中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (7): 20-29.DOI: 10.13304/j.nykjdb.2024.0155
王可欣1,2,3(), 董月华1, 何炫颐1, 杨怀玉1,2(
)
收稿日期:
2024-03-04
接受日期:
2024-06-27
出版日期:
2025-07-15
发布日期:
2025-07-11
通讯作者:
杨怀玉
作者简介:
王可欣 E-mail:307372552@qq.com;
基金资助:
Kexin WANG1,2,3(), Yuehua DONG1, Xuanyi HE1, Huaiyu YANG1,2(
)
Received:
2024-03-04
Accepted:
2024-06-27
Online:
2025-07-15
Published:
2025-07-11
Contact:
Huaiyu YANG
摘要:
赖氨酸不仅是人类和动物的第一必需氨基酸,而且在维持植物体内氨基酸代谢平衡和生长发育、提高抗逆性与营养品质方面发挥着重要作用。植物赖氨酸合成代谢与吸收运输会直接或间接地影响植株赖氨酸含量及其功能。目前,对植物赖氨酸代谢调控通路的解析已比较清晰,但赖氨酸对植物产生积极影响的分子机理尚不清楚。系统梳理了近些年赖氨酸吸收及其合成代谢途径,重点阐述了赖氨酸吸收与代谢关键基因在植株抗逆性、抗病性、种子萌发和提高作物品质等方面的作用及可能调控机制,以及赖氨酸作物育种策略的研究进展,以期为揭示谷类作物赖氨酸的吸收与代谢调控机制、提高植物抗逆能力和营养品质以及改良培育富赖氨酸作物新品种提供理论依据。
中图分类号:
王可欣, 董月华, 何炫颐, 杨怀玉. 植物赖氨酸吸收与代谢调控及对植物的影响[J]. 中国农业科技导报, 2025, 27(7): 20-29.
Kexin WANG, Yuehua DONG, Xuanyi HE, Huaiyu YANG. Regulation of Lysine Uptake and Metabolism in Plants and Its Effects on Plants[J]. Journal of Agricultural Science and Technology, 2025, 27(7): 20-29.
名称 Name | 来源 Origin | 转运底物 Substrate | 亚细胞定位 Subcellular localization | 表达部位 Expression site | 参考文献 Reference | |
---|---|---|---|---|---|---|
LHT | AtLHT1 | 拟南芥 Arabidopsis | 赖氨酸、组氨酸 Lysine, histidine | 质膜 Plasma membrane | 幼叶、花、角果、根表皮 Young leaf, flower, silique, root epidermis | |
OsLHT1 | 水稻 Rice | 谷氨酸、天冬氨酸、天冬酰胺、甘氨酸、组氨酸、脯氨酸、丝氨酸、赖氨酸、谷氨酰胺、丙氨酸 Glutamate acid, aspartate, asparagine, glycine, histidine, proline, serine, lysine, glutamine, alanine | 质膜 Plasma membrane | 根、茎、旗叶、旗叶鞘、幼穗 Root, stem, flag leaf, flag leaf sheath, young spike | ||
NtLHT22 | 烟草 Tobacco | 天冬氨酸、丝氨酸、苯丙氨酸、赖氨酸、精氨酸、蛋氨酸 Aspartate, serine, phenylalanine, lysine, arginine, methionine | 质膜 Plasma membrane | 根、茎、花、腋芽 Root, stem, flower, axillary bud | ||
AAP | OsAAP1# | 水稻 Rice | 精氨酸、赖氨酸 Arginine, lysine | 质膜 Plasma membrane | 种子 Seed | |
OsAAP3 | 水稻 Rice | 精氨酸、赖氨酸、丙氨酸、亮氨酸和蛋氨酸 Arginine, lysine, alanine, leucine and methionine | 质膜 Plasma membrane | 整个植物(根、花序) Entire plant (root, inflorescence) | ||
OsAAP5 | 水稻 Rice | 精氨酸、赖氨酸 Arginine, lysine | 质膜 Plasma membrane | 根、分蘖基部、茎、叶鞘、幼叶、幼穗 Root, tiller basis, stem, leaf sheath, young leaf, young spike | ||
AtAAP3 | 拟南芥 Arabidopsis | 精氨酸、赖氨酸 Arginine, lysine | 质膜 Plasma membrane | 根 Root | ||
AtAAP5 | 拟南芥 Arabidopsis | 精氨酸、赖氨酸 Arginine, lysine | 质膜 Plasma membrane | 叶、茎、花 Leaf, stem, flower | ||
AtAAP6 | 拟南芥 Arabidopsis | 亮氨酸、赖氨酸、天冬氨酸、苯丙氨酸 Leucine, lysine, aspartate, phenylalanine | 质膜 Plasma membrane | 根、叶、茎 Root, leaf, stem | ||
CAT | AtCAT1 | 拟南芥 Arabidopsis | 谷氨酸、组氨酸、赖氨酸、精氨酸、丙氨酸 Glutamate, histidine, lysine, arginine, alanine | |||
CsCAT1## | 中华山茶 Camellia | 谷氨酸、茶氨酸、谷氨酰胺、赖氨酸## Glutamic acid, theanine, glutamine, lysine## | 根、茎 Root, stem |
表1 植物中可能具有转运赖氨酸功能的转运体
