国家重点实验室 Key Laboratory of South China Agriculture Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences | Molecular Plant | 954 | [ |
3 | Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage | LIU D R | 哈佛大学化学与化学生物系 Department of Chemistry & Chemical Biology, Harvard University | Nature | 1 322 | [ |
4 | A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise | IKRAM S | 印度国立伊斯兰大学Universitas Islam Negeri Raden Fatah | Journal of Advanced Research | 1 164 | [ |
5 | Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review | BENELLI G | 比萨大学 | Parasitology Research | 629 | [ |
6 | Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes | DUBOS C | 法国国家农业科学研究院 Institut National de Recherche Agronomique | Trends in Plant Science | 672 | [ |
7 | g:Profiler-a web server for functional interpretation of gene lists (2016 update) | VILO J | 塔尔图大学 University of Tartu | Nucleic Acids Research | 666 | [ |
8 | Mycorrhizal ecology and evolution: the past, the present, and the future | van der HEIJDEN M G A | 瑞士农业科学研究所 Research Institute of Organic Agriculture | New Phytologist | 775 | [ |
9 | Plant hormone-mediated regulation of stress responses | KUMAR P P | 首尔大学 Seoul National University | BMC Plant Biology | 634 | [ |
10 | The CRISPR/Cas9 system for plant genome editing and beyond | BORTESI L | 亚琛工业大学 Rheinisch-Westfälische Technische Hochschule Aachen | Biotechnology Advanced | 631 | [ |
表4 2015—2021年植物合成生物学领域TOP10高被引论文
Table 4 TOP10 highly cited papers in the field of plant synthetic biology from 2015 to 2021
序号 No. | 题名 Title | 通信作者 Corresponding author | 通信作者所在机构 Organization of corresponding author | 出版期刊 Published journal | 被引频次 Citations | 参考文献 Reference |
---|---|---|---|---|---|---|
1 | Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system | YANG Y | 宾夕法尼亚州立大学 The Pennsylvania State University | Proceedings of the National Academy of Sciences | 622 | [ |
2 | A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants | LIU Y G | 广西大学亚热带农业保护与利用国家重点实验室 Key Laboratory of South China Agriculture Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences | Molecular Plant | 954 | [ |
3 | Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage | LIU D R | 哈佛大学化学与化学生物系 Department of Chemistry & Chemical Biology, Harvard University | Nature | 1 322 | [ |
4 | A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise | IKRAM S | 印度国立伊斯兰大学Universitas Islam Negeri Raden Fatah | Journal of Advanced Research | 1 164 | [ |
5 | Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review | BENELLI G | 比萨大学 | Parasitology Research | 629 | [ |
6 | Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes | DUBOS C | 法国国家农业科学研究院 Institut National de Recherche Agronomique | Trends in Plant Science | 672 | [ |
7 | g:Profiler-a web server for functional interpretation of gene lists (2016 update) | VILO J | 塔尔图大学 University of Tartu | Nucleic Acids Research | 666 | [ |
