中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (5): 201-211.DOI: 10.13304/j.nykjdb.2022.0740
• 生物制造 资源生态 • 上一篇
张昱(), 张洪波, 张瑜瑜, 陈丽娟, 赵明方, 夏云(
)
收稿日期:
2022-09-05
接受日期:
2022-12-15
出版日期:
2024-05-15
发布日期:
2024-05-14
通讯作者:
夏云
作者简介:
张昱 E-mail:zhangyu_0553@163.com;
基金资助:
Yu ZHANG(), Hongbo ZHANG, Yuyu ZHANG, Lijuan CHEN, Mingfang ZHAO, Yun XIA(
)
Received:
2022-09-05
Accepted:
2022-12-15
Online:
2024-05-15
Published:
2024-05-14
Contact:
Yun XIA
摘要:
为了解玫瑰秸秆与猪、牛粪污在不同总固体(total solid,TS)含量厌氧消化中理化性质与微生物群落的动态变化,在常温条件下设置3种TS含量(3%、5%、7%)处理,对产甲烷量及厌氧消化系统的效率和稳定性进行分析,并结合定量荧光原位杂交技术(fluorescence in situ hybridization,FISH)对关键微生物类群进行测定。结果表明,3%TS处理产甲烷量最高且延滞期短(20 d),以挥发性固体(volatile solid,VS)计,75 d累计产甲烷量262.80 mL·g-1 VS,比5%TS、7%TS处理分别高16.14%和23.86%。挥发性脂肪酸(volatile fatty acids, VFAs)在3种TS处理中均表现出先上升后降低的趋势。对厌氧消化系统中微生物菌群的分析表明,在3种TS处理下古菌群落中的甲烷八叠球菌目(Methanosarcinales)均为正常产气阶段(30~75 d)目水平下优势菌群,其中5%TS处理试验结束时最高丰度为77.46%;而细菌群落中脱硫弧菌目(Desulfovibrionales)为目水平下优势菌群,在75 d时,脱硫弧菌目的细菌丰度在3%TS、5%TS处理下相较于开始时(0 d)分别下降8.36%和1.24%,而7%TS处理上升1.68%。综上所述,3%TS处理为最优条件,具有最大产气量和最短的延滞期,微生物菌群的组成相对稳定高效,3%TS处理的厌氧消化系统可以有效地提高玫瑰秸秆厌氧消化性能。
中图分类号:
张昱, 张洪波, 张瑜瑜, 陈丽娟, 赵明方, 夏云. 玫瑰秸秆与牲畜粪污厌氧消化特性及微生物群落研究[J]. 中国农业科技导报, 2024, 26(5): 201-211.
Yu ZHANG, Hongbo ZHANG, Yuyu ZHANG, Lijuan CHEN, Mingfang ZHAO, Yun XIA. Study on Anaerobic Digestion of Rose Straw Inoculated with Livestock Manure and Its Microbial Community[J]. Journal of Agricultural Science and Technology, 2024, 26(5): 201-211.