Table 1 Possible transporter with lysine transport function in plants
名称 Name | 来源 Origin | 转运底物 Substrate | 亚细胞定位 Subcellular localization | 表达部位 Expression site | 参考文献 Reference | |
---|---|---|---|---|---|---|
LHT | AtLHT1 | 拟南芥 Arabidopsis | 赖氨酸、组氨酸 Lysine, histidine | 质膜 Plasma membrane | 幼叶、花、角果、根表皮 Young leaf, flower, silique, root epidermis | |
OsLHT1 | 水稻 Rice | 谷氨酸、天冬氨酸、天冬酰胺、甘氨酸、组氨酸、脯氨酸、丝氨酸、赖氨酸、谷氨酰胺、丙氨酸 Glutamate acid, aspartate, asparagine, glycine, histidine, proline, serine, lysine, glutamine, alanine | 质膜 Plasma membrane | 根、茎、旗叶、旗叶鞘、幼穗 Root, stem, flag leaf, flag leaf sheath, young spike | ||
NtLHT22 | 烟草 Tobacco | 天冬氨酸、丝氨酸、苯丙氨酸、赖氨酸、精氨酸、蛋氨酸 Aspartate, serine, phenylalanine, lysine, arginine, methionine | 质膜 Plasma membrane | 根、茎、花、腋芽 Root, stem, flower, axillary bud | ||
AAP | OsAAP1# | 水稻 Rice | 精氨酸、赖氨酸 Arginine, lysine | 质膜 Plasma membrane | 种子 Seed | |
OsAAP3 | 水稻 Rice | 精氨酸、赖氨酸、丙氨酸、亮氨酸和蛋氨酸 Arginine, lysine, alanine, leucine and methionine | 质膜 Plasma membrane | 整个植物(根、花序) Entire plant (root, inflorescence) | ||
OsAAP5 | 水稻 Rice | 精氨酸、赖氨酸 Arginine, lysine | 质膜 Plasma membrane | 根、分蘖基部、茎、叶鞘、幼叶、幼穗 Root, tiller basis, stem, leaf sheath, young leaf, young spike | ||
AtAAP3 | 拟南芥 Arabidopsis | 精氨酸、赖氨酸 Arginine, lysine | 质膜 Plasma membrane | 根 Root | ||
AtAAP5 | 拟南芥 Arabidopsis | 精氨酸、赖氨酸 Arginine, lysine | 质膜 Plasma membrane | 叶、茎、花 Leaf, stem, flower | ||
AtAAP6 | 拟南芥 Arabidopsis | 亮氨酸、赖氨酸、天冬氨酸、苯丙氨酸 Leucine, lysine, aspartate, phenylalanine | 质膜 Plasma membrane | 根、叶、茎 Root, leaf, stem | ||
CAT | AtCAT1 | 拟南芥 Arabidopsis | 谷氨酸、组氨酸、赖氨酸、精氨酸、丙氨酸 Glutamate, histidine, lysine, arginine, alanine | |||
CsCAT1## | 中华山茶 Camellia | 谷氨酸、茶氨酸、谷氨酰胺、赖氨酸## Glutamic acid, theanine, glutamine, lysine## | 根、茎 Root, stem |
代谢途径 Metabolism pathway | 关键酶 Key enzyme | 缩写 Abbreviation | 分类 Classification | 底物 Substrate | 产物 Product | 参考文献 Reference | |
---|---|---|---|---|---|---|---|
合成途径 Synthetic pathway | 天冬氨酸途径 Aspartate pathway | 天冬氨酸激酶 Aspartokinase | AK | 转移酶 Transferase | 天冬氨酸 Aspartic acid | β-天冬氨酰磷酸 β-aspartyl phosphate | |
天冬氨酸半醛脱氢酶 Aspartate semialdehyde dehydrogenase | ASDH | 氧化还原酶 Oxidoreductase | β-天冬氨酰磷酸 β-aspartyl phosphate | 天冬氨酸半醛 Aspartate semialdehyde | |||
二氢吡啶二羧酸合酶 Dihydrodipicolinate synthase | DHDPS | 裂合酶 Lyase | 天冬氨酸半醛 Aspartate semialdehyde | 二氢吡啶二羧酸 Dihydrodipicolinic acid | |||
分解途径 Decomposition pathway | 糖胺途径 Glycosamine pathway | 赖氨酸酮戊二酸还原酶 Lysine-ketoglutarate reductase | LKR | 氧化还原酶 Oxidoreductase | 赖氨酸 Lysine | 酵母氨酸 Saccharopine | |
糖苷脱氢酶 Saccharopine dehydrogenase | SDH | 氧化还原酶 Oxidoreductase | 酵母氨酸 Saccharopine | 氨基己二酸半醛 Aminoadipic acid semialdehyde | |||