8 | Mycorrhizal ecology and evolution: the past, the present, and the future | van der HEIJDEN M G A | 瑞士农业科学研究所 Research Institute of Organic Agriculture | New Phytologist | 775 | [ |
9 | Plant hormone-mediated regulation of stress responses | KUMAR P P | 首尔大学 Seoul National University | BMC Plant Biology | 634 | [ |
10 | The CRISPR/Cas9 system for plant genome editing and beyond | BORTESI L | 亚琛工业大学 Rheinisch-Westfälische Technische Hochschule Aachen | Biotechnology Advanced | 631 | [ |
年份 Year | 主题内容 Topics | 代表性的高频关键词(部分) High-frequency keywords (partial) |
---|---|---|
2000—2020 | 植物抗胁迫(包括生物胁迫及 非生物胁迫) Plant resistance to stresses (including biotic and abiotic stresses) | 抗性、病原真菌、昆虫、水杨酸、茉莉酸、甲基、信号通路、植物防御、化学、 硫代葡萄糖苷、脱落酸生物合成、抗病性、干旱、盐胁迫、低温、高浓度 Resistance, pathogen fungi, insect, salicylic acid, jasmonic acid, methyl, signalling pathway, plant defense, chemical, glucosinolate, abscisic acid biosynthesis, disease resistance, drought, salt stress, low temperature, higher concentration, H2O2 |
生物大分子的生物合成 Biosynthesis of biomacromolecules | 生物燃料、羟化酶、脂肪酸生物合成、木质素含量、聚合、纤维素合酶、次生 细胞壁、木质素生物合成、糖基转移酶、水解、预处理、木质纤维素生物量、 单一信号素 Biofuel, hydroxylase, fatty acid biosynthesis, lignin content, polymerization, cellulose synthase, secondary cell wall, lignin biosynthesis, glycosyltransferase, hydrolysis, pretreatment, lignocellulosic biomass, monolignol | |
植物主要转录调控因子、启动子等功能元件的鉴定 Identification of functional elements, such as transcription regulators and promoters in plants | 启动子、基序、元件、转录因子、转录水平、表达分析、酶活性、诱导、MYB转录因子、生物合成基因、调控基因、候选基因、靶基因、转录网络、作物改良 Promoters, motif, element, transcription factor, transcript level, expression analysis, enzyme activity, induction, MYB transcription factor, biosynthesis gene, regulatory gene, candidate gene, target gene, transcriptional network, crop improvement | |
2010—2020 | 基因编辑技术及组学技术 Gene editing technology and omics technology | 工程、基因组编辑、植物基因组、短回文重复、效应子核酸酶、锌指核酸酶、talens、crispr cas9系统、cas9、杂交、技术、基因组工程 Engineering, genome editing, plant genome, short palindromic repeat, effector nuclease, zinc finger nuclease, talens, crispr cas9 system, cas9, hybrid, technology, genome engineering |
植物代谢物的生物合成 Biosynthesis of plant metabolites | 硫甙、类黄酮生物合成、色素沉着、花青素生物合成、花青素积累、查尔酮合酶、类黄酮生物合成途径、苯丙酸途径、功能表征、花青素、类胡萝卜素代谢、油生物合成 Glucosinolate, flavonoid biosynthesis, pigmentation, anthocyanin biosynthesis, anthocyanin accumulation, chalcone synthase, flavonoid biosynthetic pathway, phenylpropanoid pathway, functional characterization, anthocyanin, carotenoid metabolism,oil biosynthesis | |
代谢通路网络的构建 Construction of metabolic pathway network | 系统、通量平衡分析、流变特性、网络、理化特性、动力学、重建、模型、网络、微观结构、性能、胚乳、支链淀粉、代谢模型 Systems, flux balance analysis, rheological properties, network, physicochemical properties, dynamics, reconstruction, models, networks, microstructure, performance, endosperm, amylopectin, metabolic model |
