中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (11): 13-26.DOI: 10.13304/j.nykjdb.2022.0087
收稿日期:
2022-02-07
接受日期:
2022-08-03
出版日期:
2022-11-15
发布日期:
2022-11-29
通讯作者:
孙慧武
作者简介:
李雪 E-mail: lix1994@126.com基金资助:
Xue LI(), Zifei LIU(
), Mingjun ZHAO, Lejun XU, Huiwu SUN(
)
Received:
2022-02-07
Accepted:
2022-08-03
Online:
2022-11-15
Published:
2022-11-29
Contact:
Huiwu SUN
摘要:
在碳达峰、碳中和大背景下,设定和践行具有行业特色的“双碳”目标,对推动我国渔业绿色高质量发展和助力国家“双碳”战略具有现实意义。渔业以水产养殖与捕捞业为主要产业形式,具有碳源碳汇双重属性。基于已有碳排放和碳汇核算方法,探索中国水产养殖与捕捞业“双碳”目标及实现路径,分析发现:①2011—2020年,受产业规模扩大和“减船转产”政策双重影响,水产养殖与捕捞业的碳排放量先增后降,当前饲料投喂碳排放为水产养殖与捕捞业的首要碳源;②受养殖业快速发展的影响,水产养殖与捕捞业总碳汇波动上升,养殖碳汇超过捕捞碳汇;③水产养殖与捕捞业更偏碳源属性,超3 000万t碳未实现中和。综合中长期水产品需求压力和产业绿色高质量发展形势,设定了符合水产养殖与捕捞行业特色的 “双碳”目标,并提出重点环节减排、扩大渔业增汇的技术路径以及探索渔业碳汇交易机制、强化政策支持引导的社会管理路径。期望助力我国水产养殖与捕捞业实现碳达峰、碳中和目标,推动水产养殖与捕捞业由粗放、低效、高耗能向集约、高效、绿色产业转型,从而为促进产业发展和民众富裕提供有益参考。
中图分类号:
李雪, 刘子飞, 赵明军, 徐乐俊, 孙慧武. 我国水产养殖与捕捞业“双碳”目标及实现路径[J]. 中国农业科技导报, 2022, 24(11): 13-26.
Xue LI, Zifei LIU, Mingjun ZHAO, Lejun XU, Huiwu SUN. Carbon Peak and Carbon Neutralization Goals and Realization Paths of the Aquaculture and Fishing Industry in China[J]. Journal of Agricultural Science and Technology, 2022, 24(11): 13-26.
营养成分 Nutrient | 比例 Ratio/% | 碳质量分数 Mass fraction of C/% |
---|---|---|
蛋白质 Protein | 35.00 | 52.55 |
脂肪 Fat | 10.00 | 76.50 |
碳水化合物Carbohydrate | 25.00 | 40.00 |
其他 Others | 30.00 | — |
表 1 水产饲料主要营养成分的质量分数[27-28]
Table 1 Mass fraction of main nutrients in aquatic feed[27?28]
营养成分 Nutrient | 比例 Ratio/% | 碳质量分数 Mass fraction of C/% |
---|---|---|
蛋白质 Protein | 35.00 | 52.55 |
脂肪 Fat | 10.00 | 76.50 |
碳水化合物Carbohydrate | 25.00 | 40.00 |
其他 Others | 30.00 | — |
类别 Category | 拖网 Trawl | 围网 Seine | 刺网 Gillnet | 张网 Netting | 钓具 Tackle | 其他 Others |
---|---|---|---|---|---|---|
海洋捕捞 Offshore fishing vessel | 0.480 | 0.492 | 0.451 | 0.328 | 0.328 | 0.312 |
内陆捕捞 Freshwater fishing vessel | 0.240 | 0.246 | 0.226 | 0.164 | 0.164 | 0.156 |
养殖渔船 Other fishing boat | 0.225 |
表 2 我国国内机动渔船油价用油量参数 (t·kWh-1)
Table 2 Domestic motor fishing vessel oil price parameters in China
类别 Category | 拖网 Trawl | 围网 Seine | 刺网 Gillnet | 张网 Netting | 钓具 Tackle | 其他 Others |
---|---|---|---|---|---|---|
海洋捕捞 Offshore fishing vessel | 0.480 | 0.492 | 0.451 | 0.328 | 0.328 | 0.312 |
内陆捕捞 Freshwater fishing vessel | 0.240 | 0.246 | 0.226 | 0.164 | 0.164 | 0.156 |