氨基己二酸半醛脱氢酶Aminoadipic acid semialdehyde dehydrogenase | AASADH | 氧化还原酶 Oxidoreductase | 氨基己二酸半醛 Aminoadipic acid semialdehyde | 氨基己二酸 Aminoadipic acid | |||
氨基己二酸氨基转移酶 Aminoadipic acid semialdehyde dehydrogenase | AAA | 转移酶 Transferase | 氨基己二酸 Aminoadipic acid | 酮己二酸 Ketoadipate | |||
水杨酸途径 Salicylic acid pathway | AGD2样防御反应蛋白1 AGD2-like defense response protein1 | ALD1 | 转移酶 Transferase | 赖氨酸 Lysine | Ε-氨基-α-酮己酸 ε-amino-α-ketocaproic acid | ||
SAR-deficient 4 | SARD4 | 氧化还原酶 Oxidoreductase | 1,2脱氢哌酸/2,3脱氢哌酸 1,2-DP/2,3-DP | 哌可酸 Pipecolic acid | |||
黄素单氧化酶1 Flavin-dependent monooxygenase1 | FMO1 | 氧化还原酶 Oxidoreductase | 哌可酸 Pipecolic acid | N-羟基哌啶酸 N-hydroxypipecolic acid | |||
戊二胺途径 Pentanediamine pathway | 赖氨酸脱羧酶 Lysine decarboxylase | LDC | 裂合酶 Lyase | 赖氨酸 Lysine | 戊二胺 Cadaverine |
表2 赖氨酸代谢关键酶
Table 2 Key enzymes for lysine metabolism
代谢途径 Metabolism pathway | 关键酶 Key enzyme | 缩写 Abbreviation | 分类 Classification | 底物 Substrate | 产物 Product | 参考文献 Reference | |
---|---|---|---|---|---|---|---|
合成途径 Synthetic pathway | 天冬氨酸途径 Aspartate pathway | 天冬氨酸激酶 Aspartokinase | AK | 转移酶 Transferase | 天冬氨酸 Aspartic acid | β-天冬氨酰磷酸 β-aspartyl phosphate | |
天冬氨酸半醛脱氢酶 Aspartate semialdehyde dehydrogenase | ASDH | 氧化还原酶 Oxidoreductase | β-天冬氨酰磷酸 β-aspartyl phosphate | 天冬氨酸半醛 Aspartate semialdehyde | |||
二氢吡啶二羧酸合酶 Dihydrodipicolinate synthase | DHDPS | 裂合酶 Lyase | 天冬氨酸半醛 Aspartate semialdehyde | 二氢吡啶二羧酸 Dihydrodipicolinic acid | |||
分解途径 Decomposition pathway | 糖胺途径 Glycosamine pathway | 赖氨酸酮戊二酸还原酶 Lysine-ketoglutarate reductase | LKR | 氧化还原酶 Oxidoreductase | 赖氨酸 Lysine | 酵母氨酸 Saccharopine | |
糖苷脱氢酶 Saccharopine dehydrogenase | SDH | 氧化还原酶 Oxidoreductase | 酵母氨酸 Saccharopine | 氨基己二酸半醛 Aminoadipic acid semialdehyde | |||
氨基己二酸半醛脱氢酶Aminoadipic acid semialdehyde dehydrogenase | AASADH | 氧化还原酶 Oxidoreductase | 氨基己二酸半醛 Aminoadipic acid semialdehyde | 氨基己二酸 Aminoadipic acid | |||
氨基己二酸氨基转移酶 Aminoadipic acid semialdehyde dehydrogenase | AAA | 转移酶 Transferase | 氨基己二酸 Aminoadipic acid | 酮己二酸 Ketoadipate | |||
水杨酸途径 Salicylic acid pathway | AGD2样防御反应蛋白1 AGD2-like defense response protein1 | ALD1 | 转移酶 Transferase | 赖氨酸 Lysine | Ε-氨基-α-酮己酸 ε-amino-α-ketocaproic acid | ||
SAR-deficient 4 | SARD4 | 氧化还原酶 Oxidoreductase | 1,2脱氢哌酸/2,3脱氢哌酸 1,2-DP/2,3-DP | 哌可酸 Pipecolic acid | |||
黄素单氧化酶1 Flavin-dependent monooxygenase1 | FMO1 | 氧化还原酶 Oxidoreductase | 哌可酸 Pipecolic acid | N-羟基哌啶酸 N-hydroxypipecolic acid | |||
戊二胺途径 Pentanediamine pathway | 赖氨酸脱羧酶 Lysine decarboxylase | LDC | 裂合酶 Lyase | 赖氨酸 Lysine | 戊二胺 Cadaverine |
[1] | YONEYAMA T, SUZUKI A.Light-independent nitrogen assimilation in plant leaves:nitrate incorporation into glutamine, glutamate, aspartate, and asparagine traced by 15N [J/OL]. Plants, 2020,9(10):1303 [2024-02-06].. |
