中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (6): 1-15.DOI: 10.13304/j.nykjdb.2024.0002

• 农业创新论坛 •    

联邦学习在智慧农业系统中的应用研究综述

汤敏睿1(), 何亮1,2(), 顾生浩3,4, 杨婉霞5, 岳瑞君1, 谭艺1, 王磊1, 冯腾飞1   

  1. 1.新疆大学计算机科学与技术学院,乌鲁木齐 830017
    2.清华大学电子工程系,北京信息科学与技术国家研究中心,北京 100084
    3.北京市农林科学院信息技术研究中心,数字植物北京市重点实验室,北京 100097
    4.国家农业信息化工程技术研究中心,北京 100097
    5.甘肃农业大学机电工程学院,兰州 730070
  • 收稿日期:2024-01-03 接受日期:2024-05-05 出版日期:2025-06-15 发布日期:2025-06-23
  • 通讯作者: 何亮
  • 作者简介:汤敏睿 E-mail: tangminrui@stu.xju.edu.cn
  • 基金资助:
    新一代人工智能国家科技重大专项(2022ZD0115801)

A Review of Application of Federated Learning in Smart Agriculture Systems

Minrui TANG1(), Liang HE1,2(), Shenghao GU3,4, Wanxia YANG5, Ruijun YUE1, Yi TAN1, Lei WANG1, Tengfei FENG1   

  1. 1.School of Computer Science and Technology,Xinjiang University,Urumqi 830017,China
    2.Beijing National Research Center for Information Science and Technology,Department of Electronic Engineering,Tsinghua University,Beijing 100084,China
    3.Beijing Research Center for Information Technology in Agriculture,Beijing Key Laboratory of Digital Plant,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100097,China
    4.National Engineering Research Center for Information Technology in Agriculture,Beijing 100097,China
    5.Mechanical and Electrical Engineering College,Gansu Agricultural University,Lanzhou 730070,China
  • Received:2024-01-03 Accepted:2024-05-05 Online:2025-06-15 Published:2025-06-23
  • Contact: Liang HE

摘要:

随着信息化的发展,农情数据采集、处理、分析和应用已成为智慧农业的第一驱动力。在传统智慧农业管理系统中,通常需要将农业数据集中到中心服务器上进行分析和模型训练,这种方式存在数据泄露的风险。关键农业隐私数据泄漏严重影响到农户和农业机构的利益,因此很多农户和机构会谨慎处理原始数据的共享问题。针对这一问题,联邦学习允许不同农业机构、农场和农业企业在只共享加密模型的条件下完成农事决策模型训练,降低了农业隐私数据泄漏风险,保护了数据提供方的合理权益。介绍了联邦学习技术在智慧农业领域中的理论发展、技术创新和应用实践,并根据智慧农业系统的发展趋势提出基于联邦学习的智慧农业系统的设计建议。为相关领域研究者和实践者提供了参考,对推动农业数据科学的进步、保障农业数据安全和提升农业智能化水平有理论参考价值和实践指导意义。

关键词: 联邦学习, 农事决策, 隐私数据, 智慧农业

Abstract:

As information technology advances, the collection, processing, analysis and application of agricultural data have become the primary driving force of smart agriculture. In traditional smart agricultural management systems, it is usually required to centralize agricultural data on a central server for analysis and model training, which often poses the risk of data leakage. The leakage of key agricultural privacy data seriously affects the interests of farmers and agricultural institutions, so many the farmers and institutions will carefully handle the issue of sharing original data. To address this issue, federated learning allows different agricultural institutions, farms and agricultural enterprises to complete the training of farming decision models under the condition of only sharing encrypted models, reducing the risk of agricultural privacy data leakage and protecting the legitimate rights and interests of data providers. The theoretical development, technological innovation and practical application of federated learning technology in the field of smart agriculture were introduced. Based on the development trend of smart agriculture systems, it proposed design suggestions for a smart agriculture system based on federated learning. This paper provided references for researchers and practitioners in related fields, offering theoretical value and practical guidance for advancing agricultural data science, ensuring agricultural data security and enhancing the level of agricultural intelligence.

Key words: federated learning, agricultural decision-making, privacy data, smart agriculture

中图分类号: