中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (1): 1-13.DOI: 10.13304/j.nykjdb.2020.0781
• 农业创新论坛 • 下一篇
收稿日期:
2020-09-07
接受日期:
2021-01-15
出版日期:
2022-01-15
发布日期:
2022-01-25
通讯作者:
师恭曜
作者简介:
郝梦媛 E-mail: haomengyuan1307@126.com;
基金资助:
Mengyuan HAO1,2(), Qi HANG2, Gongyao SHI1(
)
Received:
2020-09-07
Accepted:
2021-01-15
Online:
2022-01-15
Published:
2022-01-25
Contact:
Gongyao SHI
摘要:
随着作物基因组测序工作的陆续完成,大量影响作物重要农艺性状的基因功能等待挖掘。由于缺少高效的遗传转化方法,多种作物的基因功能研究进展缓慢。病毒诱导的基因沉默(virus-induced gene silencing, VIGS)技术不依赖遗传转化,通过病毒载体接种即可在当代植物体内实现对靶向基因的沉默。VIGS技术因其起效时间快、沉默效率高、操作成本低、便于高通量和应用植物范围广等特点,被越来越多地应用于不同作物基因功能和代谢通路解析的反向遗传学研究中。介绍了VIGS的技术原理及其发展过程,系统归纳了VIGS在不同作物中的应用,总结和讨论了现有VIGS应用的局限性以及影响其沉默效率的几个关键因素,并对VIGS技术在未来植物生物学研究中的应用进行了展望,以期为VIGS技术的进一步应用和发展提供参考。
中图分类号:
郝梦媛, 杭琦, 师恭曜. VIGS基因沉默技术在作物基因功能研究中的应用与展望[J]. 中国农业科技导报, 2022, 24(1): 1-13.
Mengyuan HAO, Qi HANG, Gongyao SHI. Application and Prospect of Virus-induced Gene Silencing in Crop Gene Function Research[J]. Journal of Agricultural Science and Technology, 2022, 24(1): 1-13.
图1 RNAi与VIGS作用机制(以TRV为例)A:RNAi; B:VIGS。A-a: dsRNA被切割成siRNA;A-b:沉默效应复合体RISC的形成;A-c: RISC被激活;A-d: RISC与互补mRNA序列结合;A-e:目标基因mRNA降解。B-a:野生型TRV RNA1和RNA2基因组结构;B-b:人工改造后的pBINTRA6和pTV00T-DNA结构;B-c:植物细胞内的病毒免疫机制过程。MT—甲基转移酶;H—解旋酶; RdRp—NA依赖性RNA聚合酶; Mp—运动蛋白; 16 k—16 k蛋白; Cp—外壳蛋白; 29.4 k—29.4 k蛋白; 32.8k—32.8 k蛋白;LB—左同源臂; 35S—35S启动子;T—转录终止子; RB—右同源臂;MCS—多克隆位点。
Fig.1 Mechanism of RNAi and VIGS (taking TRV as an example)A:RNAi; B:VIGS。A-a: The dsRNA is cleaved into siRNAs; A-b: The formation of RISC; A-c: The RISC is activated; A-d: The RISC binds to complementary mRNA sequences; A-e: Target gene mRNA degradation. B-a: Genomic organization of wild-type TRV RNA 1 and RNA 2; B-b: The structure of pBINTRA6 and PTV00T-DNA after artificial modification; B-c: The process of viral immunity in plant cells. MT—Methyltransferase;H—Helicase; RdRp—RdRp gene; Mp—Movement protein; 16 k—16 kD protein; Cp—Coat protein; 29.4 k—29.4 kD protein; 32.8 k—32.8 kD protein;LB—Left border; 35S—35S promoter;T—Transcription terminator; RB—Right border;MCS—multiple cloning site.