参数 Parameter | 玫瑰秸秆 Rose straw | 猪粪、牛粪混合物 Pig manure and cow manure mixture |
---|---|---|
总固体含量 Total solid content/% | 30.35±1.26 | 4.66±0.32 |
挥发性固体含量 Volatile solid content/% | 97.19±0.63 | 82.40±0.51 |
碳氮比 C/N | 35.31±0.23 | 9.92±0.24 |
纤维素含量 Cellulose content/% | 31.62±1.12 | 11.37±0.73 |
半纤维素含量 Hemicellulose content/% | 29.32±1.45 | 16.34±0.87 |
木质素含量 Lignin content/% | 16.33±0.76 | 8.83±0.77 |
表1 玫瑰秸秆与接种物性质
Table 1 Physiochemical characteristics of rose straw and inoculum
参数 Parameter | 玫瑰秸秆 Rose straw | 猪粪、牛粪混合物 Pig manure and cow manure mixture |
---|---|---|
总固体含量 Total solid content/% | 30.35±1.26 | 4.66±0.32 |
挥发性固体含量 Volatile solid content/% | 97.19±0.63 | 82.40±0.51 |
碳氮比 C/N | 35.31±0.23 | 9.92±0.24 |
纤维素含量 Cellulose content/% | 31.62±1.12 | 11.37±0.73 |
半纤维素含量 Hemicellulose content/% | 29.32±1.45 | 16.34±0.87 |
木质素含量 Lignin content/% | 16.33±0.76 | 8.83±0.77 |
处理 Treatment | 接种物 Inoculum | 玫瑰 Rose | 水 Wate | 总重 Total weight |
---|---|---|---|---|
3%TS | 155.64 | 39.54 | 504.82 | 700 |
5%TS | 311.28 | 65.90 | 322.82 | 700 |
7%TS | 466.93 | 92.26 | 140.81 | 700 |
表2 厌氧消化试验配比 (g)
Table 2 Anaerobic digestion test ratio
处理 Treatment | 接种物 Inoculum | 玫瑰 Rose | 水 Wate | 总重 Total weight |
---|---|---|---|---|
3%TS | 155.64 | 39.54 | 504.82 | 700 |
5%TS | 311.28 | 65.90 | 322.82 | 700 |
7%TS | 466.93 | 92.26 | 140.81 | 700 |
探针 Probe | 目标微生物 Target | 序列 Sequence(5’-3’) | 甲酰胺含量 Formamid content/% | 参考文献 Reference |
---|---|---|---|---|
ARC915 | 古菌 Archaea | GTGCTCCCCCGCCAATTCCT | 35 | [ |
MB1174 | 甲烷杆菌目 Methanobacteriales | TACCGTCGTCCACTCCTTCCTC | 45 | [ |
MC1109 | 甲烷球菌科 Methanococcaceae | GCAACATAGGGCACGGGTCT | 45 | [ |
MX825 | 甲烷鬃毛菌属 Methanosaeta spp. | TCGCACCGTGGCCGACACCTAGC | 50 | [ |
MS1414 | 甲烷八叠球菌目 Methanosarcinales | CTCACCCATACCTCACTCGGG | 10 | [ |
HGC69A | 放线菌门 Actinobacteria | TATAGTTACCACCGCCGT | 25 | [ |
LGC354ABC | 厚壁菌门 Firmicutes | CGGAAGATTCCCTAC TGC | 35 | [ |
ALF968 | α-变形菌纲 Alphaproteobacteria | GGTAAGGTTCTGCGCGTT | 20 | [ |
BET42a | β-变形菌纲 Betaproteobacteria | GCCTTCCCACTTCGTTT | 35 | [ |
GAM42a | γ-变形菌纲 Gammaproteobacteria | GCCTTCCCACATCGTTT | 35 | [ |
SRB385 | 脱硫弧菌目 Desulfovibrionales | CGGCGTCGCTGCGTCAGG | 35 | [ |
BAC303 | 拟杆菌目 Bacteroidales | CCAATGTGGGGGACCTT | 0 | [ |
Fibr225 | 纤维杆菌属 Fibrobacter | AATCGGACGCAAGCTCATCCC | 20 | [ |
表3 研究中使用的16S rRNA 靶向寡核苷酸探针
Table 3 16S rRNA targeting oligonucleotide probes used in the study
探针 Probe | 目标微生物 Target | 序列 Sequence(5’-3’) | 甲酰胺含量 Formamid content/% | 参考文献 Reference |
---|---|---|---|---|
ARC915 | 古菌 Archaea | GTGCTCCCCCGCCAATTCCT | 35 | [ |
MB1174 | 甲烷杆菌目 Methanobacteriales | TACCGTCGTCCACTCCTTCCTC | 45 | [ |
