中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (10): 65-73.DOI: 10.13304/j.nykjdb.2022.0266
罗广科1,2(), 穆榕博2,3, 薛冰2,3, 张桦2,3, 任燕萍3, 麻浩1,2,4(
)
收稿日期:
2022-04-04
接受日期:
2022-07-09
出版日期:
2023-10-15
发布日期:
2023-10-27
通讯作者:
麻浩
作者简介:
罗广科E-mail:1272510617@qq.com;
基金资助:
Guangke LUO1,2(), Rongbo MU2,3, Bing XUE2,3, Hua ZHANG2,3, Yanping REN3, Hao MA1,2,4(
)
Received:
2022-04-04
Accepted:
2022-07-09
Online:
2023-10-15
Published:
2023-10-27
Contact:
Hao MA
摘要:
从梭梭干旱转录组中获得与干旱相关的NAC转录因子基因HaNAC38,为了研究其功能,以过表达HaNAC38基因拟南芥纯合株系作为对象,比较转基因株系与野生型间的差异,并利用酵母单杂交技术对HaNAC38转录因子可能结合的DNA核心序列进行验证。结果表明,在自然干旱和模拟盐胁迫条件下,过表达HaNAC38基因拟南芥株系生长状况显著优于野生型拟南芥。过表达HaNAC38基因拟南芥株系的种子发芽率、幼苗叶片脯氨酸含量及过氧化氢酶活性均显著高于野生型拟南芥株系,丙二醛含量和过氧化氢含量显著低于野生型拟南芥。由此表明HaNAC38显著增强了拟南芥对于干旱和盐胁迫的耐受能力。酵母单杂交试验结果表明,HaNAC38转录因子可以在酵母体内特异性结合TTGCGT核心序列,并激活下游报告基因的表达。以上结果为明确梭梭HaNAC38转录因子的功能及其调控网络奠定了基础。
中图分类号:
罗广科, 穆榕博, 薛冰, 张桦, 任燕萍, 麻浩. 梭梭NAC转录因子HaNAC38功能及特性分析[J]. 中国农业科技导报, 2023, 25(10): 65-73.
Guangke LUO, Rongbo MU, Bing XUE, Hua ZHANG, Yanping REN, Hao MA. Function and Characteristic Analysis of Haloxylon ammodendron NAC Transcription Factor HaNAC38[J]. Journal of Agricultural Science and Technology, 2023, 25(10): 65-73.
ATGAGCCCAGAACGACGCC | |
TCAAATCTCGGTGACGGGCA | |
GTACCAGATTACGCT | |
ACGATTCATCTGCAG | |
CG | |
C | |
CG | |
C |
表1 实验所用引物序列
Table 1 Sequences of primers used in experiment
ATGAGCCCAGAACGACGCC | |
TCAAATCTCGGTGACGGGCA | |
GTACCAGATTACGCT | |
ACGATTCATCTGCAG | |
CG | |
C | |
CG | |
C |
图1 HaNAC38转基因拟南芥及野生型拟南芥发芽率A:盐胁迫;B:干旱胁迫; *和**分别表示转基因株系与野生型间在P<0.05和P<0.01水平差异显著
Fig. 1 Germination rates of HaNAC38 transgenic plant and wild type of Arabidopsis thalianaA:Salt stress; B:Drought stress; * and ** indicate significant differences between transgenic plant and wild type at P<0.05 and P<0.01 levels, respectively
图3 干旱胁迫条件下拟南芥叶片生理指标注:不同小写字母表示同一处理下不同株系间在P<0.05水平差异显著。
Fig. 3 Physiological indices of Arabidopsis thaliana leaves under drought stressNote: Different lowercase letters indicate significant differences between different strains under same treatment at P<0.05 level.
图4 拟南芥叶片离体失水率注:**表示转基因株系与野生型株系间在P<0.01水平差异显著。
Fig. 4 Ex vivo water loss rate of Arabidopsis thaliana leavesNote:** indicates significant difference between transgenic plants and wild type at P<0.01 level.
图6 盐胁迫条件下拟南芥叶片生理指标注:不同小写字母表示同一处理下不同株系间在P<0.05水平差异显著。
Fig. 6 Physiological indices of Arabidopsis thaliana leaves under salt stressNote: Different lowercase letters indicate significant differences between different plants under same treatment at P<0.05 level.