病毒 Virus | 基因组 Genome | 宿主 Natural host | 基因研究 Genes studied | 首次应用年份Year of first application | 基因功能 Gene function | 文献 Reference |
---|---|---|---|---|---|---|
烟草花叶病毒 Tobacco mosaic virus | RNA | 烟草 N. tabacum | 八氢番茄红素合酶、八氢番茄红素去饱和酶 Phytoene synthase, phytoene desaturase | 1995 | 类胡萝卜素生物合成 Biosynthesis of carotenoids | [ |
马铃薯X病毒 Potato virus X | RNA | 马铃薯,烟草 S. tuberosum, N. tabacum | β-葡萄糖醛酸酶、八氢番茄红素去饱和酶 β-glucuronidase, phytoene desaturase | 1998 | 硝酸还原酶活性 Nitrate reductase activity | [ |
番茄金色花叶病毒 Tomato goldenmosaic virus | DNA | 番茄 S. lycopersicon | 硫等位基因、荧光素酶 Sulfur allele, luciferase | 1998 | 同源染色体基因表达调节 Regulation of homologous gene expression | [ |
烟草脆裂病毒 Tobacco rattle virus | RNA | 宿主范围广泛 Wide host range | 八氢番茄红素去饱和酶、绿色荧光蛋白、叶绿体CLA1基因等 Phytoene desaturase, green fluorescent protein, Cloroplastos CLA1, etc. | 2001 | 抗病、棉花品质性状、耐寒、果实发育、线虫防治 Disease-resistant, quality character of cotton, chilling tolerance, fruit development, nematoda control | [ |
大麦条纹花叶病毒 Barley stripe mosaic virus | RNA | 大麦、小麦、燕麦、玉米、甘蓝 H. vulgare,T. aestivum, A. sativa,Z. mays, B. oleracera | 八氢番茄红素去饱和酶、绿色荧光蛋白Phytoene desaturase, green fluorescent protein | 2002 | 抗病、胁迫 Disease-resistant, stress | [ |
卫星烟草花叶病毒 Satellite tobacco moscirevirus | RNA | 木立烟草 N. glauca | 八氢番茄红素去饱和酶、查尔酮合酶、ADP核糖聚合酶等 Phytoene desaturase, Chalcone synthase A, poly(ADP-ribose) polymerase, etc. | 2002 | 花色性状 Character of flower color | [ |
白菜曲叶病毒 Cabbage leaf curl virus | DNA | 拟南芥 A. thaliana | 绿色荧光蛋白、八氢番茄红素去饱和酶Green fluorescent protein, phytoene desaturase | 2002 | 叶绿素合成、DNA复制 Chlorophyll synthesis, DNA replication | [ |
非洲木薯花叶病毒 African cassava mosaic virus | DNA | 树薯 M. esculenta | 八氢番茄红素去饱和酶、硫等位基因Phytoene desaturase, sulfur allele | 2004 | 细胞机制Cellular mechanism | [ |
表1 VIGS载体及其在植物中的应用
Table 1 VIGS vectors and their applications in plant
病毒 Virus | 基因组 Genome | 宿主 Natural host | 基因研究 Genes studied | 首次应用年份Year of first application | 基因功能 Gene function | 文献 Reference |
---|---|---|---|---|---|---|
烟草花叶病毒 Tobacco mosaic virus | RNA | 烟草 N. tabacum | 八氢番茄红素合酶、八氢番茄红素去饱和酶 Phytoene synthase, phytoene desaturase | 1995 | 类胡萝卜素生物合成 Biosynthesis of carotenoids | [ |
马铃薯X病毒 Potato virus X | RNA | 马铃薯,烟草 S. tuberosum, N. tabacum | β-葡萄糖醛酸酶、八氢番茄红素去饱和酶 β-glucuronidase, phytoene desaturase | 1998 | 硝酸还原酶活性 Nitrate reductase activity | [ |
番茄金色花叶病毒 Tomato goldenmosaic virus | DNA | 番茄 S. lycopersicon | 硫等位基因、荧光素酶 Sulfur allele, luciferase | 1998 | 同源染色体基因表达调节 Regulation of homologous gene expression | [ |
烟草脆裂病毒 Tobacco rattle virus | RNA | 宿主范围广泛 Wide host range | 八氢番茄红素去饱和酶、绿色荧光蛋白、叶绿体CLA1基因等 Phytoene desaturase, green fluorescent protein, Cloroplastos CLA1, etc. | 2001 | 抗病、棉花品质性状、耐寒、果实发育、线虫防治 Disease-resistant, quality character of cotton, chilling tolerance, fruit development, nematoda control | [ |
