中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (7): 190-203.DOI: 10.13304/j.nykjdb.2024.0804
• 生物制造 资源生态 • 上一篇
周琦(), 刘强(
), 张靖, 邓超超, 王振龙, 柳洋, 吴芳, 常浩, 周彦芳, 宿翠翠, 施志国, 高正睿, 马凤捷
收稿日期:
2024-09-27
接受日期:
2025-02-26
出版日期:
2025-07-15
发布日期:
2025-07-11
通讯作者:
刘强
作者简介:
周琦 E-mail:1610821576@qq.com;
基金资助:
Qi ZHOU(), Qiang LIU(
), Jing ZHANG, Chaochao DENG, Zhenlong WANG, Yang LIU, Fang WU, Hao CHANG, Yanfang ZHOU, Cuicui SU, Zhiguo SHI, Zhengrui GAO, Fengjie MA
Received:
2024-09-27
Accepted:
2025-02-26
Online:
2025-07-15
Published:
2025-07-11
Contact:
Qiang LIU
摘要:
为探索有机肥替代化肥对设施大棚土壤生物学特性及贝贝南瓜产量的影响,明确有机肥替代化肥施用效果并筛选最佳替代比例,采用大田试验方法,设置100%化肥(T1)、有机肥分别替代20%(T2)、40%(T3)、60%(T4)、80%化肥(T5)和100%有机肥(T6)共6个处理,研究不同处理对南瓜生育期土壤酶活性、土壤微生物数量、土壤呼吸速率动态变化和南瓜产量的影响。结果表明,有机肥替代化肥能够提高贝贝南瓜生育期0—40 cm土层土壤酶活性、微生物数量、土壤呼吸速率及南瓜产量,全生育期土壤酶活性在抽蔓期达到最高。在抽蔓期,T4和T5处理的0—40 cm土层土壤脲酶、碱性磷酸酶、蔗糖酶、过氧化氢酶活性较T1处理分别提高70.75%和70.74%、7.89%和9.66%、56.07%和43.79%、10.73%和12.14%。有机肥替代化肥增加了土壤微生物数量和呼吸速率,随南瓜生育时期推进土壤细菌、真菌、放线菌数量和土壤呼吸速率呈“单峰”曲线变化,在抽蔓期达到峰值;与T1处理相比,有机肥替代处理组0—40 cm土层土壤细菌、真菌、放线菌数量分别提高3.84%~31.35%、1.95%~24.13%、0.40%~21.07%,T4、T5处理间差异不显著,呼吸速率增强4.47%~30.79%;有机肥替代化肥能显著提高南瓜产量,T4、T5处理南瓜产量较T1处理分别显著提高39.93%、46.67%。因此,贝贝南瓜高效种植中有机肥替代化肥最佳比例为60%~80%。研究结果为该区贝贝南瓜化肥减量增效及高效栽培提供数据支撑。
中图分类号:
周琦, 刘强, 张靖, 邓超超, 王振龙, 柳洋, 吴芳, 常浩, 周彦芳, 宿翠翠, 施志国, 高正睿, 马凤捷. 有机肥替代化肥对土壤生物学特性及南瓜产量的影响[J]. 中国农业科技导报, 2025, 27(7): 190-203.
Qi ZHOU, Qiang LIU, Jing ZHANG, Chaochao DENG, Zhenlong WANG, Yang LIU, Fang WU, Hao CHANG, Yanfang ZHOU, Cuicui SU, Zhiguo SHI, Zhengrui GAO, Fengjie MA. Effects of Organic Fertilizer Replacing Chemical Fertilizer on Yield and Soil Biological Characteristics of Pumpkin[J]. Journal of Agricultural Science and Technology, 2025, 27(7): 190-203.
处理 Treatment | 有机肥 Organic fertilizer | 尿素 Urea | 过磷酸钙 Calcium superphosphate | 硫酸钾镁 Sulphate-potassium magnesium |
---|---|---|---|---|
T1 | 0.0 | 2.0 | 4.2 | 6.0 |
T2 | 12.6 | 1.6 | 3.4 | 4.7 |
T3 | 24.7 | 1.2 | 2.7 | 3.4 |
T4 | 37.1 | 0.8 | 1.9 | 2.1 |
T5 | 49.5 | 0.4 | 1.1 | 0.8 |
T6 | 61.8 | 0.0 | 0.3 | 0.0 |
表1 不同处理施肥量 (t·hm-2)
Table 1 Fertilization amount of different treatments
处理 Treatment | 有机肥 Organic fertilizer | 尿素 Urea | 过磷酸钙 Calcium superphosphate | 硫酸钾镁 Sulphate-potassium magnesium |
---|---|---|---|---|
T1 | 0.0 | 2.0 | 4.2 | 6.0 |
T2 | 12.6 | 1.6 | 3.4 | 4.7 |
T3 | 24.7 | 1.2 | 2.7 | 3.4 |
T4 | 37.1 | 0.8 | 1.9 | 2.1 |
T5 | 49.5 | 0.4 | 1.1 | 0.8 |
T6 | 61.8 | 0.0 | 0.3 | 0.0 |
生育时期 Growth stage | 处理 Treatment | 土层深度Soil layer/cm | 平均 Average | |
---|---|---|---|---|
0—20 | 20—40 | |||
苗期 SS | T1 | 453.74±2.57 b | 136.71±2.90 b | 295.23±0.17 b |
T2 | 383.33±2.94 d | 112.61±3.10 c | 247.97±3.02 d | |
T3 | 421.72±2.88 c | 137.47±2.90 b | 279.60±2.89 c | |
T4 | 475.00±2.89 a | 257.49±2.91 a | 366.25±2.90 a | |
T5 | 474.53±1.12 a | 255.67±1.57 a | 365.10±0.25 a | |
T6 | 265.19±2.90 e | 141.78±3.05 b | 203.48±0.49 e | |
抽蔓期 VGS | T1 | 530.14±2.95 d | 241.18±1.73 c | 385.66±0.62 d |
T2 | 570.30±1.07 c | 350.42±2.19 b | 460.36±1.63 c | |
T3 | 656.03±2.88 b | 391.39±0.61 a | 523.71±1.74 b | |
T4 | 920.23±5.77 a | 396.80±6.05 a | 658.52±4.67 a | |
T5 | 922.92±1.49 a | 394.06±6.45 a | 658.49±3.61 a | |
T6 | 520.28±8.63 d | 134.54±1.12 d | 327.41±4.88 e | |
开花结瓜期 FFS | T1 | 524.16±3.15 d | 249.26±1.31 c | 386.72±2.22 d |
T2 | 560.26±4.91 c | 344.07±2.83 b | 452.17±3.87 c | |
T3 | 638.19±3.07 b | 357.16±11.92 b | 497.68±7.21 b | |
T4 | 918.07±1.24 a | 383.15±1.51 a | 650.61±1.06 a | |
T5 | 914.65±3.26 a | 382.98±1.55 a | 648.82±2.39 a | |
T6 | 501.64±1.30 e | 235.14±3.54 c | 368.39±1.24 e | |
成熟期 MS | T1 | 458.43±5.39 c | 154.12±1.56 b | 306.28±1.98 c |