表5 表征特定主题的高频关键词
Table 5 High-frequency keywords that represent representative topics
年份 Year | 主题内容 Topics | 代表性的高频关键词(部分) High-frequency keywords (partial) |
---|---|---|
2000—2020 | 植物抗胁迫(包括生物胁迫及 非生物胁迫) Plant resistance to stresses (including biotic and abiotic stresses) | 抗性、病原真菌、昆虫、水杨酸、茉莉酸、甲基、信号通路、植物防御、化学、 硫代葡萄糖苷、脱落酸生物合成、抗病性、干旱、盐胁迫、低温、高浓度 Resistance, pathogen fungi, insect, salicylic acid, jasmonic acid, methyl, signalling pathway, plant defense, chemical, glucosinolate, abscisic acid biosynthesis, disease resistance, drought, salt stress, low temperature, higher concentration, H2O2 |
生物大分子的生物合成 Biosynthesis of biomacromolecules | 生物燃料、羟化酶、脂肪酸生物合成、木质素含量、聚合、纤维素合酶、次生 细胞壁、木质素生物合成、糖基转移酶、水解、预处理、木质纤维素生物量、 单一信号素 Biofuel, hydroxylase, fatty acid biosynthesis, lignin content, polymerization, cellulose synthase, secondary cell wall, lignin biosynthesis, glycosyltransferase, hydrolysis, pretreatment, lignocellulosic biomass, monolignol | |
植物主要转录调控因子、启动子等功能元件的鉴定 Identification of functional elements, such as transcription regulators and promoters in plants | 启动子、基序、元件、转录因子、转录水平、表达分析、酶活性、诱导、MYB转录因子、生物合成基因、调控基因、候选基因、靶基因、转录网络、作物改良 Promoters, motif, element, transcription factor, transcript level, expression analysis, enzyme activity, induction, MYB transcription factor, biosynthesis gene, regulatory gene, candidate gene, target gene, transcriptional network, crop improvement | |
2010—2020 | 基因编辑技术及组学技术 Gene editing technology and omics technology | 工程、基因组编辑、植物基因组、短回文重复、效应子核酸酶、锌指核酸酶、talens、crispr cas9系统、cas9、杂交、技术、基因组工程 Engineering, genome editing, plant genome, short palindromic repeat, effector nuclease, zinc finger nuclease, talens, crispr cas9 system, cas9, hybrid, technology, genome engineering |
植物代谢物的生物合成 Biosynthesis of plant metabolites | 硫甙、类黄酮生物合成、色素沉着、花青素生物合成、花青素积累、查尔酮合酶、类黄酮生物合成途径、苯丙酸途径、功能表征、花青素、类胡萝卜素代谢、油生物合成 Glucosinolate, flavonoid biosynthesis, pigmentation, anthocyanin biosynthesis, anthocyanin accumulation, chalcone synthase, flavonoid biosynthetic pathway, phenylpropanoid pathway, functional characterization, anthocyanin, carotenoid metabolism,oil biosynthesis | |
代谢通路网络的构建 Construction of metabolic pathway network | 系统、通量平衡分析、流变特性、网络、理化特性、动力学、重建、模型、网络、微观结构、性能、胚乳、支链淀粉、代谢模型 Systems, flux balance analysis, rheological properties, network, physicochemical properties, dynamics, reconstruction, models, networks, microstructure, performance, endosperm, amylopectin, metabolic model |
1 | ROELL M S, ZURBRIGGEN M D. The impact of synthetic biology for future agriculture and nutrition [J]. Curr. Opin. Biotechnol., 2020,61: 102-109. |
2 | 王凯悦,陈芳泉,黄五星. 植物干旱胁迫响应机制研究进展[J].中国农业科技导报, 2019,21(2):19-25. |
WANG K Y, CHEN F Q, HUANG W X. Research advance on drought stress response mechanism in plants [J]. J. Agric. Sci. Technol., 2019, 21(2) :19-25. | |
3 | 马小倩,杨涛,张全,等.水稻新型育种技术研究现状与展望[J].中国农业科技导报, 2022,24(1):24-30. |