大麦条纹花叶病毒 Barley stripe mosaic virus | RNA | 大麦、小麦、燕麦、玉米、甘蓝 H. vulgare,T. aestivum, A. sativa,Z. mays, B. oleracera | 八氢番茄红素去饱和酶、绿色荧光蛋白Phytoene desaturase, green fluorescent protein | 2002 | 抗病、胁迫 Disease-resistant, stress | [ |
卫星烟草花叶病毒 Satellite tobacco moscirevirus | RNA | 木立烟草 N. glauca | 八氢番茄红素去饱和酶、查尔酮合酶、ADP核糖聚合酶等 Phytoene desaturase, Chalcone synthase A, poly(ADP-ribose) polymerase, etc. | 2002 | 花色性状 Character of flower color | [ |
白菜曲叶病毒 Cabbage leaf curl virus | DNA | 拟南芥 A. thaliana | 绿色荧光蛋白、八氢番茄红素去饱和酶Green fluorescent protein, phytoene desaturase | 2002 | 叶绿素合成、DNA复制 Chlorophyll synthesis, DNA replication | [ |
非洲木薯花叶病毒 African cassava mosaic virus | DNA | 树薯 M. esculenta | 八氢番茄红素去饱和酶、硫等位基因Phytoene desaturase, sulfur allele | 2004 | 细胞机制Cellular mechanism | [ |
图2 MIR?VIGS与HIGS技术机理A:MIR-VIGS; B:HIGS。A-a:人工合成miRNA并构建重组载体;A-b: miRNA前体经过切割后形成双链miRNA;A-c:沉默效应复合体RISC的形成;A-d: RISC被激活;A-e: RISC与互补mRNA序列结合;A-f:靶基因mRNA的降解。B-a:重组载体的构建;B-b:沉默效应复合体RISC的形成;B-c: RISC与互补mRNA序列结合;B-d:病原体mRNA降解,基因表达被抑制。
Fig.2 Mechamism of MIGS?VIGS and HIGSA:MIR-VIGS; B:HIGS.A-a: AmiRNA is synthesized and recombinant vectors are constructed; A-b: The pri-amiRNA is cleaved into dsmiRNAs; A-c: The formation of RISC; A-d: The RISC is activated; A-e: The RISC binds to complementary mRNA sequences; A-f: Target gene mRNA degradation; B-a: Construction of recombinant vector; B-b: RNA-induced silencing complex (RISC) is formed; B-c: RISC bind to the pathogen mRNA; B-d: The pathogen mRNA degrades and gene expression is inhibited.
1 | 季娜娜,闵德栋,邵淑君,等.VIGS载体在蔬菜作物中的应用研究进展[J].植物生理学报, 2016,52(6):810-816. |
JI N N, MIN D D, SHAO S J, et al.. Progress of research on application of VIGS vectors in vegetables [J]. Plant Physiol. J., 2016,52(6):810-816. | |
2 | 李婷,孔祥强,董合忠.基因沉默技术及其在棉花中的应用[J].分子植物育种, 2016,14(4):918-928. |
LI T, KONG X Q, DONG H Z. Gene silencing and its application in cotton [J]. Mol. Plant Breed., 2016,14(4):918-928. | |
3 | LLAVE C. Virus-derived small interfering RNAs at the core of plant-virus interactions [J]. Trends Plant Sci., 2010,15(12):701-707. |
4 | 左刚,毛建平.转录水平siRNA介导的基因沉默[J].中国生物工程杂志, 2005,25(12):78-81. |
ZUO G, MAO J P. Gene silence by siRNA at transcrip tional level [J]. Chin. Biotechnol., 2005,25(12):78-81. | |
5 | KUMAGAI M H, DONSON J, DELLA-CIOPPA G, et al.. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA [J]. Proc. Natl. Acad. Sci. USA, 1995,92(5):1679-1683. |
6 | RUIZ M T, VOINNET O, BAULCOMBE D C. Initiation and maintenance of virus-induced gene silencing [J]. Plant Cell, 1998,10(6):937-946. |
7 | ROSHAN P, KULSHRESHTHA A, KUMAR S, et al.. AV2 protein of tomato leaf curl Palampur virus promotes systemic necrosis in Nicotiana benthamiana and interacts with host Catalase2 [J/OL]. Sci. Rep., 2018, 8:1273[2020-09-06]. . |