[2] | TEGEDER M, MASCLAUX-DAUBRESSE C.Source and sink mechanisms of nitrogen transport and use [J]. New Phytol., 2018,217(1):35-53. |
[3] | 杨晴晴,吴宏玉,陈思予,等. 高等植物中赖氨酸代谢调控及其关联效应研究进展[J]. 植物生理学报. 2019, 55(12): 1737-1746. |
YANG Q Q, WU H Y, CHEN S Y, et al.. Advances in regulation and connection of lysine metabolism in higher plants [J]. Plant Physiol. J., 2019, 55(12): 1737-1746. | |
[4] | 田颖,时明慧.赖氨酸生理功能的研究进展[J].美食研究,2014,31(3):60-64. |
TIAN Y, SHI M H. The research progress of the physiologic functions of lysine [J]. J.Res. Diet. Sci. Culture, 2014,31(3):60-64. | |
[5] | YANG Q, ZHAO D, ZHANG C, et al.. Lysine biofortification of crops to promote sustained human health in the 21st century [J]. J. Exp. Bot., 2022,73(5):1258-1267. |
[6] | SU Y H, FROMMER W B, LUDEWIG U. Molecular and functional characterization of a family of amino acid transporters from Arabidopsis [J]. Plant Physiol., 2004,136(2):3104-3113. |
[7] | CHEN L, BUSH D R.LHT1,a lysine- and histidine-specific amino acid transporter in Arabidopsis [J]. Plant Physiol., 1997,115(3):1127-1134. |
[8] | WANG J, WU B W, LU K, et al.. The amino acid permease 5 (OsAAP5) regulates tiller number and grain yield in rice [J].Plant Physiol., 2019,180(2):1031-1045. |
[9] | FROMMER W B, HUMMEL S, UNSELD M, et al.. Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis [J].Insects, 1995,92(26):12036-12040. |
[10] | YANG H, POSTEL S, KEMMERLING B, et al.. Altered growth and improved resistance of Arabidopsis against Pseudomonas syringae by overexpression of the basic amino acid transporter AtCAT1 [J]. Plant Cell Environ., 2014,37(6):1404-1414. |
[11] | HIRNER A, LADWIG F, STRANSKY H, et al.. Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll [J]. Plant Cell, 2006,18(8):1931-1946. |
[12] | TEGEDER M, WARD J M. Molecular evolution of plant AAP and LHT amino acid transporters [J/OL]. Front. Plant Sci., 2012, 3: 21 [2024-02-06]. . |
[13] | WANG X, YANG G, SHI M, et al.. Disruption of an amino acid transporter LHT1 leads to growth inhibition and low yields in rice [J/OL]. BMC Plant Biol., 2019,19(1):268 [2024-02-06].. |
[14] | LI Z, GAO J, WANG S, et al.. Comprehensive analysis of the LHT gene family in tobacco and functional characterization of NtLHT22 involvement in amino acids homeostasis [J/OL].Front. Plant Sci., 2022,13:927844 [2024-02-06]. . |
[15] | SVENNERSTAM H, JÄMTGÅRD S, AHMAD I, et al.. Transporters in Arabidopsis roots mediating uptake of amino acids at naturally occurring concentrations [J]. New Phytol., 2011,191(2):459-467. |
[16] | FISCHER W N, LOO D D, KOCH W, et al.. Low and high affinity amino acid H+-cotransporters for cellular import of neutral and charged amino acids [J]. Plant J., 2002,29(6):717-731. |