MA X Q, YANG T, ZHANG Q,et al.. Development status and prospect of rice new breeding [J]. J. Agric. Sci. Technol., 2022,24(1):24-30. | |
4 | 张先恩.中国合成生物学发展回顾与展望[J].中国科学:生命科学,2019,49(12):1543-1572. |
ZHANG X E. Synthetic biology in China: review and prospects [J]. Sci. Sin. (Vitae), 2019,49(12):1543-1572. | |
5 | 邓子新.合成生物学趁最好时代,建物致知,建物致用[J]. 中国科学:生命科学,2019,31(4):323-324. |
DENG Z X. Synthetic biology takes advantage of the best times, builds knowledge, builds use [J]. Sci. Sin. (Vitae), 2019, 31(4):323-324. | |
6 | 刘立中, 白阳, 郑海, 等. 合成生物学在基础生命科学研究中的应用[J].生物工程学报,2017, 33(3): 315-323. |
LIU LZ, BAI Y, ZHENG H, et al.. Fundamental aspects of synthetic biology [J]. Chin. J. Biotech., 2017, 33(3): 315-323. | |
7 | 江会锋.合成生物技术助力可持续发展[J].生物技术通报,2020,36(4):1-2. |
JIANG H F. Synthetic biotechnology boosts sustainable development [J]. Biotech. Bull., 2020,36(4):1-2. | |
8 | 吴杰, 赵乔.合成生物学在现代农业中的应用与前景[J].植物生理学报,2020,56(11):2308-2316. |
WU J, ZHAO Q. The application and prospect of synthetic biology in future agriculture [J]. J. Plant Physiol., 2020, 56 (11): 2308-2316. | |
9 | 林敏.农业生物育种技术的发展历程及产业化对策[J].生物技术进展, 2021,11(4): 405-417. |
LIN M. The development course and industrialization countermeasure of agricultural biological breeding technology [J]. Curr. Biotech., 2021,11(4): 405-417. | |
10 | ZHU Q, WANG B, TAN J, et al.. Plant synthetic metabolic engineering for enhancing crop nutritional quality [J/OL]. Plant Commun.,2020, 1: 100017 [2022-02-04]. . |
11 | SCHWILLE P. Bottom-up synthetic biology: engineering in a tinkerer’s world [J]. Science,2011, 333(6047):1252-1254. |
12 | LIU W, STEWART C N J. Plant synthetic biology [J]. Trends Plant Sci., 2015,20(5):309-317. |
13 | 李楠,李晓曼,张学福.全球植物科学领域发展态势分析[J].中国农学通报, 2020,36(34):148-159. |
LI N, LI X M, ZHANG X F. Trend and topic analysis of global plant science research [J]. Chin. Agric. Sci. Bull., 2020,36(34):148-159. | |
14 | 黄家章,卢士军,姚远,等.基于文献计量的国际营养导向型农业研究进展可视化分析[J].中国农业科技导报, 2020, 22(9): 11-21. |
HUANG J Z, LU S J, YAO Y, et al.. Visualization analysis of research progress of international nutrition-sensitive agriculture based on bibliometrics [J]. J. Agric. Sci. Technol., 2020, 22(9): 11-21. | |
15 | 刘佳,魏佳奇,刘玉琴,等.基于专利分析和社会网络分析的基因编辑技术演化研究[J].生物技术通报,2021, 37(12): 274-284. |
LIU J, WEI J Q, LIU Y Q, et al.. Research on evolution of gene editing technology based on patent analysis and social network analysis [J]. Biotech. Bull., 2021, 37(12): 274-284. | |
16 | 邱均平.文献信息增长规律与应用[J].情报理论与实践, 2000(2):153-157. |
QIU J P. Law of literature information growth and its application [J]. ITA, 2000(2):153-157. | |
17 | DUBOS C, STRACKE R, GROTEWOLD E, et al.. MYB transcription factors in Arabidopsis [J]. Trends Plant Sci., 2010,15(10):573-581. |
18 | SZABADOS L, SAVOURÉ A. Proline: a multifunctional amino acid [J]. Trends Plant Sci., 2010,15(2):89-97. |