图7 HaNAC38与DNA核心序列在酵母体内的结合A:HaNAC38与TTGCGT串联的结合验证;B:HaNAC38与TTGAGT串联的结合验证
Fig. 7 Binding of HaNAC38 to the DNA core sequence in yeastA: Combined verification between HaNAC38 and TTGCGT in series; B: Combination verification between HaNAC38 and TTGAGT in series
1 | 张丹,马玉花.NAC转录因子在植物响应非生物胁迫中的作用[J].生物技术通报,2019,35(12):144-151. |
ZHANG D, MA Y H. The role of NAC transcription factors in plant response to abiotic stress [J]. Biotech. Bull., 2019, 35(12):144-151. | |
2 | 郭晋艳,郑晓瑜,邹翠霞,等.植物非生物胁迫诱导启动子顺式元件及转录因子研究进展[J].生物技术通报,2011(4):16-20. |
GUO J Y, ZHANG X Y, ZHOU C X, et al.. Research progress of cis-elements of abiotic stress inducible promoters and associated transcription factors [J]. Biotech. Bull., 2011(4):16-20. | |
3 | 王春雨,张茜.植物NAC转录因子功能研究进展[J].生物技术通报,2018,34(11):8-14. |
WANG C Y, ZHANG Q. Research progress on plant NAC transcription factors [J]. Biotech. Bull., 2018, 34(11):8-14. | |
4 | XIE Q. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development [J]. Gene Dev., 2000, 14(23):3024-3036. |
5 | 马雪祺,阴艳红,冯婧娴,等.植物NAC转录因子研究进展[J].植物生理学报,2021,57(12):2225-2234. |
MA X Q, YIN Y H, FENG J X, et al.. Research progress of NAC transcription factors in plant [J]. Plant Physiol. J., 2021, 57(12): 2225-2234. | |
6 | JIANG G, YAN H, WU F, et al.. Litchi fruit LcNAC1 is a target of LcMYC2 and regulator of fruit senescence through its interaction with LcWRKY1 [J/OL]. Plant Cell Physiol., 2017, 58(6):6 [2022-03-10]. . |
7 | MAO C, LU S, LYU B, et al.. A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis [J]. Plant Physiol., 2017, 174(3):1747-1763. |
8 | WANG F, LIN R, FENG J, et al.. TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana [J/OL]. Front. Plant Sci., 2015, 6:108 [2022-03-10]. . |
9 | LIU Q, YAN S, HUANG W, et al.. NAC transcription factor ONAC066 positively regulates disease resistance by suppressing the ABA signaling pathway in rice [J]. Plant Mol. Biol., 2018, 69(4):473-488. |
10 | CHEN Y, PERERA V, CHRISTIANSEN M W, et al.. The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew [J]. Plant Mol. Biol., 2013, 83(6):577-590. |
11 | YU X, LIU Y, WANG S, et al.. A chickpea stress-responsive NAC transcription factor, CarNAC5, confers enhanced tolerance to drought stress in transgenic Arabidopsis [J]. Plant Growth Regul., 2016, 79(2):187-197. |
12 | 伍霞,姚正培,宗兴风,等. HaNAC2转基因烟草响应干旱和高温胁迫的分子机制[J/OL].分子植物育种,2022:1-21[2022-03-10].. |
WU X, YAO Z P, ZONG X F, et al.. Molecular mechanisms of HaNAC2 transgenic tobacco response to drought and high temperature stress [J/OL]. Mol. Plant Breeding, 2022:1-21 [2022-03-10]. . | |