[17] | HUNT E, GATTOLIN S, NEWBURY H J, et al.. A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected [J]. J. Exp. Bot., 2010,61(1):55-64. |
[18] | TAYLOR M R, REINDERS A, WARD J M. Transport function of rice amino acid permeases (AAPs) [J]. Plant Cell Physiol.,2015, 56(7):1355-1363. |
[19] | FENG L, YANG T Y, ZHANG Z L, et al.. Identification and characterization of cationic amino acid transporters (CATs) in tea plant (Camellia sinensis) [J]. Plant Growth Regul., 2018,84(1):57-69. |
[20] | AZEVEDO R A, LEA P J. Lysine metabolism in higher plants [J]. Amino Acids, 2001,20(3):261-279. |
[21] | ARRUDA P, KEMPER E L, PAPES F, et al.. Regulation of lysine catabolism in higher plants [J]. Trends Plant Sci., 2000,5(8):324-330. |
[22] | HARTMANN M, ZEIER T, BERNSDORFF F, et al.. Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity [J]. Cell, 2018,173(2):456-469. |
[23] | UMBARGER H E. Amino acid biosynthesis and its regulation [J]. Ann. Rev. Biochem., 1978, 47(1): 533-606. |
[24] | PARIS S, WESSEL P M, DUMAS R.Overproduction,purification,and characterization of recombinant aspartate semialdehyde dehydrogenase from Arabidopsis thaliana [J]. Protein Exp. Purif., 2002,24(1):99-104. |
[25] | 于妍,宋万坤,刘春燕,等.植物天冬氨酸代谢途径关键酶基因研究进展[J].生物技术通报,2008():7-11, 17. |
YU Y, SONG W K, LIU C Y, et al.. Research development of key enzymes gene on aspartic acid metabolic pathway in plants [J]. Biotechnol. Bull., 2008(S1):7-11, 17. | |
[26] | 杨晴晴.高赖氨酸转基因水稻的营养评价及代谢关联研究[D].扬州:扬州大学,2016. |
YANG Q Q. Nutritional assessment and metabolic connection analysis of transgenic rice with high free lysine [D]. Yangzhou:Yangzhou University, 2016. | |
[27] | PERL A, SHAUL O, GALILI G. Regulation of lysine synthesis in transgenic potato plants expressing a bacterial dihydrodipicolinate synthase in their chloroplasts [J]. Plant Mol.Biol., 1992,19(5):815-823. |
[28] | DUNHAM V L, BRYAN J K. Synergistic effects of metabolically related amino acids on the growth of a multicellular plant [J]. Plant Physiol., 1969, 44(11): 1601-1608. |
[29] | CRACIUN A, JACOBS M, VAUTERIN M. Arabidopsis loss-of-function mutant in the lysine pathway points out complex regulation mechanisms [J]. Sci. Rep., 2000,487(2): 234-238. |
[30] | VAN BOCHAUTE P, NOVOA A, BALLET S, et al.. Regulatory mechanisms after short- and long-term perturbed lysine biosynthesis in the aspartate pathway:the need for isogenes in Arabidopsis thaliana [J]. Physiol. Plant., 2013,149(4): 449-460. |
[31] | BLICKLING S, BEISEL H G, BOZIC D,et al..Structure of dihydrodipicolinate synthase of Nicotiana sylvestris reveals novel quaternary structure [J].J. Mol. Biol., 1997,274(4):608-621. |