T2 | 493.99±5.17 b | 145.52±3.72 b | 319.76±3.53 b | |
T3 | 511.93±6.96 ab | 146.03±3.44 b | 328.98±2.77 b | |
T4 | 538.34±8.33 a | 188.49±4.01 a | 363.41±5.10 a | |
T5 | 530.15±2.69 a | 188.27±4.62 a | 359.21±2.09 a | |
T6 | 467.96±6.23 c | 148.71±5.13 b | 308.34±5.13 c |
表2 南瓜全生育期各处理下土壤脲酶活性 (μg·d-1·g-1)
Table 2 Soil urease activity under different treatments throughout entire growth stage of pumpkin
生育时期 Growth stage | 处理 Treatment | 土层深度Soil layer/cm | 平均 Average | |
---|---|---|---|---|
0—20 | 20—40 | |||
苗期 SS | T1 | 453.74±2.57 b | 136.71±2.90 b | 295.23±0.17 b |
T2 | 383.33±2.94 d | 112.61±3.10 c | 247.97±3.02 d | |
T3 | 421.72±2.88 c | 137.47±2.90 b | 279.60±2.89 c | |
T4 | 475.00±2.89 a | 257.49±2.91 a | 366.25±2.90 a | |
T5 | 474.53±1.12 a | 255.67±1.57 a | 365.10±0.25 a | |
T6 | 265.19±2.90 e | 141.78±3.05 b | 203.48±0.49 e | |
抽蔓期 VGS | T1 | 530.14±2.95 d | 241.18±1.73 c | 385.66±0.62 d |
T2 | 570.30±1.07 c | 350.42±2.19 b | 460.36±1.63 c | |
T3 | 656.03±2.88 b | 391.39±0.61 a | 523.71±1.74 b | |
T4 | 920.23±5.77 a | 396.80±6.05 a | 658.52±4.67 a | |
T5 | 922.92±1.49 a | 394.06±6.45 a | 658.49±3.61 a | |
T6 | 520.28±8.63 d | 134.54±1.12 d | 327.41±4.88 e | |
开花结瓜期 FFS | T1 | 524.16±3.15 d | 249.26±1.31 c | 386.72±2.22 d |
T2 | 560.26±4.91 c | 344.07±2.83 b | 452.17±3.87 c | |
T3 | 638.19±3.07 b | 357.16±11.92 b | 497.68±7.21 b | |
T4 | 918.07±1.24 a | 383.15±1.51 a | 650.61±1.06 a | |
T5 | 914.65±3.26 a | 382.98±1.55 a | 648.82±2.39 a | |
T6 | 501.64±1.30 e | 235.14±3.54 c | 368.39±1.24 e | |
成熟期 MS | T1 | 458.43±5.39 c | 154.12±1.56 b | 306.28±1.98 c |
T2 | 493.99±5.17 b | 145.52±3.72 b | 319.76±3.53 b | |
T3 | 511.93±6.96 ab | 146.03±3.44 b | 328.98±2.77 b | |
T4 | 538.34±8.33 a | 188.49±4.01 a | 363.41±5.10 a | |
T5 | 530.15±2.69 a | 188.27±4.62 a | 359.21±2.09 a | |
T6 | 467.96±6.23 c | 148.71±5.13 b | 308.34±5.13 c |
生育时期 Growth stage | 处理 Treatment | 土层深度Soil layer/cm | 平均 Average | |
---|---|---|---|---|
0—20 | 20—40 | |||
苗期 SS | T1 | 5.64±0.18 ab | 2.31±0.09 b | 3.98±0.13 b |
T2 | 5.59±0.12 ab | 2.79±0.12 a | 4.19±0.01 ab | |
T3 | 5.20±0.08 b | 2.06±0.06 bc | 3.63±0.04 c | |
T4 | 5.94±0.18 a | 2.70±0.12 a | 4.32±0.15 a | |
T5 | 5.98±0.16 a | 2.63±0.06 a | 4.31±0.10 a | |
T6 | 5.52±0.17 ab | 1.84±0.06 c | 3.68±0.06 c | |
抽蔓期 VGS | T1 | 8.15±0.05 bc | 4.26±0.05 b | 6.21±0.02 c |
T2 | 8.02±0.02 c | 3.32±0.06 c | 5.67±0.03 c | |
T3 | 8.15±0.06 bc | 4.28±0.07 b | 6.18±0.04 b | |
T4 | 8.34±0.03 ab | 5.26±0.04 a | 6.70±0.02 a | |
T5 | 8.38±0.11 a | 5.22±0.03 a | 6.81±0.06 a | |
T6 | 6.82±0.10 d | 2.90±0.02 d | 4.86±0.06 d | |
开花结瓜期 FFS | T1 | 8.05±0.02 ab | 3.29±0.05 c | 5.67±0.03 c |
T2 | 7.99±0.07 b | 3.25±0.11 c | 5.62±0.09 c | |
T3 | 8.07±0.04 ab | 4.09±0.04 b | 6.12±0.04 b | |
T4 | 8.13±0.07 ab | 4.55±0.02 a | 6.45±0.03 ab | |
T5 | 8.18±0.06 a | 4.64±0.01 a | 6.41±0.04 a | |
T6 | 6.44±0.06 c | 2.60±0.13 d | 4.52±0.05 d | |
成熟期 MS | T1 | 4.72±0.18 c | 2.86±0.09 b | 3.79±0.05 b |
T2 | 6.12±0.46 ab | 2.34±0.12 c | 4.23±0.29 b | |
T3 | 5.56±0.29 b | 2.64±0.06 b | 4.10±0.12 b | |
T4 | 6.48±0.18 a | 3.29±0.12 a | 4.89±0.15 a | |
T5 | 6.53±0.16 a | 3.14±0.06 a | 4.84±0.10 a | |
T6 | 4.07±0.17 c | 1.35±0.06 d | 2.71±0.06 c |
表3 南瓜全生育期各处理下土壤碱性磷酸酶活性
Table 3 Soil alkaline phosphatase activity under different treatments throughout entire growth stage of pumpkin (μmol·d-1·g-1)
生育时期 Growth stage | 处理 Treatment | 土层深度Soil layer/cm | 平均 Average | |
---|---|---|---|---|
0—20 | 20—40 | |||
苗期 SS | T1 | 5.64±0.18 ab | 2.31±0.09 b | 3.98±0.13 b |
T2 | 5.59±0.12 ab | 2.79±0.12 a | 4.19±0.01 ab | |