8 | KJEMTRUP S, SAMPSON K S, PEELE C G, et al.. Gene silencing from plant DNA carried by a Geminivirus [J]. Plant J., 1998,14(1):91-100. |
9 | RATCLIFF F, MARTIN-HERNANDEZ A M, BAULCOMBE D C. Tobacco rattle virus as a vector for analysis of gene function by silencing [J]. Plant J., 2001,25(2):237-245. |
10 | GAO X Q, Wheeler T, LI Z H, et al.. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt [J]. Plant J., 2011,66(2):293-305. |
11 | QU J, YE J, GENG Y F, et al.. Dissecting functions of KATANIN and WRINKLED1 in cotton fiber development by virus-Induced gene silencing [J]. Plant Physiol., 2012,160(2):738-748. |
12 | LIU H P, FU D Q, ZHU B Z, et al.. Virus-induced gene silencing in eggplant (Solanum melongena) [J]. J. Integr. Plant Biol., 2012,54(6):422-429. |
13 | LI T, TAN D M, LIU Z, et al.. Apple MdACS6 regulates ethylene biosynthesis during fruit development involving ethylene-responsive factor [J]. Plant Cell Physiol., 2015,56(10):1909-1917. |
14 | LI X J, ZHANG J Q, WU Z C, et al.. Functional characterization of a glucosyltransferase gene, LcUFGT1, involved in the formation of cyanidin glucoside in the pericarp of Litchi chinensis [J]. Physiol. Plant, 2016,156(2):139-149. |
15 | HOLZBERG S, BROSIO P, GROSS C, et al.. Barley stripe mosaic virus-induced gene silencing in a monocot plant [J]. Plant J., 2002,30(3):315-327. |
16 | SCOFIELD S R, HUANG L, BRANDT A S, et al.. Development of a virus-Induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway [J]. Plant Physiol., 2005,138(4):2165-2173. |
17 | YUAN C, LI C, YAN L J, et al.. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots [J/OL]. PLoS ONE, 2011,6(10):e26468 [2020-09-06]. . |
18 | GOSSELE V, FACHE I, MEULEWAETER F, et al.. SVISS-a novel transient gene silencing system for gene function discovery and validation in tobacco plants [J]. Plant J., 2002,32(5):859-866. |
19 | TURNAGE M A, MUANGSAN N, PEELE C G, et al.. Geminivirus-based vectors for gene silencing in Arabidopsis [J]. Plant J., 2002,30(1):107-114. |
20 | FOFANA I B, SANGARE A, COLLIER R, et al.. A geminivirus-induced gene silencing system for gene function validation in cassava [J]. Plant Mol. Biol., 2004,56(4):613-624. |
21 | TAO X R, ZHOU X P. A modified viral satellite DNA that suppresses gene expression in plants [J]. Plant J., 2004,38(5):850-860. |
22 | JU Z, WANG L, CAO D Y, et al.. A viral satellite DNA vector-induced transcriptional gene silencing via DNA methylation of gene promoter in Nicotiana benthamiana [J]. Virus Res., 2016, 223: 99-107. |
23 | DING X S, Schneider W L, Chaluvadi S R, et al.. Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts [J/OL]. Mol. Plant-Microbe Int., 2006,19(11):1229 [2020-09-06]. . |
24 | SINGH D K, LEE H, DWEIKAT I, et al.. An efficient and improved method for virus-induced gene silencing in sorghum [J/OL]. BMC Plant Biol., 2018,18:123 [2020-09-06]. . |