19 | RAGAUSKAS A J, BECKHAM G T, BIDDY M J, et al.. Lignin valorization: improving lignin processing in the biorefinery [J/OL]. Science, 2014,344(6185):1246843 [2022-02-04]. . |
20 | VOGT T. Phenylpropanoid biosynthesis [J]. Mol. Plant, 2010,3(1):2-20. |
21 | WASTERNACK C, HAUSE B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany [J]. Ann. Bot., 2013,111(6):1021-1058. |
22 | ROBERT-SEILANIANTZ A, GRANT M, JONES J. Hormone crosstalk in plant disease and defense: more than just JASMONATE-SALICYLATE antagonism [J]. Ann. Rev. Phytopathol., 2011,49:317-343. |
23 | MILLER J C, TAN S, QIAO G, et al.. A TALE nuclease architecture for efficient genome editing [J]. Nat. Biotech., 2011, 29(2):143-148. |
24 | URNOV F D, REBAR E J, HOLMES M C, et al.. Genome editing with engineered zinc finger nucleases [J]. Nat. Rev. Genet., 2010,11(9):636-646. |
25 | CHALHOUB B, DENOEUD F, LIU S. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome [J]. Science, 2014,345(6199): 950-953. |
26 | IRAVANI S. Green synthesis of metal nanoparticles using plants [J]. Green Chem., 2011,13:2638-2650. |
27 | XIE K, MINKENBERG B, YANG Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system [J]. Proc. Natl. Acad. Sci. USA, 2015,112(11):3570-3575. |
28 | MA X. A Robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants [J]. Mol. Plant, 2015,8(8):1274-1284. |
29 | GAUDELLI N M, KOMOR A C, REES H A, et al.. Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage [J]. Nature, 2017,551(7681):464-471. |
30 | AHMED S, AHMAD M, SWAMI B L, et al.. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise [J]. J. Adv. Res., 2016,7(1):17-28. |
31 | BENELLI G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review [J]. Parasitol. Res., 2016,115(1):23-34. |
32 | XU W, DUBOS C, LEPINIEC L C. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes [J]. Trends Plant Sci., 2015,20(3):176-185. |
33 | REIMAND J, ARAK T, ADLER P, et al.. g:Profiler--a web server for functional interpretation of gene lists (2011 update) [J]. Nucleic Acids Res., 2011,39:W307-W315. |
34 | VAN DER HEIJDEN M G A, MARTIN F M, SELOSSE M A, et al. Mycorrhizal ecology and evolution: the past, the present, and the future [J]. New Phytol., 2015,205(4):1406-1423. |
35 | VERMA V, RAVINDRAN P, KUMAR P P. Plant hormone-mediated regulation of stress responses [J/OL]. BMC Plant Biol., 2016,16(1):86 [2022-02-04]. . |
36 | BORTESI L, FISCHER R. The CRISPR/Cas9 system for plant genome editing and beyond [J]. Biotechnol. Adv., 2015,2015,33(1): 41-52. |
37 | 刘晓,王慧媛,熊燕,等.基因合成与基因组编辑[J]. 中国细胞生物学学报, 2019, 41(11): 2072-2082. |
LIU X, WANG H Y, XIONG Y, et al.. Progress in gene synthesis and genome editing [J]. Chin. J Cell Biol., 2019, 41(11): 2072-2082. | |
38 | BALTES N J, VOYTAS D F. Enabling plant synthetic biology through genome engineering [J]. Trends Biotechnol., 2015,33(2):120-31. |
39 | 周正,李卿,陈万生,等.药用植物天然产物生物合成途径及关键催化酶的研究策略[J].生物技术通报, 2021, 37(8): 25-34. |
ZHOU Z, LI Q, CHEN W S, et al.. Research strategies of natural products biosynthesis pathways and key enzymes in medicinal plants [J]. Biotech. Bull., 2021, 37(8): 25-34. | |
40 | 陈国强,王颖.中国"合成生物学"973 项目研究进展[J].生物工程学报, 2015, 31(6): 995-1008. |
CHEN G Q, WANG Y. Progress in synthetic biology of "973 Funding Program" in China [J]. Chin. J. Biotech., 2015, 31(6): 995-1008. | |
41 | SI T, ZHAO H M. A brief overview of synthetic biology research programs and roadmap studies in the United States [J]. Synth. Syst. Biotech.,2016,1(4):258-264. |
42 | 科学技术部政务服务平台.关于国家重点研发计划"合成生物学"重点专项2018年度项目安排公示的通知[EB/OL]. (2021-07-09) [2022-03-05]. . |
43 | CHEN G Q. Synthetic biology in China, UK and US [J/OL]. Synth. Syst. Biotech.,2016,1(4):215 [2022-02-04]. . |
44 | 周光明, 陈大明, 熊燕, 等.英国合成生物学规划及其影响与启示[J].中国细胞生物学学报,2019, 41(11): 2091-2100. |
ZHOU G M, CHEN D M, XIONG Y, et al. UK Synthetic biology strategic planning and its enlightenment [J]. Chin. J. Cell Biol., 2019, 41(11): 2091-2100. | |
45 | CLARKE L J, KITNEY R I. Synthetic biology in the UK-An outline of plans and progress [J]. Synth. Syst. Biotech.,2016,1(4):243-257. |
46 | WILLIAMS G. Australia's Synthetic Biology Roadmap [R/OL]. (2021-09-07) [2022-02-05]. . |
47 | 中华人民共和国农业农村部.农业用基因编辑植物安全评价指南(试行) [EB/OL]. (2022-01-24) [2022-03-05]. . |
48 | The National Engineering Biology Steering Committee. Engineering Biology: A platform technology to fuel multisector economic recovery and biomanufacturing in Canada [R/OL].(2020-11)[2022-02-05].. |
[1] | 段珺, 高振. 基于文献专利计量的食品科技发展态势分析[J]. 中国农业科技导报, 2021, 23(8): 114-126. |
[2] | 黄家章1,卢士军1,姚远2,吴鸣3,孙君茂1*. 基于文献计量的国际营养导向型农业研究进展可视化分析[J]. 中国农业科技导报, 2020, 22(9): 11-21. |
[3] | 齐世杰,赵静娟*,郑怀国. 2013—2018年全球玉米育种研究发展态势分析[J]. 中国农业科技导报, 2020, 22(2): 12-21. |
[4] | 岳宇君1,岳雪峰2,仲云云1. 农业物联网体系架构及关键技术研究进展[J]. 中国农业科技导报, 2019, 21(4): 79-87. |
[5] | 田稼1,路鹏鹏1,孙超1,吴小杰1,李飞1,齐凡2,3*. 基于Web of Science数据库的微生物肥料研究发展趋势分析[J]. 中国农业科技导报, 2019, 21(3): 1-12. |
[6] | 余劲聪1,2,何舒雅1,2,林克明1,2. 基于专利的我国壳寡糖种植业领域技术发展态势分析[J]. 中国农业科技导报, 2017, 19(6): 1-9. |
[7] | 卢垚1,宋敏2*. 基于文献计量学的我国2006-2015年植物分子生物学研究态势分析[J]. 中国农业科技导报, 2017, 19(6): 10-20. |
[8] | 王阳. 秸秆厌氧消化领域发展态势分析[J]. 中国农业科技导报, 2017, 19(4): 1-9. |
[9] | 张雅琪1,郑荣宝1*,付艳华2,劳春华1,黄婷1. 近50年来全球农田保护的知识图谱研究[J]. 中国农业科技导报, 2017, 19(3): 37-49. |
[10] | 翁伯琦1,王义祥1,王煌平2,罗涛1,廖剑华3,林代炎4. 福建省农业废弃物多级循环模式优化与集成应用研究进展[J]. 中国农业科技导报, 2017, 19(12): 91-103. |
[11] | 颜志辉,郑怀国*,赵静娟,串丽敏,张晓静,谭翠萍,孙素芬. 基于SCI论文的作物转基因育种领域发展态势分析[J]. 中国农业科技导报, 2016, 18(2): 208-215. |
[12] | 周丽英1,2,3,冷伏海2,李冬梅4,左文革1*. 基于共词与社会网络分析的国际植物营养学发展态势研究[J]. 中国农业科技导报, 2015, 17(6): 142-149. |
[13] | 靳军宝,高峰*,古志文,郑玉荣,田晓阳. 基于DII的生物育种专利技术国际态势分析[J]. , 2015, 17(4): 176-180. |
[14] | 张文宇,张伟欣,葛道阔,曹宏鑫*,刘岩,冯春焕,陈魏涛. 基于Web of Science近10年油菜研究态势分析[J]. , 2014, 16(6): 164-172. |
[15] | 冯立娟1,尹燕雷1*,招雪晴1,杨雪梅1,李英朋2. 基于文献计量的世界樱桃研究态势分析[J]. , 2014, 16(5): 175-181. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||