T3 | 5.20±0.08 b | 2.06±0.06 bc | 3.63±0.04 c | |
T4 | 5.94±0.18 a | 2.70±0.12 a | 4.32±0.15 a | |
T5 | 5.98±0.16 a | 2.63±0.06 a | 4.31±0.10 a | |
T6 | 5.52±0.17 ab | 1.84±0.06 c | 3.68±0.06 c | |
抽蔓期 VGS | T1 | 8.15±0.05 bc | 4.26±0.05 b | 6.21±0.02 c |
T2 | 8.02±0.02 c | 3.32±0.06 c | 5.67±0.03 c | |
T3 | 8.15±0.06 bc | 4.28±0.07 b | 6.18±0.04 b | |
T4 | 8.34±0.03 ab | 5.26±0.04 a | 6.70±0.02 a | |
T5 | 8.38±0.11 a | 5.22±0.03 a | 6.81±0.06 a | |
T6 | 6.82±0.10 d | 2.90±0.02 d | 4.86±0.06 d | |
开花结瓜期 FFS | T1 | 8.05±0.02 ab | 3.29±0.05 c | 5.67±0.03 c |
T2 | 7.99±0.07 b | 3.25±0.11 c | 5.62±0.09 c | |
T3 | 8.07±0.04 ab | 4.09±0.04 b | 6.12±0.04 b | |
T4 | 8.13±0.07 ab | 4.55±0.02 a | 6.45±0.03 ab | |
T5 | 8.18±0.06 a | 4.64±0.01 a | 6.41±0.04 a | |
T6 | 6.44±0.06 c | 2.60±0.13 d | 4.52±0.05 d | |
成熟期 MS | T1 | 4.72±0.18 c | 2.86±0.09 b | 3.79±0.05 b |
T2 | 6.12±0.46 ab | 2.34±0.12 c | 4.23±0.29 b | |
T3 | 5.56±0.29 b | 2.64±0.06 b | 4.10±0.12 b | |
T4 | 6.48±0.18 a | 3.29±0.12 a | 4.89±0.15 a | |
T5 | 6.53±0.16 a | 3.14±0.06 a | 4.84±0.10 a | |
T6 | 4.07±0.17 c | 1.35±0.06 d | 2.71±0.06 c |
生育时期 Growth stags | 处理 Treatment | 土层深度Soil layer/cm | 平均 Average | |
---|---|---|---|---|
0—20 | 20—40 | |||
苗期 SS | T1 | 40.83±0.41 e | 6.59±0.17 b | 23.71±0.18 e |
T2 | 64.57±1.17 c | 6.85±0.12 ab | 35.71±0.59 c | |
T3 | 71.84±0.59 b | 6.43±0.27 b | 39.14±0.21 b | |
T4 | 77.54±0.69 a | 7.16±0.06 a | 42.35±0.37 a | |
T5 | 50.63±0.19 d | 6.89±0.07 ab | 28.77±0.11 d | |
T6 | 49.36±0.10 d | 6.44±0.11 b | 27.90±0.02 d | |
抽蔓期 VGS | T1 | 56.76±0.27 e | 14.31±0.26 c | 35.53±0.13 e |
T2 | 77.15±1.66 d | 14.48±0.34 c | 45.82±0.99 d | |
T3 | 79.75±0.11 c | 19.53±0.56 b | 49.64±0.34 c | |
T4 | 89.06±0.35 a | 21.84±0.60 a | 55.45±0.18 a | |
T5 | 83.54±0.29 b | 18.64±0.29 b | 51.09±0.28 b | |
T6 | 75.96±0.11 d | 15.44±0.23 c | 45.70±0.07 d | |
开花结瓜期 FFS | T1 | 52.77±0.22 e | 11.57±0.17 d | 32.17±0.13 e |
T2 | 71.90±0.89 d | 12.18±0.31 cd | 42.05±0.55 d | |
T3 | 75.77±0.28 c | 17.52±0.31 b | 46.65±0.18 c | |
T4 | 85.37±0.57 b | 19.47±0.60 a | 52.42±0.28 a | |
T5 | 79.19±0.29 a | 19.94±0.17 a | 49.57±0.18 b | |
T6 | 71.94±0.25 d | 13.07±0.23 c | 42.51±0.19 d | |
成熟期 MS | T1 | 46.67±0.13 f | 6.65±0.22 cd | 26.66±0.18 f |
T2 | 66.81±0.25 d | 6.65±0.19 cd | 36.73±0.03 d | |
T3 | 72.46±0.14 b | 7.10±0.08 c | 39.78±0.11 c | |
T4 | 75.62±0.16 a | 8.16±0.06 b | 41.89±0.11 a | |
T5 | 71.91±0.20 c | 8.89±0.07 a | 40.40±0.13 b | |
T6 | 58.82±0.12 e | 6.33±0.15 d | 32.57±0.12 e |
表4 南瓜全生育期各处理下土壤蔗糖酶活性 (mg·d-1·g-1)
Table 4 Soil sucrase activity under different treatments throughout entire growth stage of pumpkin
生育时期 Growth stags | 处理 Treatment | 土层深度Soil layer/cm | 平均 Average | |
---|---|---|---|---|
0—20 | 20—40 | |||
苗期 SS | T1 | 40.83±0.41 e | 6.59±0.17 b | 23.71±0.18 e |
T2 | 64.57±1.17 c | 6.85±0.12 ab | 35.71±0.59 c | |
T3 | 71.84±0.59 b | 6.43±0.27 b | 39.14±0.21 b | |
T4 | 77.54±0.69 a | 7.16±0.06 a | 42.35±0.37 a | |
T5 | 50.63±0.19 d | 6.89±0.07 ab | 28.77±0.11 d | |
T6 | 49.36±0.10 d | 6.44±0.11 b | 27.90±0.02 d | |
抽蔓期 VGS | T1 | 56.76±0.27 e | 14.31±0.26 c | 35.53±0.13 e |
T2 | 77.15±1.66 d | 14.48±0.34 c | 45.82±0.99 d | |
T3 | 79.75±0.11 c | 19.53±0.56 b | 49.64±0.34 c | |
T4 | 89.06±0.35 a | 21.84±0.60 a | 55.45±0.18 a | |
T5 | 83.54±0.29 b | 18.64±0.29 b | 51.09±0.28 b | |
T6 | 75.96±0.11 d | 15.44±0.23 c | 45.70±0.07 d | |
开花结瓜期 FFS | T1 | 52.77±0.22 e | 11.57±0.17 d | 32.17±0.13 e |
T2 | 71.90±0.89 d | 12.18±0.31 cd | 42.05±0.55 d | |
T3 | 75.77±0.28 c | 17.52±0.31 b | 46.65±0.18 c | |
T4 | 85.37±0.57 b | 19.47±0.60 a | 52.42±0.28 a | |