MC1109 | 甲烷球菌科 Methanococcaceae | GCAACATAGGGCACGGGTCT | 45 | [ |
MX825 | 甲烷鬃毛菌属 Methanosaeta spp. | TCGCACCGTGGCCGACACCTAGC | 50 | [ |
MS1414 | 甲烷八叠球菌目 Methanosarcinales | CTCACCCATACCTCACTCGGG | 10 | [ |
HGC69A | 放线菌门 Actinobacteria | TATAGTTACCACCGCCGT | 25 | [ |
LGC354ABC | 厚壁菌门 Firmicutes | CGGAAGATTCCCTAC TGC | 35 | [ |
ALF968 | α-变形菌纲 Alphaproteobacteria | GGTAAGGTTCTGCGCGTT | 20 | [ |
BET42a | β-变形菌纲 Betaproteobacteria | GCCTTCCCACTTCGTTT | 35 | [ |
GAM42a | γ-变形菌纲 Gammaproteobacteria | GCCTTCCCACATCGTTT | 35 | [ |
SRB385 | 脱硫弧菌目 Desulfovibrionales | CGGCGTCGCTGCGTCAGG | 35 | [ |
BAC303 | 拟杆菌目 Bacteroidales | CCAATGTGGGGGACCTT | 0 | [ |
Fibr225 | 纤维杆菌属 Fibrobacter | AATCGGACGCAAGCTCATCCC | 20 | [ |
探针 Probe | 目标微生物群 Target | 0 d | 75 d | |||
---|---|---|---|---|---|---|
3%TS | 5%TS | 7%TS | ||||
HGC69A | 放线菌门 Actinobacteria | 4.95±1.67 | 6.94±2.69 b | 7.91±2.47 ab | 8.67±1.78 a | |
LGC354ABC | 厚壁菌门 Firmicutes | 37.73±5.12 | 40.14±2.06 a | 38.51±2.15 a | 38.68±3.15 a | |
ALF968 | α-变形菌纲 Alphaproteobacteria | 3.89±1.24 | 3.97±1.14 a | 4.15±1.81 a | 4.10±1.13 a | |
BET42a | β-变形菌纲 Betaproteobacteria | 1.17±0.58 | 1.88±0.71 c | 3.43±0.89 b | 4.80±0.94 a | |
GAM42a | γ-变形菌纲 Gammaproteobacteria | 1.27±0.25 | 1.30±0.53 b | 1.43±0.33 ab | 1.74±0.55 a | |
BAC303 | 拟杆菌目 Bacteroidales | 8.53±2.71 | 20.03±6.20 a | 19.41±5.24 a | 18.29±4.89 a | |
SRB385 | 脱硫弧菌目 Desulfovibrionales | 11.65±3.70 | 3.29±1.40 b | 10.41±1.70 a | 13.33±2.50 a | |
Fibr225 | 纤维杆菌属 Fibrobacter | 1.13±0.01 | 1.96±0.48 b | 3.71±1.17 a | 3.24±0.59 a |
表4 细菌群落相对丰度 (%)
Table 4 Relative abundance of bacterial communities
探针 Probe | 目标微生物群 Target | 0 d | 75 d | |||
---|---|---|---|---|---|---|
3%TS | 5%TS | 7%TS | ||||
HGC69A | 放线菌门 Actinobacteria | 4.95±1.67 | 6.94±2.69 b | 7.91±2.47 ab | 8.67±1.78 a | |
LGC354ABC | 厚壁菌门 Firmicutes | 37.73±5.12 | 40.14±2.06 a | 38.51±2.15 a | 38.68±3.15 a | |
ALF968 | α-变形菌纲 Alphaproteobacteria | 3.89±1.24 | 3.97±1.14 a | 4.15±1.81 a | 4.10±1.13 a | |
BET42a | β-变形菌纲 Betaproteobacteria | 1.17±0.58 | 1.88±0.71 c | 3.43±0.89 b | 4.80±0.94 a | |
GAM42a | γ-变形菌纲 Gammaproteobacteria | 1.27±0.25 | 1.30±0.53 b | 1.43±0.33 ab | 1.74±0.55 a | |
BAC303 | 拟杆菌目 Bacteroidales | 8.53±2.71 | 20.03±6.20 a | 19.41±5.24 a | 18.29±4.89 a | |
SRB385 | 脱硫弧菌目 Desulfovibrionales | 11.65±3.70 | 3.29±1.40 b | 10.41±1.70 a | 13.33±2.50 a | |
Fibr225 | 纤维杆菌属 Fibrobacter | 1.13±0.01 | 1.96±0.48 b | 3.71±1.17 a | 3.24±0.59 a |
图6 理化性质与关键微生物群落冗余分析注:蓝色线表示不同理化性质指标,红色线表示不同微生物群落指标。
Fig. 6 RDA of correlations between physicochemical properties and key microbial taxaNote: The blue line represents different physical and chemical indices, the red line represents different microbial taxa.