[32] | LEE S I, KIM H U, LEE Y H, et al.. Constitutive and seed-specific expression of a maize lysine-feedback-insensitive dihydrodipicolinate synthase gene leads to increased free lysine levels in rice seeds [J]. Mol. Breed., 2001,8(1):75-84. |
[33] | SHAVER J M, BITTEL D C, SELLNER J M, et al.. Single-amino acid substitutions eliminate lysine inhibition of maize dihydrodipicolinate synthase [J]. Proc. Natl. Acad. Sci. USA,1996,93(5):1962-1966. |
[34] | SODEK L, WILSON C M. Incorporation of leucine-14C and lysine-14C into protein in the developing endosperm of nomal and opaque-2 corn [J]. Arch.Biochem. Biophys.,1970,140(1):29-38. |
[35] | BRANDT A B. In vivo incorporation of (14C) lysine into the endosperm proteins of wild type and high-lysine barley [J]. FEBS Lett., 1975, 52(2): 288-291. |
[36] | HARTMANN M, ZEIER J. l-lysine metabolism to N-hydroxypipecolic acid: an integral immune-activating pathway in plants [J]. Plant J., 2018, 96(1): 5-21. |
[37] | JANCEWICZ A L, GIBBS N M, MASSON P H. Cadaverine’s functional role in plant development and environmental response [J/OL]. Front. Plant Sci.,2016,7:870 [2024-02-06].. |
[38] | NÁVAROVÁ H, BERNSDORFF F, DÖRING A C, et al.. Pipecolic acid,an endogenous mediator of defense amplification and priming,is a critical regulator of inducible plant immunity [J]. Plant Cell, 2013,24(12):5123-5141. |
[39] | ANDERSON O D, COLEMAN-DERR D, GU Y Q, et al.. Structural and transcriptional analysis of plant genes encoding the bifunctional lysine ketoglutarate reductase saccharopine dehydrogenase enzyme [J/OL]. BMC Plant Biol., 2010,10:113 [2022-02-06]. . |
[40] | REYES A R, BONIN C P, HOUMARD N M, et al.. Genetic manipulation of lysine catabolism in maize kernels [J]. Plant Mol. Biol., 2009,69(1):81-89. |
[41] | BROCKER C, LASSEN N, ESTEY T, et al.. Aldehyde dehydrogenase 7A1 (ALDH7A1) is a novel enzyme involved in cellular defense against hyperosmotic stress [J]. J. Biol. Chem., 2010, 285(24): 18452-18463. |
[42] | RODRIGUES S M, ANDRADE M O, GOMES A P S, et al.. Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought,salinity,and oxidative stress [J]. J. Exp. Bot., 2006, 57(9): 1909-1918. |
[43] | SHIN J H, KIM S R, AN G. Rice aldehyde dehydrogenase 7 is needed for seed maturation and viability [J]. Plant Physiol., 2009,149(2): 905-915. |
[44] | GROBBELAAR N, STEWARD F C. Pipecolic acid in Phaseolus vulgaris: evidence on its derivation from lysine [J]. J.Am. Chem. Soc., 1953,75(17):4341-4343. |
[45] | ZEIER J. New insights into the regulation of plant immunity by amino acid metabolic pathways [J]. Plant Cell Environ., 2013,36(12):2085-2103. |