T5 | 79.19±0.29 a | 19.94±0.17 a | 49.57±0.18 b | |
T6 | 71.94±0.25 d | 13.07±0.23 c | 42.51±0.19 d | |
成熟期 MS | T1 | 46.67±0.13 f | 6.65±0.22 cd | 26.66±0.18 f |
T2 | 66.81±0.25 d | 6.65±0.19 cd | 36.73±0.03 d | |
T3 | 72.46±0.14 b | 7.10±0.08 c | 39.78±0.11 c | |
T4 | 75.62±0.16 a | 8.16±0.06 b | 41.89±0.11 a | |
T5 | 71.91±0.20 c | 8.89±0.07 a | 40.40±0.13 b | |
T6 | 58.82±0.12 e | 6.33±0.15 d | 32.57±0.12 e |
生育时期 Growth stage | 处理 Treatment | 土层深度Soil layer/cm | 平均 Average | |
---|---|---|---|---|
0—20 | 20—40 | |||
苗期 SS | T1 | 23.58±0.30 b | 15.98±0.52 d | 19.78±0.41 b |
T2 | 24.62±0.59 b | 16.70±0.19 bcd | 20.66±0.38 b | |
T3 | 28.26±0.10 a | 17.23±0.19 abc | 22.75±0.09 a | |
T4 | 28.42±0.08 a | 17.50±0.28 ab | 22.96±0.18 a | |
T5 | 28.31±0.09 a | 18.32±0.17 a | 23.32±0.04 a | |
T6 | 24.27±0.61 b | 16.17±0.58 cd | 20.22±0.59 b | |
抽蔓期 VGS | T1 | 30.78±0.19 d | 17.66±0.06 d | 24.22±0.10 c |
T2 | 31.49±0.33 c | 18.74±0.16 b | 25.12±0.24 b | |
T3 | 32.47±0.24 b | 18.43±0.21 bc | 25.45±0.23 b | |
T4 | 33.98±0.26 a | 19.66±0.12 a | 26.82±0.19 a | |
T5 | 34.40±0.20 a | 19.91±0.10 a | 27.16±0.15 a | |
T6 | 30.20±0.08 d | 18.16±0.07 c | 24.18±0.07 c | |
开花结瓜期 FFS | T1 | 29.66±0.19 c | 16.77±0.39 c | 23.21±0.19 c |
T2 | 30.00±0.22 c | 17.55±0.20 c | 23.78±0.19 b | |
T3 | 30.85±0.14 b | 17.66±0.16 b | 24.26±0.05 b | |
T4 | 32.97±0.18 a | 18.86±0.24 a | 25.91±0.20 a | |
T5 | 33.39±0.14 a | 19.01±0.24 a | 26.20±0.19 a | |
T6 | 28.98±0.05 d | 17.17±0.27 d | 23.08±0.16 c | |
成熟期 MS | T1 | 25.61±0.20 c | 15.41±0.18 d | 20.51±0.15 c |
T2 | 24.61±0.15 d | 15.44±0.06 d | 20.02±0.06 c | |
T3 | 25.79±0.10 c | 17.22±0.12 b | 21.51±0.11 b | |
T4 | 29.74±0.06 b | 17.56±0.12 b | 23.65±0.09 a | |
T5 | 30.48±0.12 a | 18.37±0.09 a | 24.43±0.02 a | |
T6 | 25.82±0.09 c | 16.44±0.07 c | 21.13±0.07 b |
表5 南瓜全生育期各处理下土壤过氧化氢酶活性 (U·g-1)
Table 5 Soil catalase activity under different treatments throughout entire growth stage of pumpkin
生育时期 Growth stage | 处理 Treatment | 土层深度Soil layer/cm | 平均 Average | |
---|---|---|---|---|
0—20 | 20—40 | |||
苗期 SS | T1 | 23.58±0.30 b | 15.98±0.52 d | 19.78±0.41 b |
T2 | 24.62±0.59 b | 16.70±0.19 bcd | 20.66±0.38 b | |
T3 | 28.26±0.10 a | 17.23±0.19 abc | 22.75±0.09 a | |
T4 | 28.42±0.08 a | 17.50±0.28 ab | 22.96±0.18 a | |
T5 | 28.31±0.09 a | 18.32±0.17 a | 23.32±0.04 a | |
T6 | 24.27±0.61 b | 16.17±0.58 cd | 20.22±0.59 b | |
抽蔓期 VGS | T1 | 30.78±0.19 d | 17.66±0.06 d | 24.22±0.10 c |
T2 | 31.49±0.33 c | 18.74±0.16 b | 25.12±0.24 b | |
T3 | 32.47±0.24 b | 18.43±0.21 bc | 25.45±0.23 b | |
T4 | 33.98±0.26 a | 19.66±0.12 a | 26.82±0.19 a | |
T5 | 34.40±0.20 a | 19.91±0.10 a | 27.16±0.15 a | |
T6 | 30.20±0.08 d | 18.16±0.07 c | 24.18±0.07 c | |
开花结瓜期 FFS | T1 | 29.66±0.19 c | 16.77±0.39 c | 23.21±0.19 c |
T2 | 30.00±0.22 c | 17.55±0.20 c | 23.78±0.19 b | |
T3 | 30.85±0.14 b | 17.66±0.16 b | 24.26±0.05 b | |
T4 | 32.97±0.18 a | 18.86±0.24 a | 25.91±0.20 a | |
T5 | 33.39±0.14 a | 19.01±0.24 a | 26.20±0.19 a | |
T6 | 28.98±0.05 d | 17.17±0.27 d | 23.08±0.16 c | |
成熟期 MS | T1 | 25.61±0.20 c | 15.41±0.18 d | 20.51±0.15 c |
T2 | 24.61±0.15 d | 15.44±0.06 d | 20.02±0.06 c | |
T3 | 25.79±0.10 c | 17.22±0.12 b | 21.51±0.11 b | |
T4 | 29.74±0.06 b | 17.56±0.12 b | 23.65±0.09 a | |
T5 | 30.48±0.12 a | 18.37±0.09 a | 24.43±0.02 a | |
T6 | 25.82±0.09 c | 16.44±0.07 c | 21.13±0.07 b |
图1 南瓜全生育期各处理下土壤细菌数量注:不同小写字母表示同一时期不同处理间在P<0.05水平差异显著。
Fig. 1 Soil bacteria quantity under different treatments during the entire growth stage of pumpkinNote:Different lowercase letters indicate significant differences between different treatments of same stage at P<0.05 level.