1 | 赵霞. 以玫瑰秸秆为原料厌氧发酵影响因素的研究[D]. 上海: 东华大学, 2018. |
ZHAO X. Study on the influencing factors of anaerobic fermentation by using rose stalk as substrate [D]. Shanghai: Donghua University, 2018. | |
2 | 舒晓婷. 搭乘RCEP快车 “云花”迎来发展新机遇[N]. 21世纪经济报道, 2022-03-10(012). |
3 | 中国园林网. 云南首个循环农业项目签约 花卉垃圾有望变废为宝还田[EB/OL]. (2019-11-20)[2022-09-01]. . |
4 | RAHMAN A, FARROK O, HAQUE M M. Environmental impact of renewable energy source based electrical power plants: solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic [J/OL]. Renewable Sustain. Energy Rev., 2022, 161: 112279 [2022-09-02]. . |
5 | SIKSNELYTE-BUTKIENE I, ZAVADSKAS E K, STREIMIKIENE D. Multi-criteria decision-making (MCDM) for the assessment of renewable energy technologies in a household: a review [J/OL]. Energies, 2020, 13(5): 1164 [2022-09-02]. . |
6 | YU Z, MA H, DEN BOER E, et al.. Effect of microwave/hydrothermal combined ionic liquid pretreatment on straw: rumen anaerobic fermentation and enzyme hydrolysis [J/OL]. Environ. Res., 2022, 205: 112453 [2022-09-02]. . |
7 | ZHU Q, LI X, LI G, et al.. Enhanced bioenergy production in rural areas: synthetic urine as a pre-treatment for dry anaerobic fermentation of wheat straw [J/OL]. J. Cleaner Production, 2020, 260: 121164 [2022-09-02]. . |
8 | 司祥. 氢氧化钠预处理对玫瑰秸秆厌氧发酵特性的影响[D]. 合肥: 安徽农业大学, 2017. |
SI X. Effect of sodium hydroxide pretreatment on process performance of anaerobic digestion of rose straw [D]. Hefei: Anhui Agricultural University, 2017. | |
9 | 李梦洁. 玫瑰秸秆厌氧发酵产沼气特性试验研究[D]. 上海: 东华大学, 2017. |
LI M J. Research on biogas anaerobic fermentation by using rose straw [D]. Shanghai: Donghua University, 2017. | |
10 | 刘士清, 张无敌, 尹芳. 沼气发酵实验教程[M]. 北京: 化学工业出版社, 2013: 9-12. |
11 | VAN SOEST P J, ROBERTSON J B, LEWIS B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition [J]. J. Dairy Sci., 1991, 74(10): 3583-3597. |
12 | 贺延龄. 废水的厌氧生物处理[M]. 北京: 中国轻工业出版社, 1998: 509-510. |
13 | 骆有斌, 戴剑波, 张乐, 等. 水质 氨氮的测定 纳氏试剂分光光度法(HJ 535—2009)中滤纸的预处理方法的研究[J]. 浙江化工, 2019, 50 (6): 52-54. |
LUO Y B, DAI J B, ZHANG L, et al.. The research on pretreatment method for filter paper in water quality determination of ammonia nitrogen determination by nessler's reagent dectrophotometry (HJ 535—2009) [J]. Zhejiang Chem. Ind., 2019, 50(6): 52-54 | |
14 | 李雪梅, 朱燕. 快速消解分光光度法测定污水化学需氧量[J]. 化学分析计量, 2018, 27 (3): 36-39. |
LI X M, ZHU Y. Determination of chemical oxygen demand in sewage by fast digestion-spectrophotometry [J]. Chem. Anal. Meterage, 2018, 27(3): 36-39. | |
15 | XIA Y, MASSÉ D I, MCALLISTER T A, et al.. In situ identification of keratin-hydrolyzing organisms in swine manure inoculated anaerobic digesters [J]. FEMS Microbiol. Ecol., 2011, 78(3): 451-462. |