[46] | MISHINA T E, ZEIER J. The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance [J]. Plant Physiol., 2006,141(4):1666-1675. |
[47] | BUNSUPA S, YAMAZAKI M, SAITO K. Quinolizidine alkaloid biosynthesis:recent advances and future prospects [J/OL].Front. Plant Sci., 2012,3:239 [2024-02-06]. . |
[48] | HILDEBRANDT T M. Synthesis versus degradation:directions of amino acid metabolism during Arabidopsis abiotic stress response [J]. Plant Mol. Biol., 2018,98(1):121-135. |
[49] | KIYOTA E, PENA I A, ARRUDA P. The saccharopine pathway in seed development and stress response of maize [J]. Plant Cell Environ., 2015,38(11):2450-2461. |
[50] | MOULIN M, DELEU C, LARHER F, et al.. The lysine-ketoglutarate reductase-saccharopine dehydrogenase is involved in the osmo-induced synthesis of pipecolic acid in rapeseed leaf tissues [J]. Plant Physiol. Biochem., 2006,44(7-9):474-482. |
[51] | YANG H, LUDEWIG U. Lysine catabolism,amino acid transport,and systemic acquired resistance:what is the link? [J/OL].Plant Signal. Behav., 2014,9(7):e28933 [2024-02-06].. |
[52] | LIU G S, JI Y Y, BHUIYAN N H,et al.. Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis [J].Plant Cell, 2010,22(11): 3845-3863. |
[53] | MOORMANN J, HEINEMANN B, HILDEBRANDT T M. News about amino acid metabolism in plant-microbe interactions [J]. Trends Biochem. Sci., 2022,47(10):839-850. |
[54] | ANZALA F, MORERE-LE PAVEN M C, BIROLLEAU-TOUCHARD C, et al.. QTL mapping and genetic analysis of inhibitory effect of lysine on post- germination growth and seedling establishment of maize [J]. Acta Agron. Hungarica, 2006, 54(3): 271-279. |
[55] | GALILI G, AMIR R. Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality [J].Plant Biotechnol. J., 2013,11(2):211-222. |
[56] | WHO. Protein and amino acid requirements in human nutrition [J]. World Health Organ.Tech.Rep.Ser., 2007,935:1-265. |
[57] | ZHU X H, GALILI G. Lysine metabolism is concurrently regulated by synthesis and catabolism in both reproductive and vegetative tissues [J]. Plant Physiol., 2004,135(1):129-136. |
[58] | DHATTERWAL P, MEHROTRA S, MILLER A J, et al.. Promoter profiling of Arabidopsis amino acid transporters:clues for improving crops [J]. Plant Mol. Biol., 2021,107(6):451-475. |
[59] | MERTZ E T, BATES L S, NELSON O E. Mutant gene that changes protein composition and increases lysine content of maize endosperm [J]. Science, 1964,145(3629):279-280. |
[60] | SARIKA K, HOSSAIN F, MUTHUSAMY V, et al.. Marker-assisted pyramiding of opaque 2 and novel opaque16 genes for further enrichment of lysine and tryptophan in sub-tropical maize [J]. Plant Sci., 2018,272:142-152. |
[61] | YUE J, LI C, ZHAO Q, et al.. Seed-specific expression of a lysine-rich protein gene,GhLRP,from cotton significantly increases the lysine content in maize seeds [J]. Int. J. Mol. Sci., 2014,15(4):5350-5365. |