处理 Treatment | 土层深度Soil layer/ cm | 平均 Average | |
---|---|---|---|
0—20 | 20—40 | ||
T1 | 9.23±0.03 bc | 5.89±0.03 c | 7.56±0.02 c |
T2 | 9.90±0.18 b | 5.80±0.11 c | 7.85±0.09 c |
T3 | 8.90±0.04 c | 6.89±0.36 b | 7.89±0.20 c |
T4 | 11.72±0.25 a | 7.80±0.17 a | 9.75±0.17 a |
T5 | 11.77±0.25 a | 8.08±0.33 a | 9.93±0.08 a |
T6 | 9.24±0.47 bc | 7.61±0.30 ab | 8.43±0.14 b |
表6 不同处理下南瓜全生育期0—40 cm土层土壤细菌数量 (105 CFU·g-1)
Table 6 Average of soil bacteria quantity in 0 to 40 cm soil layer during the entire growth stage of pumpkin under different treatments
处理 Treatment | 土层深度Soil layer/ cm | 平均 Average | |
---|---|---|---|
0—20 | 20—40 | ||
T1 | 9.23±0.03 bc | 5.89±0.03 c | 7.56±0.02 c |
T2 | 9.90±0.18 b | 5.80±0.11 c | 7.85±0.09 c |
T3 | 8.90±0.04 c | 6.89±0.36 b | 7.89±0.20 c |
T4 | 11.72±0.25 a | 7.80±0.17 a | 9.75±0.17 a |
T5 | 11.77±0.25 a | 8.08±0.33 a | 9.93±0.08 a |
T6 | 9.24±0.47 bc | 7.61±0.30 ab | 8.43±0.14 b |
图2 南瓜全生育期各处理下土壤真菌数量注:不同小写字母表示同一时期不同处理间在P<0.05水平差异显著。
Fig. 2 Soil fungi quantity under different treatments during the entire growth stage of pumpkinNote:Different lowercase letters indicate significant differences between different treatments of same stage at P<0.05 level.
处理 Treatment | 土层深度Soil layer/cm | 平均 Average | |
---|---|---|---|
0—20 | 20—40 | ||
T1 | 13.09±0.37 c | 9.45±0.28 c | 11.27±0.16 c |
T2 | 12.97±0.20 c | 10.00±0.23 c | 11.49±0.20 c |
T3 | 14.42±0.12 b | 10.78±0.15 b | 12.60±0.08 b |
T4 | 16.32±0.21 a | 11.65±0.23 a | 13.99±0.15 a |
T5 | 16.27±0.04 a | 11.67±0.06 a | 13.97±0.010 a |
T6 | 14.46±0.39 b | 11.11±0.28 ab | 12.78±0.25 b |
表7 不同处理南瓜全生育期0—40 cm土层土壤真菌数量均值 (103 CFU·g-1)
Table 7 Average of soil fungal quantity in 0 to 40 cm soil layer during the entire growth stage of pumpkin under different treatments
处理 Treatment | 土层深度Soil layer/cm | 平均 Average | |
---|---|---|---|
0—20 | 20—40 | ||
T1 | 13.09±0.37 c | 9.45±0.28 c | 11.27±0.16 c |
T2 | 12.97±0.20 c | 10.00±0.23 c | 11.49±0.20 c |
T3 | 14.42±0.12 b | 10.78±0.15 b | 12.60±0.08 b |
T4 | 16.32±0.21 a | 11.65±0.23 a | 13.99±0.15 a |
T5 | 16.27±0.04 a | 11.67±0.06 a | 13.97±0.010 a |
T6 | 14.46±0.39 b | 11.11±0.28 ab | 12.78±0.25 b |
图3 南瓜全生育期各处理下土壤放线菌数量注:不同小写字母表示同一时期不同处理间在P<0.05水平差异显著。
Fig. 3 Soil actinomycete quantity under different treatments during the entire growth stage of pumpkinNote: Different lowercase letters indicate significant differences between different treatments of same stage at P<0.05 level.
处理 Treatment | 土层深度Soil layer/ cm | 平均 Average | |
---|---|---|---|
0—20 | 20—40 | ||
T1 | 20.88±0.21 b | 14.53±0.28 d | 17.70±0.25 b |
T2 | 20.24±0.29 bc | 15.07±0.39 cd | 17.65±0.15 b |
T3 | 19.90±0.24 c | 15.64±0.18 bc | 17.77±0.03 b |
T4 | 25.07±0.22 a | 17.80±0.15 a | 21.43±0.16 a |
T5 | 24.97±0.16 a | 17.76±0.12 a | 21.36±0.04 a |
T6 | 19.95±0.23 c | 16.05±0.39 b | 18.00±0.27 b |
表8 不同处理南瓜全生育期 0—40 cm土层土壤放线菌数量 (105 CFU·g-1)
Table 8 Average of soil actinomycetes quantity in 0 to 40 cm soil layer during the entire growth stage of pumpkin under different treatments
处理 Treatment | 土层深度Soil layer/ cm | 平均 Average | |
---|---|---|---|
0—20 | 20—40 | ||
T1 | 20.88±0.21 b | 14.53±0.28 d | 17.70±0.25 b |
T2 | 20.24±0.29 bc | 15.07±0.39 cd | 17.65±0.15 b |
T3 | 19.90±0.24 c | 15.64±0.18 bc | 17.77±0.03 b |
T4 | 25.07±0.22 a | 17.80±0.15 a | 21.43±0.16 a |
T5 | 24.97±0.16 a | 17.76±0.12 a | 21.36±0.04 a |
T6 | 19.95±0.23 c | 16.05±0.39 b | 18.00±0.27 b |
图5 不同处理下的南瓜产量注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 5 Pumpkin yield under different treatmentsNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
指标 Index | 蔗糖酶 SC | 碱性磷酸酶 AKP | 过氧化氢酶 CAT | 细菌数量 BQ | 真菌数量 FQ | 放线菌数量 AQ | 呼吸速率 RR | 产量 Yield |
---|---|---|---|---|---|---|---|---|
脲酶UE | 0.740** | 0.911** | 0.960** | 0.810** | 0.747** | 0.887** | 0.844** | 0.819** |
蔗糖酶SC | 0.518* | 0.769** | 0.640** | 0.731** | 0.614** | 0.786** | 0.769** | |
碱性磷酸酶AKP | 0.788** | 0.563* | 0.434 | 0.706** | 0.615** | 0.606** | ||
过氧化氢酶CAT | 0.863** | 0.879** | 0.900** | 0.904** | 0.909** | |||
细菌数量BQ | 0.885** | 0.937** | 0.842** | 0.770** | ||||