25 | SASAKI S, YAMAGISHI N, YOSHIKAWA N. Efficient virus-induced gene silencing in apple, pear and Japanese pear using apple latent spherical virus vectors [J/OL]. Plant Methods, 2011,7(1):15 [2020-09-06]. . |
26 | TUTTLE J R, IDRIS A M, BROWN J K, et al.. Geminivirus-Mediated gene silencing from cotton leaf crumple virus is enhanced by low temperature in cotton [J]. Plant Physiol., 2008,148(1):41-50. |
27 | TUTTLE J R, HAIGLER C H, ROBERTSON D. Method: low-cost delivery of the cotton leaf crumple virus-induced gene silencing system [J/OL]. Plant Methods, 2012,8(1):27 [2020-09-06]. . |
28 | KANAZAWA A, INABA J, SHIMURA H, et al.. Virus-mediated efficient induction of epigenetic modifications of endogenous genes with phenotypic changes in plants [J]. Plant J., 2011,65(1):156-168. |
29 | 王蓉. 用于玉米基因功能研究的黄瓜花叶病毒基因沉默载体的创建[D].北京:中国农业大学, 2016. |
WANG R. Construction of Cucumber mosaic virus-induced gene silencing vector for maize functional genomics research [D]. Beijing: China Agricultural University, 2016. | |
30 | AGÜERO J, RUIZ-RUIZ S, CARMEN VIVES MDEL, et al.. Development of viral vectors based on Citrus leaf blotch virus to express foreign proteins or analyze gene function in citrus plants [J]. Mol. Plant-Microbe Int., 2012,15(10):1326-1337. |
31 | CHOI B, KWON S, KIM M, et al.. A plant virus-based vector system for gene function studies in pepper [J]. Plant Physiol., 2019,181(3):867-880. |
32 | 宋震,李中安,周常勇.病毒诱导的基因沉默(VIGS)研究进展[J].园艺学报, 2014,41(9):1885-1894. |
SONG Z, LI Z A, ZHOU C Y. Research advances of virus-induced gene silencing (VIGS) [J]. Acta Hortic. Sin., 2014,41(9):1885-1894. | |
33 | 徐幼平,徐秋芳,宋晓毅,等.病毒诱导的基因沉默[J].浙江大学学报(农业与生命科学版), 2008,34(2):119-131. |
XU Y P, XU Q F, SONG X Y, et al.. Virus-induced gene silencing [J]. J. Zhejiang Univ. (Agric. Life Sci.), 2008,34(2):119-131. | |
34 | 李姣,于宗霞,冯宝民.植物中病毒诱导基因沉默技术的研究与应用进展[J].分子植物育种, 2019,17(5):1537-1542. |
LI J, YU Z X, FENG B M. Advances in research and application of virus induced gene silencing in plants [J]. Mol. Plant Breed., 2019,17(5):1537-1542. | |
35 | 张景霞,王芙蓉,高阳,等.VIGS技术及其在棉花功能基因组研究中的应用进展[J].棉花学报, 2015,27(5):469-473. |
ZHANG J X, WANG F R, GAO Y, et al.. Application of VIGS in studies of gene function in cotton [J]. Cotton Sci., 2015,27(5):469-473. | |
36 | KHARAZMI S, BEHJATNIA S A A, HAMZEHZARGHANI H, et al.. Cotton leaf curl Multan betasatellite as a plant gene delivery vector trans-activated by taxonomically diverse geminiviruses [J]. Archives Virol., 2012,157(7):1269-1279. |
37 | SCHWAB R, PALATNIK J F, RIESTER M, et al.. Specific effects of microRNAs on the plant transcriptome [J]. Dev. Cell, 2005,8(4):517-527. |
38 | SCHWAB R, OSSOWSKI S, RIESTER M, et al.. Highly specific gene silencing by artificial microRNAs in Arabidopsis [J]. Plant Cell, 2006,18(5):1121-1133. |