13 | FANG L, SU L, SUN X, et al.. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis [J]. J. Exp. Bot., 2016, 67(9):2829-2845. |
14 | 刘豪,张振清,陶顺,等.梭梭NAC转录因子HaNAC38、HaNAC42克隆及表达分析[J].基因组学与应用生物学,2018,37(5):2013-2020. |
LIU H, ZHANG Z Q, TAO S, et al.. Cloning and expression analysis of NAC transcription factor HaNAC38 and HaNAC42 from Haloxylon ammodendron [J]. Genomics Appl. Biol., 2018, 37(5):2013-2020. | |
15 | 姜子焱.梭梭HaNAC38、HaNAC42启动子克隆和转录因子特性分析[D].乌鲁木齐:新疆农业大学, 2018. |
JIANG Z Y. Cloning of promoters and transcription factor characteristic analysis of HaNAC38 and HaNAC42 from haloxylon ammondendron [D]. Urumqi: Xinjiang Agricultural University, 2018. | |
16 | 顾进宝,阳立波,曹树青.拟南芥抗旱相关基因的表达载体构建及转基因植株鉴定[J].合肥工业大学学报(自然科学版),2015,38(2):250-253. |
GU J B, YANG L B, CAO S Q. Construction and characterization of overexpression lines of one drought stress-responsive gene in Arabidopsis [J]. J. Hefei Univ. Technol. (Nat. Sci.), 2015, 38(2):250-253. | |
17 | 徐洪伟,张鑫,刘培源,等.盐胁迫下玉米毛状根再生植株SnRK2基因的表达[J].吉林师范大学学报(自然科学版),2018,39(1):102-105. |
XU H W, ZHANG X, LIU P Y, et al.. Expression of SnRK2 gene in maize regenerative plants from hairy root cultures under salt stress [J]. J. Jilin Nor. Univ. Technol. (Nat. Sci.), 2018, 39(1):102-105. | |
18 | 许峰,闫素辉,张从宇,等.小麦ArfGAP基因的克隆、半定量RT-PCR分析及原核表达[J].麦类作物学报,2015,35(12):1631-1638. |
XU F, YAN S H, ZHANG C Y, et al.. Cloning, semi-quantitative RT-PCR analysis and prokaryotic expression of ArfGAP gene in Triticum aestvum L [J]. J. Triticeae Crops, 2015, 35(12):1631-1638. | |
19 | 杨迪,张凯旋,赵辉,等.苦荞转录因子FtNAC11的克隆及其功能分析[J].植物遗传资源学报,2021,22(5):1430-1441. |
YANG D, ZHANG K X, ZHAO H, et al.. Molecular cloning and functional analysis of FtNAC11 from tartary buckwheat (Fagopyrum tataricum L. Gaertn [J]. J. Plant Genet. Resour., 2021, 22(5):1430-1441. | |
20 | 周亮第,姚正培,杨文艳,等.梭梭HaNAC20基因克隆及特性分析[J].西北农业学报,2021,30 (10):1556-1564. |
ZHOU L D, YAO Z P, YANG W Y, et al.. Cloning and characteristic of HaNAC20 from Haloxylon ammodendron (C. A. Mey.) Bunge ex Fenzl [J]. Acta Agric. Bor-Occid. Sin., 2021, 30(10):1556-1564. | |
21 | 彭辉.七个鹰嘴豆逆境相关基因(CarNAC1~6和CarPRP1)的克隆及功能初步分析[D].南京:南京农业大学, 2010. |
PENG H. Molecular cloning and functionalanalysis of seven stressrelated genes (CarNAC1-6 and CarPRPI) from chickpea (Cicer arietinum L) [D]. Nanjing: Nanjing Agricultural University, 2010. | |
22 | 李志强.梭梭干旱转录组测序和分析及SNAC亚族基因的克隆[D].乌鲁木齐:新疆农业大学, 2016. |
LI Z Q. Sequencing and analysing of Haloxylon ammodendron transcriptome and cloning of SNAC subfamily under drought [D]. Urumqi: Xinjiang Agricultural University, 2016. | |