真菌数量FQ | 0.858** | 0.878** | 0.848** | |||||
放线菌数量AQ | 0.827** | 0.729** | ||||||
呼吸速率RR | 0.890** |
表9 土壤微环境与产量间的相关性
Table 9 Correlation analysis between soil microenvironmental indicators and pumpkin yield
指标 Index | 蔗糖酶 SC | 碱性磷酸酶 AKP | 过氧化氢酶 CAT | 细菌数量 BQ | 真菌数量 FQ | 放线菌数量 AQ | 呼吸速率 RR | 产量 Yield |
---|---|---|---|---|---|---|---|---|
脲酶UE | 0.740** | 0.911** | 0.960** | 0.810** | 0.747** | 0.887** | 0.844** | 0.819** |
蔗糖酶SC | 0.518* | 0.769** | 0.640** | 0.731** | 0.614** | 0.786** | 0.769** | |
碱性磷酸酶AKP | 0.788** | 0.563* | 0.434 | 0.706** | 0.615** | 0.606** | ||
过氧化氢酶CAT | 0.863** | 0.879** | 0.900** | 0.904** | 0.909** | |||
细菌数量BQ | 0.885** | 0.937** | 0.842** | 0.770** | ||||
真菌数量FQ | 0.858** | 0.878** | 0.848** | |||||
放线菌数量AQ | 0.827** | 0.729** | ||||||
呼吸速率RR | 0.890** |
[1] | 朱建强,马维成,张国森,等.酒泉戈壁钢架大棚秋延茬贝贝南瓜高效栽培技术[J].中国蔬菜,2023(4):125-127. |
[2] | BAJGAI Y, YESHEY Y, DE MASTRO G, et al.. Influence of nitrogen application on wheat crop performance,soil properties,greenhouse gas emissions and carbon footprint in central Bhutan [J/OL].Environ.Dev.,2019,32:100469 [2024-08-26]. . |
[3] | 于果,周晓博.农业化肥与生物有机肥对环境的影响研究[J].农业经济,2022(5):12-14. |
[4] | HAN S Y, JI X H, HUANG L W, et al..Effects of aftercrop tomato and maize on the soil microenvironment and microbial diversity in a long-term cotton continuous cropping field [J/OL]. Front.Microbiol.,2024,15:1410219 [2024-08-26].. |
[5] | 强晓玉,浦瑜,陈沁,等.北京市设施蔬菜科学施肥模式应用现状及其推广建议[J].中国蔬菜, 2024(1):14-21. |
QIANG X Y, PU Y, CHEN Q, et al.. Application status of scientific fertilization model in Beijing facility vegetables and advise for its extension [J]. China Veg., 2024(1):14-21. | |
[6] | 杨咏,方怀信,王祝余.有机肥替代部分化肥对春暖式大棚西瓜产量和品质的影响[J].农业工程技术,2023,43(4):43-44. |
[7] | 张奇茹,谢英荷,李廷亮,等.有机肥替代化肥对旱地小麦产量和养分利用效率的影响及其经济环境效应[J].中国农业科学,2020,53(23):4866-4878. |
ZHANG Q R, XIE Y H, LI T L, et al.. Effects of organic fertilizers replacing chemical fertilizers on yield,nutrient use efficiency,economic and environmental benefits of dryland wheat [J]. Sci. Agric. Sin., 2020, 53(23): 4866-4878. | |
[8] | 胡庆兰,杨凯,王金贵.地膜覆盖及不同施肥处理对根际土壤微生物数量和酶活性的影响[J].西北农业学报,2023,32(3):429-439. |
HU Q L, YANG K, WANG J G. Effect of plastic mulching and different fertilization treatments on microbial quantity and enzyme activity of rhizosphere [J]. Acta Agric. Bor-Occid. Sin., 2023, 32(3): 429-439. | |
[9] | 石磊,张睿佳.生物有机肥对鲜食玉米产量、土壤养分及微生物的影响[J].农学学报,2021,11(11):33-36. |
SHI L, ZHANG R J. Bio-organic fertilizers:effects on fresh corn yield,soil nutrients and microbes [J]. J. Agric., 2021,11(11):33-36. | |
[10] | 高日平,王伟妮,狄彩霞,等.有机肥和秸秆还田对河套灌区盐渍化土壤养分及微生物数量的影响[J].中国土壤与肥料,2023(2):43-53. |
GAO R P, WANG W N, DI C X, et al.. Effects of organic manure and straw returning on nutrient and microbial quantity of saline soil in river-loop irrigation area [J]. Soils Fert. Sci. China, 2023(2):43-53. | |
[11] | JU J, GU Q, ZHOU H W, et al.. Effects of organic fertilizer combined with chemical fertilizer on nutrients,enzyme activities,and rice yield in reclaimed soil [J]. Commun. Soil Sci. Plant Anal., 2022, 53(22): 3060-3071. |
[12] | 赵娜,王小利,何进,等.有机肥替代化学氮肥对黄壤活性有机碳组分、酶活性及作物产量的影响[J].环境科学,2024,45(7):4196-4205. |
ZHAO N, WANG X L, HE J, et al.. Effects of replacing chemical nitrogen fertilizer with organic fertilizer on active organic carbon fractions, enzyme activities, and crop yield in yellow soil [J]. Environ Sci., 2024, 45 (7): 4196-4205. | |
[13] | 赵成雷,于建,郭新送,等.有机肥替代化肥对设施番茄产量、品质及土壤性状的影响[J].山东农业科学,2023,55(8):116-120. |
ZHAO C L, YU J, GUO X S, et al.. Effects of organic fertilizer instead of chemical fertilizer on yield,quality and soil properties of greenhouse tomato [J]. Shandong Agric. Sci., 2023,55(8):116-120. | |
[14] | 付强,张平良,刘晓伟,等.有机肥替代部分化肥对半干旱区马铃薯产量、水分和氮素利用率的影响[J].中国土壤与肥料,2023(10):143-149. |
FU Q, ZHANG P L, LIU X W, et al.. Effects of organic fertilizers partial replacing chemical fertilizers on potato yield,water and nitrogen utilization in semi-arid areas [J]. Soil Fert. Sci. China, 2023(10):143-149. | |
[15] | 李明瑞,王小利,段建军,等.有机肥替代化肥对土壤养分、酶活性及水稻产量的影响[J].江苏农业科学, 2024, 52(13): 230-235. |
[16] | 章家恩,刘文高,胡刚.不同土地利用方式下土壤微生物数量与土壤肥力的关系[J].土壤与环境,2002(2):140-143. |