[62] | YANG Q Q, YU W H, WU H Y, et al.. Lysine biofortification in rice by modulating feedback inhibition of aspartate kinase and dihydrodipicolinate synthase [J]. Plant Biotechnol. J., 2021,19(3):490-501. |
[63] | TANG M, HE X, LUO Y, et al.. Nutritional assessment of transgenic lysine-rich maize compared with conventional quality protein maize [J]. J. Sci. Food Agric., 2013,93(5):1049-1054. |
[64] | HENRY C J. Functional foods [J]. Eur. J. Clin. Nutr., 2010, 64(7): 657-659. |
[65] | SENARATHNA S, MEL R, MALALGODA M. Utilization of cereal-based protein ingredients in food applications [J/OL]. J. Cereal Sci.,2024,116:103867 [2024-02-06].. |
[66] | MOYA M. Lysine genetically enriched cereals for improving nutrition in children under 5 years in low- and middle-income countries [J]. J. Nutr. Health Food Eng., 2016, 5(2): 583-586. |
[67] | HE L, SUI Y, CHE Y, et al.. New insights into the genetic basis of lysine accumulation in rice revealed by multi-model GWAS [J/OL]. Int. J. Mol. Sci., 2024,25(9):4667 [2024-02-06]. . |
[1] | 凌磊, 蒋慧欣, 李铭婧, 殷亚杰, 陈乃钰, 赵晓菊. 盐碱胁迫下燕麦蛋白组及代谢组联合分析[J]. 中国农业科技导报, 2025, 27(5): 61-71. |
[2] | 侯赛赛, 仝姗姗, 王鹏企, 谢冰雪, 张瑞芳, 王鑫鑫. 生物炭和秸秆对不同作物生长性状和养分吸收的影响[J]. 中国农业科技导报, 2025, 27(4): 179-191. |
[3] | 张奕萱, 李慧峰, 黄咏梅, 李彦青, 滑金锋, 银捷, 陈天渊, 肖冬, 莫云川. 不同菜用甘薯品种茎尖代谢产物鉴定及途径分析[J]. 中国农业科技导报, 2025, 27(2): 62-69. |
[4] | 屈施旭, 孙宇, 所怡祯, 苑海鹏, 张玉红. 外源钙对盐胁迫下火麻生理特性及次生代谢产物的影响[J]. 中国农业科技导报, 2025, 27(2): 80-88. |
[5] | 张永芳, 董世妍, 王佳轩, 郭绪虎, 张畅, 王艳星, 王钰烨, 吴静凤, 鲍甜芳, 张宏发, 于萍, 李富恒. 老山芹层积前后种子差异代谢物分析[J]. 中国农业科技导报, 2024, 26(7): 37-49. |
[6] | 刘峰峰, 吴明, 周迎辉, 吴勇, 田嘉树, 许嘉阳, 许自成, 何结望. 生长素与钼配施对烤烟上部叶生理代谢及品质的影响[J]. 中国农业科技导报, 2024, 26(2): 208-215. |
[7] | 陈美欣, 顾淑莹, 刘佳, 刘浩, 李金根, 田朝光. 嗜热毁丝霉木糖代谢调控机制研究[J]. 中国农业科技导报, 2024, 26(12): 77-87. |
[8] | 刘化冰, 党伟, 李奇, 张晓兵, 徐志强, 钟永健, 任志广, 张勇刚, 袁凯龙, 杨浩, 王辉, 孙聚涛. 烟草品种间氮素吸收和同化差异研究[J]. 中国农业科技导报, 2024, 26(11): 66-78. |
[9] | 郑宏斌, 王聪, 席奇亮, 张仲文, 王卫民, 王昕, 郭进, 何欢欢, 芦伟龙, 许自成, 王文超, 贾玮. 施氮量对云烟121上部烟叶代谢及品质的影响[J]. 中国农业科技导报, 2024, 26(10): 215-225. |
[10] | 张彩虹, 张力, 王卫民, 赵炯平, 韩丹, 许自成, 张仲文, 邵惠芳. 基于非靶向代谢组学的上部烟叶不同成熟度差异分析[J]. 中国农业科技导报, 2024, 26(10): 58-70. |
[11] | 徐皖菁, 彭芳, 赵豆豆, 罗姣姣, 陶珊, 廖海浪, 毛常清, 吴宇, 朱秀, 徐正君, 张超. 基于转录组和代谢组解析川芎对镉胁迫的响应机制[J]. 中国农业科技导报, 2024, 26(10): 98-109. |
[12] | 高静娟, 朱晨宇, 柯玉琴, 郑朝元, 李春英, 李文卿. 烟稻轮作条件下有机肥施用时期对烤烟碳氮代谢的影响[J]. 中国农业科技导报, 2023, 25(9): 157-165. |
[13] | 姜雪敏, 陈向前, 李红燕, 姜奇彦. 小麦盐胁迫响应的代谢组学分析[J]. 中国农业科技导报, 2023, 25(9): 43-56. |
[14] | 杨丽莹, 邰孟雅, 翟夜雨, 许自成, 黄五星. 硫对植物吸收积累镉的影响及其作用机制研究进展[J]. 中国农业科技导报, 2023, 25(8): 10-21. |
[15] | 王潇然, 李笑语, 孙慧, 于海东, 石永春. 硼胁迫下烟草叶片转录组分析[J]. 中国农业科技导报, 2023, 25(8): 53-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||