[1] |
刘玉飞,庞丹丹,蒋会兵,等.66份云南茶树种质生化成分的分析及特异种质筛选[J].南方农业学报,2021,52(3):693-699.
|
|
LIU Y F, PANG D D, JIANG H B, et al.. Biochemical component analysis and specific resource selection of 66 accessions of tea germplasms in Yunnan [J]. J. South. Agric.,2021, 52(3): 693-699.
|
[2] |
杨希,李玉川,罗倩倩,等.云南高山普洱茶渥堆过程滋味和汤色品质的动态变化研究[J].食品安全质量检测学报,2023,14(7):218-225.
|
|
YANG X, LI Y C, LUO Q Q, et al.. Dynamic changes of taste and brewing color quality during the pile-fermentation process of Yunnan alpine Puerh tea [J]. J. Food Saf. Qual., 2023,14(7): 218-225.
|
[3] |
冷彦,王静,吴文斗,等.高压脉冲电场预处理普洱熟茶对SD大鼠体内活性氧(ROS)水平的影响[J].西南农业学报,2021,34(6):1208-1214.
|
|
LENG Y, WANG J, WU W D, et al.. Effect of pre-treatment of Pu’er tea by high voltage pulse electric field on reactive oxygen(ROS) levels in SD mice [J].Southwest China J. Agric. Sci., 2021,34(6):1208-1214.
|
[4] |
朱智惟,单建华,余贤海,等.基于YOLOv5s的番茄采摘机器人目标检测技术[J].传感器与微系统,2023,42(6):129-132.
|
|
ZHU Z W, SHAN J H, YU X H,et al..Target detection technology of tomato picking robot based on YOLOv5s [J].Transducer Microsyst. Technol., 2023,42(6):129-132.
|
[5] |
刘思幸,李爽,缪宏,等.基于YOLOv3不同场景辣椒采摘机器人识别定位研究[J].农机化研究, 2024, 46(2): 38-43.
|
|
LIU S X, LI S, MIAO H,et al..Research on recognition and location of pepper picking robot based on YOLOv3 in different scenarios [J]. J. Agric. Mech. Res., 2024, 46(2): 38-43.
|
[6] |
金寿祥,周宏平,姜洪喆,等.采摘机器人视觉系统研究进展[J].江苏农业学报, 2023, 39(2): 582-595.
|
|
JIN S X, ZHOU H P, JIANG H Z, et al.. Research progress on visual system of picking robot [J]. Jiangsu J. Agric. Sci., 2023,39(2): 582-595.
|
[7] |
汪方斌,金蓄,朱达荣,等.基于RGB颜色空间的红外偏振人脸识别[J].激光与光电子学进展, 2022, 59(12): 535-543.
|
|
WANG F B, JIN X, ZHU D R, et al.. Infrared polarized face recognition based on RGB color space [J]. Laser Optoelectron. Prog., 2022, 59(12): 535-543.
|
[8] |
于明,李若曦,阎刚,等.基于颜色掩膜网络和自注意力机制的叶片病害识别方法[J].农业机械学报,2022,53(8):337-344.
|
|
YU M, LI R X, YAN G, et al.. Crop diseases recognition method via fusion color mask and self-attention mechanism [J].Trans. Chin. Soc. Agric. Mach., 2022, 53(8):337-344.
|
[9] |
肖冬娜,周忠发,尹林江,等.融合颜色指数与空间结构的喀斯特山地火龙果单株识别[J].激光与光电子学进展,2022,59(10):479-493.
|
|
XIAO D N, ZHOU Z F, YIN L J, et al.. Identification of single plant of Karst Mountain pitaya by fusion of color index and spatial structure [J]. Laser Optoelectron. Prog., 2022, 59(10): 479-493.
|
[10] |
王梦妮,顾寄南,王化佳,等.基于改进YOLOv5s模型的茶叶嫩芽识别方法[J].农业工程学报,2023,39(12):150-157.
|
|
WANG M N, GU J N, WANG H J, et al.. Method for identifying tea buds based on improved YOLOv5s model [J].Trans. Chin. Soc. Agric. Eng., 2023, 39(12):150-157.
|
[11] |
YAN L J, WU K H, LIN J, et al.. Identification and picking point positioning of tender tea shoots based on MR3P-TS model [J/OL]. Front. Plant Sci., 2022, 13:962391 [2023-12-26]. .
|
[12] |
ZHANG S H, YANG H K, YANG C H, et al.. Edge device detection of tea leaves with one bud and two leaves based on ShuffleNetv2-YOLOv5-lite-E [J/OL]. Agronomy, 2023, 13(2): 577 [2023-12-26]. .
|
[13] |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023:7464-7475.
|
[14] |
CHEN J R, KAO S H, HE H, et al.. Run, don’t walk:chasing higher FLOPS for faster neural networks [C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023:12021-12031.
|
[15] |
ZHU L, WANG X J, KE Z H, et al.. BiFormer:vision transformer with bi-level routing attention [C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023:10323-10333.
|
[16] |
杨世忠,王瑞彬,高升,等.基于YOLOv5的草莓轻量化网络检测模型[J].国外电子测量技术,2023,42(4):86-95.