ZHANG J E, LIU W G, HU G. The relationship between quantity index of soil microorganisms and soil fertility of different land use systems [J]. Soil Environ.Sci., 2002(2):140-143. | |
[17] | DOLTRA J, LÆGDSMAND M, OLESEN J E. Cereal yield and quality as affected by nitrogen availability in organic and conventional arable crop rotations:a combined modeling and experimental approach [J]. Eur. J. Agron., 2011, 34(2): 83-95. |
[18] | LIANG Q, CHEN H Q, GONG Y S, et al.. Effects of 15 years of manure and inorganic fertilizers on soil organic carbon fractions in a wheat-maize system in the North China Plain [J]. Nutr. Cycl. Agroecosyst., 2012, 92(1): 21-33. |
[19] | 费聪.有机肥替代化肥对旱区雨养玉米养分吸收利用及产量的影响[J].核农学报,2024,38(7):1355-1364. |
FEI C. Effects of organic fertilizer replacing chemical fertilizer on nutrient absorption-utilization and yield of rain-fed maize in arid region [J]. J. Nucl. Agric. Sci., 2024,38(7):1355-1364. | |
[20] | 陈瑞州,李静,范家慧,等.不同施肥配比对芒果园土壤养分、微生物数量和酶活性的影响[J].热带作物学报,2018,39(6):1055-1060. |
CHEN R Z, LI J, FAN J H, et al.. Effects of different fertilizer ratio on soil nutrient,microbial quantity and enzyme activity in mango garden [J]. Chin. J. Trop. Crops, 2018, 39(6):1055-1060. | |
[21] | 陈军,王立光,叶春雷,等.耕作制度对胡麻土壤酶活性的影响[J].干旱地区农业研究,2019,37(3):177-184, 214. |
CHEN J, WANG L G, YE C L, et al.. Effect of cropping system on flax soil enzyme activity [J]. Agric. Res. Arid Areas, 2019, 37(3):177-184, 214. | |
[22] | 李晓婷,李立军,李杨,等.轮作方式对土壤微生物量及酶活性的影响[J].中国农学通报,2018,34(9):68-73. |
LI X T, LI L J, LI Y, et al.. Effect of different crop rotation methods on soil microbial biomass and enzyme activity [J]. Chin. Agric. Sci. Bull., 2018, 34(9):68-73. | |
[23] | 鲁金香,柴继宽,赵桂琴,等.祁连山区轮作对燕麦土壤酶活性及微生物数量的影响[J].草原与草坪,2023,43(3):108-117. |
LU J X, CHAI J K, ZHAO G Q, et al.. Effects of crop rotation on soil enzyme activities and microorganisms of oat in Qilian mountain area [J]. Grassland Turf., 2023, 43(3):108-117. | |
[24] | 邓少虹,林明月,李伏生,等.施肥对喀斯特地区植草土壤碳库管理指数及酶活性的影响[J].草业学报,2014,23(4):262-268. |
DENG S H, LIN M Y, LI F S, et al.. Effects of fertilization on soil carbon pool management index and enzyme activities in pasture grown soil of the Karst region [J]. Acta Pratac. Sin., 2014, 23(4):262-268. | |
[25] | 陈恩凤,周礼恺,武冠云.微团聚体的保肥供肥性能及其组成比例在评断土壤肥力水平中的意义[J].土壤学报,1994,31(1):18-25. |
CHEN E F, ZHOU L K, WU G Y.Performances of soil microaggregates in storing and supplying moisture and nutrients and role of their composition proportion in judging fertility level [J]. Acta Pedol. Sin., 1994, 31(1):18-25. | |
[26] | 梁路,马臣,张然,等.有机无机肥配施提高旱地麦田土壤养分有效性及酶活性[J].植物营养与肥料学报,2019,25(4):544-554. |
LIANG L, MA C, ZHANG R, et al.. Improvement of soil nutrient availability and enzyme activities in rainfed wheat field by combined application of organic and inorganic fertilizers [J]. J. Plant Nutr. Fert., 2019, 25(4):544-554. | |
[27] | 何念鹏,刘远,徐丽,等.土壤有机质分解的温度敏感性:培养与测定模式[J].生态学报,2018,38(11):4045-4051. |
HE N P, LIU Y, XU L, et al.. Temperature sensitivity of soil organic matter decomposition:new insights into models of incubation and measurement [J]. Acta Ecol. Sin., 2018, 38(11):4045-4051. | |
[28] | 罗珠珠,黄高宝,蔡立群,等.不同耕作方式下春小麦生育期土壤酶时空变化研究[J].草业学报,2012,21(6):94-101. |
LUO Z Z, HUANG G B, CAI L Q, et al.. Temporal and spatial disparities of soil enzyme activities during the spring wheat growing season under different tillage systems [J]. Acta Pratac. Sin., 2012, 21(6): 94-101. | |
[29] | 李大荣,李小玲,周武先,等.有机肥替代部分化肥对湖北贝母生长及土壤性质的影响[J/OL].中国农业科技导报, 2025,27(3):216-226. |
LI D R, LI X L, ZHOU W X, et al.. Effects of partial substitution of chemical fertilizer with organic fertilizer on growth and soil properties of Fritillaria hupehensis [J/OL]. J. Agric. Sci. Technol., 2025, 27(3): 216-226. | |
[30] | 殷琳毅,李进,袁春新,等.生物有机肥替代化肥对土壤及荠菜产量、品质的影响[J].中国瓜菜,2023,36(1):85-89. |
YIN L Y, LI J, YUAN C X, et al.. Bioorganic fertilizer replacing chemical fertilizer affects the soil and shepherd’s purse yield and quality [J]. China Cucurbits Veg., 2023, 36(1):85-89. | |