16 | KONG Y H, XIA Y, SEVIOUR R, et al.. In situ identification of carboxymethyl cellulose-digesting bacteria in the rumen of cattle fed alfalfa or triticale [J]. FEMS Microbiol. Ecol., 2012, 80 (1): 159-167. |
17 | GREUTER D, LOY A, HORN M, et al.. ProbeBase—an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016 [J]. Nucl. Acids Res., 2016, 44 (D1): D586-D589. |
18 | TUNCAY S, AKCAKAYA M, ICGEN B. Ozonation of sewage sludge prior to anaerobic digestion led to Methanosaeta dominated biomethanation [J/OL]. Fuel, 2022, 313: 122690 [2022-09-02]. . |
19 | LI J, HAO X, VAN LOOSDRECHT M C, et al.. Effect of humic acids on batch anaerobic digestion of excess sludge [J]. Water Res., 2019, 155: 431-443. |
20 | TEIXEIRA M R, GUARDA E C, FREITAS E B, et al.. Valorization of raw brewers’ spent grain through the production of volatile fatty acids [J]. New Biotechnol., 2020, 57: 4-10. |
21 | GAGLIANO M, BRAGUGLIA C, GIANICO A, et al.. Thermophilic anaerobic digestion of thermal pretreated sludge: role of microbial community structure and correlation with process performances [J]. Water Res., 2015, 68: 498-509. |
22 | WANG T, ZHANG D, DAI L, et al.. Effects of metal nanoparticles on methane production from waste-activated sludge and microorganism community shift in anaerobic granular sludge [J]. Sci. Rep., 2016, 6(1): 1-10. |
23 | KHAN M A, ASHAR N N, GANESH A G, et al.. Bacterial community structure in anaerobic digesters of a full scale municipal wastewater treatment plant-case study of Dubai, United Arab Emirates [J]. J. Sustain. Dev. Energy Water Environ. Syst., 2019, 7(3): 385-398. |
24 | MADDEN P, AL-RAEI A M, ENRIGHT A M, et al.. Effect of sulfate on low-temperature anaerobic digestion [J/OL]. Front. Microbiol., 2014, 5: 376 [2022-09-02]. . |
25 | RAMM J, LUPU A, HADAS O, et al.. A CARD-FISH protocol for the identification and enumeration of cyanobacterial akinetes in lake sediments [J]. FEMS Microbiol. Ecol., 2012, 82 (1): 23-36. |
26 | 任海伟, 姚兴泉, 李金平, 等. TS对青贮玉米秸秆与牛粪混合消化产气特性影响[J]. 太阳能学报, 2019, 40(4): 1085-1092. |
REN H W, YAO X Q, LI J P, et al.. Effect of total solid concentration on biogas production performance during anaerobic co-digestion of maize silages and cattle manure [J]. Acta Energiae Solaris Sin., 2019, 40(4): 1085-1092. | |
27 | WANG H, LI J, ZHAO Y, et al.. Establishing practical strategies to run high loading corn stover anaerobic digestion: methane production performance and microbial responses [J/OL]. Bioresour. Technol., 2020, 310: 123364 [2022-09-02]. . |
28 | ABBASSI-GUENDOUZ A, BROCKMANN D, TRABLY E, et al.. Total solids content drives high solid anaerobic digestion via mass transfer limitation [J]. Bioresour. Technol., 2012, 111: 55-61. |
29 | DENG Y, LI W, RUAN W, et al.. Applying EEM-PARAFAC analysis with quantitative real-time pcr to monitor methanogenic activity of high-solid anaerobic digestion of rice straw [J/OL]. Front. Microbiol., 2021, 12: 600126 [2022-09-02]. . |
30 | KONG D, ZHANG K, LIANG J, et al.. Methanogenic community during the anaerobic digestion of different substrates and organic loading rates [J/OL]. Microbiol. Open, 2019, 8(5): e00709 [2022-09-02]. . |
31 | FITZGERALD J A, WALL D M, JACKSON S A, et al.. Trace element supplementation is associated with increases in fermenting bacteria in biogas mono-digestion of grass silage [J]. Renew. Energy, 2019, 138: 980-986. |
32 | NGUYEN L N, NGUYEN A Q, JOHIR M H, et al.. Application of rumen and anaerobic sludge microbes for bio harvesting from lignocellulosic biomass [J]. Chemosphere, 2019, 228: 702-708. |
33 | AHMED W, RODRÍGUEZ J. Modelling sulfate reduction in anaerobic digestion: complexity evaluation and parameter calibration [J]. Water Res., 2018, 130: 255-262. |
34 | HUANG H, BISWAL B K, CHEN G H, et al.. Sulfidogenic anaerobic digestion of sulfate-laden waste activated sludge: evaluation on reactor performance and dynamics of microbial community [J/OL]. Bioresour. Technol., 2020, 297: 122396 [2022-09-02]. . |
[1] | 周旭东, 韩天华, 申云鑫, 施竹凤, 贺彪, 杨明英, 裴卫华, 何永宏, 杨佩文. 4种轮作模式下长期连作烟田土壤微生态的响应特征[J]. 中国农业科技导报, 2024, 26(3): 174-187. |
[2] | 张二豪, 刘盼盼, 何萍, 简阅, 徐雨婷, 陈诚欣, 禄亚洲, 兰小中, 索朗桑姆. 甘青青兰根际土壤理化性质及微生物群落结构特征分析[J]. 中国农业科技导报, 2024, 26(3): 201-213. |
[3] | 刘威, 赵园园, 陈小龙, 史宏志. 土壤含水率对豫中植烟土壤微生物群落多样性及氮循环功能基因丰度的影响[J]. 中国农业科技导报, 2024, 26(1): 214-225. |
[4] | 李慧君, 张伟健, 吴伟健, 李高洋, 陈艺杰, 黄枫城, 黄永相, 蔺中, 甄珍. 种植海水稻对滨海盐土化学性质和微生物群落影响[J]. 中国农业科技导报, 2023, 25(9): 147-156. |
[5] | 李峰, 殷丛培, 殷冉, 王凡, 韩永亮, 杨志敏, 刘建成. 燕麦根际土壤细菌多样性对盐胁迫的响应[J]. 中国农业科技导报, 2023, 25(1): 153-165. |
[6] | 孟艳, 汪微, 葸全财, 李屹, 陈来生, 杜中平, 韩睿. 沼液预处理对蔬菜秸秆厌氧消化性能的影响[J]. 中国农业科技导报, 2022, 24(9): 188-196. |
[7] | 王莉莉, 殷丛培, 李峰, 杨志敏, 刘芳明, 林柏松, 刘晓静, 刘海军, 孙靖, 单东东, 崔江慧, 张振清. 马铃薯根际土壤细菌群落结构及其对干旱胁迫的响应[J]. 中国农业科技导报, 2022, 24(6): 58-69. |
[8] | 孙沉沉, 马兰, 吴永红, 俞元春. 吲哚乙酸对周丛生物去除水体中氮磷的影响及机理[J]. 中国农业科技导报, 2022, 24(3): 204-209. |
[9] | 苏迪,鲍恩俣,王进. 适钙植物报春苣苔根际土壤微生物群落结构[J]. 中国农业科技导报, 2020, 22(10): 149-156. |
[10] | 高林1,王新伟1,申国明1,田峰2,陈前锋2,张明发2,张成省1*. 不同连作年限植烟土壤细菌和真菌群落结构差异[J]. 中国农业科技导报, 2019, 21(8): 147-152. |
[11] | 王阳. 秸秆厌氧消化领域发展态势分析[J]. 中国农业科技导报, 2017, 19(4): 1-9. |
[12] | 尹福斌1,季超2, 董红敏1*,陶秀萍1,陈永杏1. 畜禽粪便中残留抗生素对厌氧消化影响的研究进展[J]. 中国农业科技导报, 2016, 18(5): 171-177. |
[13] | 张明艳1,张继光1*,申国明1,张忠锋1,蔡宪杰2,薛林3. 烟田土壤微生物群落结构及功能微生物的研究现状与展望[J]. , 2014, 16(5): 115-122. |
[14] | 李鑫鑫1,李晓晖1,李亮1,平淑珍1,陈明1,张维1,燕永亮1,赵新宇2,陆伟1. 转基因作物对于土壤微生物的影响[J]. , 2010, 12(6): 24-27. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||