39 | TANG Y, WANG F, ZHAO J P, et al.. Virus-based microRNA expression for gene functional analysis in plants [J]. Plant Physiol., 2010, 153(2):632-641. |
40 | NOWARA D, GAY A, LACOMME C, et al.. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogenblumeria graminis [J]. Plant Cell, 2010,22(9):3130-3141. |
41 | 肖瑶,王教瑜,李玲,等.寄主诱导的基因沉默技术研究和应用进展[J].植物保护学报, 2020,47(1):11-17. |
XIAO Y, WANG J Y, LI L, et al.. Advances in the researches and applications of host-induced gene silencing technology [J]. J. Plant Protection, 2020,47(1):11-17. | |
42 | VALENTINE T A, RANDALL E, WYPIJEWSKI K, et al.. Delivery of macromolecules to plant parasitic nematodes using a tobacco rattle virus vector [J]. Plant Biotechnol. J., 2007,5(6):827-834. |
43 | GHAG S B. Host induced gene silencing, an emerging science to engineer crop resistance against harmful plant pathogens [J]. Physiol. Mol. Plant Pathol., 2017,100:242-254. |
44 | PANWAR V, MCCALLUM B, BAKKEREN G. Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus [J]. Plant Mol. Biol., 2013,81(6):595-608. |
45 | LIU Y, SCHIFF M, MARATHE R, et al.. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus [J]. Plant J., 2002,30(4):415-429. |
46 | RYU C M, ANAND A, LI K, et al.. Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse solanaceous species [J]. Plant J., 2004,40(2):322-331. |
47 | YAN H X, FU D Q, ZHU B Z, et al.. Sprout vacuum-infiltration: a simple and efficient agroinoculation method for virus-induced gene silencing in diverse solanaceous species [J]. Plant Cell Rep., 2012,31(9):1713-1722. |
48 | ZHOU T, LIU X D, FAN Z F. Use of a virus gene silencing vector for maize functional genomics research [J]. Methods Mol. Biol., 2018,1676:141-150. |
49 | 马红珍.番茄VIGS体系构建及在番茄白粉病抗性研究上的应用[D]. 河南 开封:河南大学, 2010. |
MA H Z. The establishment of tomato VIGS system and its application in decoding tomato powdery mildew resistance [D]. Henan Kaifeng: Henan University, 2010. | |
50 | CHEN X H, DUAN X F, WANG S, et al.. Virus-induced gene silencing (VIGS) for functional analysis of MYB80 gene involved in Solanum lycopersicum cold tolerance [J]. Protoplasma, 2019,256:409-418. |
51 | ZHANG X H, JI N N, MIN D D, et al.. Progress of research on application of VIGS vectors in fruit trees [J]. J. Fruit Sci., 2017,34(4):507-514. |
52 | JIA H F, LU D, SUN J H, et al.. Type 2C protein phosphatase ABI1 is a negative regulator of strawberry fruit ripening [J]. J. Exp. Bot., 2013,64(6):1677-1687. |
53 | ZHOU J, HUNTER D A, LEWIS D H, et al.. Insights into carotenoid accumulation using VIGS to block different steps of carotenoid biosynthesis in petals of California poppy [J]. Plant Cell Rep., 2018, 37:1311-1323. |
54 | SCHACHTSIEK J, HUSSAIN T, AZZOUHRI K, et al.. Virus-induced gene silencing (VIGS) in Cannabis sativa L. [J/OL]. Plant Methods, 2019, 15:157 [2020-09-06]. . |