[31] | WANG L K, LI X F. Steering soil microbiome to enhance soil system resilience [J]. Crit. Rev. Microbiol., 2019,45(5/6):743-753. |
[32] | 邵孝侯,刘旭,周永波,等.生物有机肥改良连作土壤及烤烟生长发育的效应[J].中国土壤与肥料,2011(2):65-67. |
SHAO X H, LIU X, ZHOU Y B, et al.. Effects of bio-organic fertilizer’s application on flue-cured tobacco planted on continuous cropping soil [J]. Soil Fert. Sci. China, 2011(2):65-67. | |
[33] | 汪自松,秦玉秀,沈伟,等.化肥减量配施有机肥对樱桃番茄土壤生物学特性及产量、品质的影响[J].中国土壤与肥料,2024(2):58-64. |
WANG Z S, QIN Y X, SHEN W, et al.. Effects of chemical fertilizer reduction combined with organic fertilizer application on soil biological characteristics,yield and quality of cherry tomato [J]. Soils Fert. Sci. China, 2024(2):58-64. | |
[34] | 王磊, 高方胜, 曹逼力, 等. 有机肥和化肥配施对不同熟期大白菜土壤生物特性及产量品质的影响[J]. 生态学杂志, 2022,41(1):66-72. |
WANG L, GAO F S, CAO B L, et al.. Effects of combined organic fertilizer and chemical fertilizer application on soil biological characteristics, yield and quality of Chinese cabbage with different maturity periods [J]. Chin. J. Ecol., 2022,41(1):66-72. | |
[35] | 彭宇, 闫会转, 肖中林, 等.不同施肥处理对盆栽辣椒土壤酶活性及土壤微生物含量的影响[J]. 新疆农业科学,2022,59(9):2200-2208. |
PENG Y, YAN H Z, XIAO Z L, et al.. Effects of different fertilization treatments on soil enzyme activity and soil microbial content of potted pepper [J]. Xinjiang Agric. Sci., 2022, 59 (9): 2200-2208. | |
[36] | 张明杰, 张振, 张馨方, 等. 生物有机肥和高碳基肥对皖南烟田土壤呼吸的影响[J].烟草科技, 2021, 54(10): 29-36. |
ZHANG M J, ZHANG Z, ZHANG X F, et al.. Effects of bioorganic fertilizer and high carbon base fertilizer on soil respiration of tobacco fields in southern Anhui province [J]. Tob. Sci. Technol., 2021, 54 (10): 29-36. | |
[37] | 施志国,刘强,宿翠翠,等.添加木本泥炭和腐熟秸秆对黄沙土壤有机碳组分及南瓜产量的影响[J].江苏农业科学,2024,52(5):229-236. |
[38] | 马荣辉,梁金英,王宪刚,等.化肥减量配施有机肥对设施番茄产量、品质和土壤肥力的影响[J].北方园艺,2023(24):45-51. |
MA R H, LIANG J Y, WANG X G, et al.. Effects of chemical fertilizer reduction combined with application organic fertilizer on tomato yield and quality and soil fertility in greenhouse [J].Northern Hortic., 2023(24):45-51. | |
[39] | 朱利霞,曹萌萌,桑成琛,等.生物有机肥替代化肥对玉米土壤肥力及酶活性的影响[J].四川农业大学学报,2022,40(1):67-72. |
ZHU L X, CAO M M, SANG C C, et al.. Effects of bio-fertilizer partially substituting chemical fertilizer on soil fertility and enzyme activity in maize field [J]. J. Sichuan Agric. Univ., 2022, 40(1):67-72. | |
[40] | 徐路路,王晓娟.有机肥等氮量替代化肥对土壤养分及酶活性的影响[J].中国土壤与肥料,2023(1):23-29. |
XU L L, WANG X J. Effects of organic manure replacing chemical fertilizer with equal nitrogen on soil nutrients and enzyme activities [J]. Soil Fert. Sci. China, 2023(1):23-29. |
[1] | 陈士超, 王举, 郭富强, 郝瑞, 石建平. 不同水氮耦合对蛋白桑生理指标及产量的影响[J]. 中国农业科技导报, 2025, 27(6): 240-249. |
[2] | 吴艳, 邹乐萍, 宋惠洁, 胡丹丹, 柳开楼, 梁万里. 控释氮肥和尿素配施对田面水铵态氮和早稻产量的影响[J]. 中国农业科技导报, 2025, 27(4): 192-200. |
[3] | 李大荣, 李小玲, 周武先, 张美德, 蒋小刚, 由金文, 王华. 有机肥替代部分化肥对湖北贝母生长及土壤性质的影响[J]. 中国农业科技导报, 2025, 27(3): 216-226. |
[4] | 吴强, 吴聪连, 吴小云, 吴剑, 徐选美, 赖俊声, 胡伟云, 龚榜初, 江锡兵. 不同施肥处理对锥栗产量及果实品质的影响[J]. 中国农业科技导报, 2025, 27(2): 228-237. |
[5] | 刘婷婷, 郝曦煜, 王辉, 冷静文, 宫世航, 刘伟. 吉林西部半干旱地区不同谷子品种产量与农艺性状的分析[J]. 中国农业科技导报, 2025, 27(1): 50-60. |
[6] | 石纹碹, 谭金芳, 张倩, 李岚涛, 王宜伦. 一次性施肥对不同生态区夏玉米产量和氮肥效率的影响[J]. 中国农业科技导报, 2024, 26(9): 193-202. |
[7] | 吴梅, 张金珠, 王振华, 刘健, 温越, 李宣志. 水气互作对膜下滴灌玉米生理生长及产量的影响[J]. 中国农业科技导报, 2024, 26(8): 189-200. |
[8] | 庞博, 李生梅, 李彦霖, 杨涛, 梁维维, 张茹, 黄雅婕, 任丹, 崔进鑫, 李静, 马晶晶, 高文伟. 192份陆地棉杂交种的遗传多样性分析[J]. 中国农业科技导报, 2024, 26(8): 34-50. |
[9] | 孙亮, 徐益, 蔡沁, 郭靖豪, 赵灿, 郭保卫, 邢志鹏, 霍中洋, 张洪程, 胡雅杰. 中微量元素对水稻产量和品质的影响研究进展[J]. 中国农业科技导报, 2024, 26(8): 9-19. |
[10] | 孙宪印, 牟秋焕, 米勇, 吕广德, 亓晓蕾, 孙盈盈, 尹逊栋, 王瑞霞, 吴科, 钱兆国, 赵岩, 高明刚. 基于GT双标图对小麦新品系的分类评价[J]. 中国农业科技导报, 2024, 26(7): 14-24. |
[11] | 秦宇坤, 陈俊英, 张丽娟. 赣北棉区棉花干物质积累特征和产量对减氮措施的响应[J]. 中国农业科技导报, 2024, 26(6): 191-199. |
[12] | 彭守华, 许铭铭, 尉继强, 梁丽君, 叶全, 迟晓元, 张少峰, 董向丽. 生物菌肥FBR1不同施用方式对花生生长发育及产量的影响[J]. 中国农业科技导报, 2024, 26(6): 200-205. |
[13] | 陈雨欣, 赵红梅, 杨卫君, 杨梅, 郭颂, 宋世龙, 惠超. 生物质炭对土壤微生物碳源利用及春小麦产量的影响[J]. 中国农业科技导报, 2024, 26(5): 174-183. |
[14] | 杜洋洋, 包媛媛, 刘项宇, 张新永. 荞麦轮作对云南栽培马铃薯根际土壤酶活和微生物的影响[J]. 中国农业科技导报, 2024, 26(5): 192-200. |
[15] | 高丽敏, 顾泽辰, 贡雪菲, 崔联明, 郭东森, 周影, 王琳, 魏启舜. 果园生草对中国果树-土壤系统生产性能影响的Meta分析[J]. 中国农业科技导报, 2024, 26(4): 184-194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||