|
|
YANG S Z, WANG R B, GAO S,et al..YOLOv5-based lightweight network model for strawberry detection [J].Foreign Electron. Meas. Technol., 2023, 42(4): 86-95.
|
[17] |
刘裕,赵保平,张述嘉,等.基于多尺度双路注意力胶囊网络在水稻害虫识别中的应用[J].西南农业学报,2022,35(7):1573-1581.
|
|
LIU Y, ZHAO B P, ZHANG S J,et al..Application for recognition of rice pest based on multi-scale dual-path attention capsule network [J].Southwest China J.Agric.Sci.,2022,35(7):1573-1581.
|
[18] |
朱旭,马淏,姬江涛,等.基于Faster R-CNN的蓝莓冠层果实检测识别分析[J].南方农业学报,2020,51(6):1493-1501.
|
|
ZHU X, MA H, JI J T, et al.. Detecting and identifying blueberry canopy fruits based on Faster R-CNN [J]. J. South.Agric., 2020, 51(6):1493-1501.
|
[19] |
国家质量监督检验检疫总局,中国国家标准化管理委员会. 地理标志产品 普洱茶: [S].北京:中国标准出版社,2008.
|
[20] |
杨断利,王永胜,陈辉,等.复杂环境下蛋鸡个体识别与自动计数系统研究[J].农业机械学报,2023,54(6):297-306.
|
|
YANG D L, WANG Y S, CHEN H,et al..Individual identification and automatic counting system of laying hens under complex environment [J]. Trans. Chin. Soc. Agric. Mach.,2023, 54(6): 297-306.
|
[21] |
WU D L, JIANG S, ZHAO E L, et al.. Detection of Camellia oleifera fruit in complex scenes by using YOLOv7 and data augmentation [J/OL]. Appl. Sci., 2022, 12(22): 11318 [2023-12-26]. .
|
[22] |
CHEN Z, LIU C, FILARETOV V F, et al.. Multi-scale ship detection algorithm based on YOLOv7 for complex scene SAR images [J/OL]. Remote Sens., 2023, 15(8): 2071 [2023-12-26]. .
|
[23] |
ZHANG C, HU Z H, XU L W, et al.. A YOLOv7 incorporating the Adan optimizer based corn pests identification method [J/OL].Front. Plant Sci.,2023,14:1174556 [2023-12-26]. .
|
[24] |
卢俊哲,张铖怡,刘世鹏,等.面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO[J].计算机工程与应用,2023,59(15):318-328.
|
|
LU J Z, ZHANG C Y, LIU S P, et al.. Lightweight DCN-YOLO for strip surface defect detection in complex environments [J].Comput. Eng. Appl., 2023, 59(15): 318-328.
|
[25] |
刘雄彪,杨贤昭,陈洋,等.基于CIoU改进边界框损失函数的目标检测方法[J].液晶与显示,2023,38(5):656-665.
|
|
LIU X B, YANG X Z, CHEN Y, et al.. Object detection method based on CIoU improved bounding box loss function [J]. Chin. J. Liq. Cryst. Disp., 2023, 38(5): 656-665.
|
[26] |
彭红星,徐慧明,高宗梅,等.基于改进YOLOF模型的田间农作物害虫检测方法[J].农业机械学报,2023,54(4):285-294, 303.
|
|
PENG H X, XU H M, GAO Z M, et al.. Insect pest detection of field crops based on improved YOLOF model [J]. Trans. Chin.Soc. Agric. Mach., 2023, 54(4):285-294, 303.
|
[27] |
张旭辉,闫建星,麻兵,等.基于改进YOLOv5s的护帮板异常检测方法研究[J].工程设计学报,2022,29(6):665-675.
|
|
ZHANG X H, YAN J X, MA B, et al.. Research on abnormal detection method of side guard based on improved YOLOv5s [J]. Chin. J. Eng. Des., 2022, 29(6):665-675.
|
[28] |
王琳毅,白静,李文静,等.YOLO系列目标检测算法研究进展[J].计算机工程与应用,2023,59(14):15-29.
|
|
WANG L Y, BAI J, LI W J, et al.. Research progress of YOLO series target detection algorithms [J]. Comput. Eng. Appl., 2023, 59(14): 15-29.
|
[29] |
高新阳,魏晟,温志庆,等.改进YOLOv5轻量级网络的柑橘检测方法[J].计算机工程与应用, 2023, 59(11): 212-221.
|
|
GAO X Y, WEI S, WEN Z Q, et al.. Citrus detection method based on improved YOLOv5 lightweight network [J]. Comput. Eng. Appl., 2023, 59(11):212-221.
|
[30] |
HUANG L, HUANG W Z, GONG H, et al.. PEFNet:position enhancement faster network for object detection in roadside perception system [J]. IEEE Access, 2881, 11: 73007-73023.
|
[31] |
YANG Z J, FENG H L, RUAN Y P, et al.. Tea tree pest detection algorithm based on improved Yolov7-tiny [J/OL]. Agriculture, 2023,13(5):1031 [2023-12-26]. .
|