55 | FU D Q, ZHU B Z, ZHU H L, et al.. Enhancement of virus-induced gene silencing in tomato by low temperature and low humidity [J]. Mol. Cells, 2006,21(1):153-160. |
56 | BURCH-SMITH T M, ANDERSON J C, MARTIN G B, et al.. Applications and advantages of virus-induced gene silencing for gene function studies in plants [J]. Plant J., 2004,39(5):734-746. |
57 | XU P, ZHANG Y J, KANG L, et al.. Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants [J]. Plant Physiol., 2006,142(2):429-440. |
58 | THOMAS C L, JONES L, BAULCOMBE D C, et al.. Size constraints for targeting post-transcriptional gene silencing and for RNA-directed methylation in Nicotiana benthamiana using a potato virus X vector [J]. Plant J., 2001,25(4):417-425. |
59 | LACOMME C, HRUBIKOVA K, HEIN I. Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats [J]. Plant J., 2003,34(4):543-553. |
60 | CHEUK A, HOUDE M. A rapid and efficient method for uniform gene expression using the barley stripe mosaic virus [J/OL]. Plant Methods, 2017, 13(1):1-11 [2020-09-06]. . |
61 | SENTHIL-KUMAR M, MYSORE K S. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato [J]. Plant Biotechnol. J., 2011,9(7):797-806. |
[1] | 孙万仓, 裴新梧, 马骊, 王学芳, 武军艳, 李学才, 蒲媛媛, 刘丽君, 柴鹏, 李孝泽, 贾玉娟, 王积军, 刘芳, 陈其鲜, 沈金雄. 我国北方冬季覆盖作物研究进展及发展前景[J]. 中国农业科技导报, 2022, 24(1): 128-136. |
[2] | 廖嘉明, §, 李春梅§, 张石虎, 李布野, 欧阳昆唏, 陈晓阳. CRISPR/Cas9基因编辑技术的发展及其在植物中的应用[J]. 中国农业科技导报, 2021, 23(12): 20-28. |
[3] | 魏珣, §, 孙康泰§, 刘宏波, 姚志鹏, 葛毅强, 邓小明. “十三五”国家重点研发计划“七大农作物育种”重点专项管理经验与科技创新进展[J]. 中国农业科技导报, 2021, 23(11): 1-6. |
[4] | 李新海1,2,谷晓峰2,马有志1,邱丽娟1,黎裕1,万建民1*. 农作物基因设计育种发展现状与展望[J]. 中国农业科技导报, 2020, 22(8): 1-4. |
[5] | 杨菲菲,李世娟*,刘升平,吕纯阳,刘大众,肖顺夫,刘航. 作物环境胁迫高光谱遥感监测研究进展[J]. 中国农业科技导报, 2020, 22(4): 85-93. |
[6] | 段怡红,阎媛媛,陈丽婷,李青,张冬梅,孙正文,张艳,马峙英,王省芬*. 陆地棉开花时间相关基因GhMYB44的克隆与功能验证[J]. 中国农业科技导报, 2020, 22(12): 29-38. |
[7] | 吴珊,庞俊琴,庄军红,陈丽梅*. 我国转基因作物的研发与安全管理[J]. 中国农业科技导报, 2020, 22(11): 11-16. |
[8] | 葛川1,杨荣2,李刘军2,张建诚2,郑兴卫2*. 小麦全基因组中YABBY基因家族的筛选与特征分析[J]. 中国农业科技导报, 2019, 21(8): 11-18. |
[9] | 李颜方,王高鸿,杜艳伟,王振华,成凯,王玉文,赵根有,赵晋锋*,余爱丽. 作物抗性淀粉研究进展[J]. 中国农业科技导报, 2019, 21(8): 56-62. |
[10] | 向雁,陈印军*,侯艳林. 全球有机农地变化与有机农业发展对中国的启示[J]. 中国农业科技导报, 2019, 21(6): 1-7. |
[11] | 石祖梁1,2,王飞1,2,王久臣1,2,李想1*,孙仁华1,宋成军1. 我国农作物秸秆资源利用特征、技术模式及发展建议[J]. 中国农业科技导报, 2019, 21(5): 8-16. |
[12] | 魏鹏飞1,2,3,徐新刚2,3*,杨贵军2,3,李中元1,王建雯2,3,陈帼1,2,3. 基于多时相影像植被指数变化特征的作物遥感分类[J]. 中国农业科技导报, 2019, 21(2): 54-61. |
[13] | 王勇健1,2,3,4,温维亮1,2,3,郭新宇1,2,3*. 禾本科作物节单位研究进展[J]. 中国农业科技导报, 2019, 21(2): 62-70. |
[14] | 张娜1,赵晨光1,温晓蕾2,杨文香1,张娜1*,刘大群1*. 小麦CBL结合蛋白激酶TaCIPK31负调控TcLr37对小麦叶锈菌的抗性[J]. 中国农业科技导报, 2019, 21(12): 102-109. |
[15] | 唐海明,肖小平,汤文光,李超,汪柯,程凯凯,郭立君,孙耿. 冬季覆盖作物秸秆还田对水稻植株养分积累与转运的影响[J]. 中国农业科技导报, 2018, 20(8): 63-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||