23 | 张翔.水稻OsNAC45基因参与脱落酸和盐响应的功能研究[D].南宁:广西大学,2020. |
ZHANG X. Functional analysis of OsNAC45 in rice under ABA treatment and salt stress [D]. Nanning: Guangxi University, 2020. | |
24 | AL-ABDALLAT A M, ALI-SHEIKH-OMAR M A, ALNEMER L M. Overexpression of two AtNAC3-related genes improves drought and salt tolerance in tomato (Solanum lycopersicum L.) [J]. Plant Cell Tissue Organ Cult., 2015, 120(3):989-1001. |
25 | 李子义.刚毛柽柳NAC7基因的耐盐与抗旱功能研究[D].哈尔滨:东北林业大学, 2020. |
LI Z Y. Functional study on salt tolerance and drought resistance of NAC7 gene from Tamarix hispida [D]. Harbin: Northeast Forestry University, 2020. | |
26 | FANG Y, LIAO K, DU H, et al.. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice [J]. J. Exp. Bot., 2015, 66(21):6803-6817. |
27 | TRAN L S P. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter [J]. Plant Cell, 2004, 16(9):2481-2498. |
28 | DUVAL M, HSIEH T F, KIM S Y, et al.. Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain super family [J]. Plant Mol. Biol., 2002, 50(2):237-248. |
[1] | 郝需婷, 黄雅茹, 马迎宾, 张帅, 韩春霞, 庞嘉诚, 徐光甫, 郝惠忠, 刘雅婧. 乌兰布和沙漠固沙梭梭林生长季土壤水分动态研究[J]. 中国农业科技导报, 2023, 25(7): 187-196. |
[2] | 闫艺薇, 田洁. 大蒜NAC基因家族的鉴定与低温表达分析[J]. 中国农业科技导报, 2023, 25(4): 67-76. |
[3] | 张曼, 张进, 张新雨, 王国宁, 王省芬, 张艳. 陆地棉GhNAC1基因的克隆及抗黄萎病功能分析[J]. 中国农业科技导报, 2023, 25(10): 35-44. |
[4] | 程名, 朱莹, 王晓楠, 罗平, 陈勇, 郝转芳, 席章营. 玉米ZmSNAC13等位变异对抗旱性的调控研究[J]. 中国农业科技导报, 2022, 24(5): 24-31. |
[5] | 崔宏亮, 宋晓晓, 姚庆, 安万刚, 邢宝, 秦培友. 伊犁河谷不同藜麦品种对盐胁迫的生理响应及耐盐评价[J]. 中国农业科技导报, 2022, 24(5): 32-45. |
[6] | 吴志勇, 顾红, 程大伟, 李兰, 何莎莎, 李明, 陈锦永. 油菜素内酯调控植物根系发育机制研究进展[J]. 中国农业科技导报, 2022, 24(2): 68-76. |
[7] | 刘慧霞, 孙宗玖, 石宇堃, 武文超, 郑丽, 艾提剑. 准噶尔盆地梭梭沙质荒漠土壤有机碳分布特征的研究[J]. 中国农业科技导报, 2021, 23(11): 147-155. |
[8] | 罗平, 庞博, 崔进鑫, 于爽, 王晓楠, 程名, 陈勇, 高文伟, 郝转芳. 玉米SNAC转录因子的基因结构特征与逆境调控预测[J]. 中国农业科技导报, 2021, 23(10): 35-44. |
[9] | 黄雅茹1,李永华2*,辛智鸣1,马迎宾1,董雪1,李新乐1,段瑞兵1,罗凤敏1,边凯1. 乌兰布和沙漠人工梭梭夏季茎干液流变化特征及其与气象因子的关系[J]. 中国农业科技导报, 2020, 22(7): 155-165. |
[10] | 万东璞1,2,于卓1,吴燕民3,丁梦琦2,李金博2,周美亮2*. 花青素代谢调控植物彩叶研究进展[J]. 中国农业科技导报, 2020, 22(2): 30-38. |
[11] | 董洁,李鸽子,韩巧霞,谢迎新,王永华,冯伟,马冬云,王晨阳,郭天财,康国章*. 小麦TaAGPL1基因上游转录因子TabHLH39的分离及其功能研究[J]. 中国农业科技导报, 2020, 22(10): 18-26. |
[12] | 汪德州,莫小婷,张霞,徐妙云,张兰,赵军*,王磊*. 玉米转录因子ZmbHLH4基因的克隆及功能分析[J]. 中国农业科技导报, 2018, 20(12): 16-25. |
[13] | 赵彦朋1,梁伟1,王丹1,王玉美2,刘正杰1,崔宇鹏1,华金平1*. 植物油脂合成调控与遗传改良研究进展[J]. 中国农业科技导报, 2018, 20(1): 14-24. |
[14] | 孟强1§,姜奇彦2§,牛风娟2,孙现军2,胡正2,张辉2*. 盐胁迫下不同抗性野生大豆(Glycine soja) 生理生化性状比较分析[J]. 中国农业科技导报, 2017, 19(8): 25-32. |
[15] | 周志林1,2,唐君1,曹清河1,赵冬兰1,张安1. NaCl胁迫对甘薯植株体内K+、Na+和Cl-含量及生长的影响[J]. 中国农业科技导报, 2017, 19(4): 17-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||