养殖渔船 Other fishing boat | 0.225 |
养殖方式Aquaculture mode | 类别 Category | 海水 Seawater | 淡水 Freshwater | |
---|---|---|---|---|
工厂化养殖 Industrialized aquaculture | 增氧 Oxygenation | 水体投饲率Feed ratio/% | 3 | 3 |
饲料耗氧量 Oxygen consumption of feed/(kg·kg-1) | 0.5 | 0.5 | ||
罗茨风机产氧 Oxygen production of Roots blower/(g·kWh-1) | 0.8 | 0.8 | ||
年运行时间 Running time per year/d | 200 | 200 | ||
换水 Water renewal | 次数 Times | 4 | 4 | |
流量Flow/(m3·kWh-1) | 20 | 30 | ||
运行时间 Running time per year/d | 200 | 200 | ||
池塘养殖 Pond aquaculture | 增氧 Oxygenation | 需氧面积占比Percent of oxygenation area/% | 80 | 80 |
耗电量Power consumption/(kWh·hm-2) | 2.25 | 2.24 | ||
使用频次Using frequency/ (h·d-1) | 4 | 4 | ||
年运行时间 Running time per year/d | 200 | 200 | ||
换水 Water renewal | 平均水深Average depth/m | 1 | 1.5 | |
换水率Water renewal ratio/% | 2 | 2 | ||
流量Flow/(m3·kWh-1) | 60 | 60 | ||
年运行时间 Running time per year/d | 200 | 200 |
表 3 水产养殖设备主要能耗参数[1]
Table 3 Main energy consumption parameters of aquaculture equipment[1]
养殖方式Aquaculture mode | 类别 Category | 海水 Seawater | 淡水 Freshwater | |
---|---|---|---|---|
工厂化养殖 Industrialized aquaculture | 增氧 Oxygenation | 水体投饲率Feed ratio/% | 3 | 3 |
饲料耗氧量 Oxygen consumption of feed/(kg·kg-1) | 0.5 | 0.5 | ||
罗茨风机产氧 Oxygen production of Roots blower/(g·kWh-1) | 0.8 | 0.8 | ||
年运行时间 Running time per year/d | 200 | 200 | ||
换水 Water renewal | 次数 Times | 4 | 4 | |
流量Flow/(m3·kWh-1) | 20 | 30 | ||
运行时间 Running time per year/d | 200 | 200 | ||
池塘养殖 Pond aquaculture | 增氧 Oxygenation | 需氧面积占比Percent of oxygenation area/% | 80 | 80 |
耗电量Power consumption/(kWh·hm-2) | 2.25 | 2.24 | ||
使用频次Using frequency/ (h·d-1) | 4 | 4 | ||
年运行时间 Running time per year/d | 200 | 200 | ||
换水 Water renewal | 平均水深Average depth/m | 1 | 1.5 | |
换水率Water renewal ratio/% | 2 | 2 | ||
流量Flow/(m3·kWh-1) | 60 | 60 | ||
年运行时间 Running time per year/d | 200 | 200 |
方式 Mode | 品类 Category | 碳汇系数 Carbon sink coefficient/% | 品类 Category | 碳汇系数 Carbon sink coefficient/% | 品类 Category | 碳汇系数 Carbon sink coefficient/% |
---|---|---|---|---|---|---|
养殖 Aquaculture | 鲢鱼 | 16.19 | 鲤鱼 | 11.36 | 河蚌 | 8.90 |
鳙鱼 | 13.40 | 团头鲂 Megalobrama amblycephala | 16.87 | 螺 Cochlea | 7.93 | |
草鱼 Ctenopharyngodon idella | 12.81 | 鳜鱼 Siniperca chuatsi | 12.73 | 蚬 Clam | 11.06 | |
鲫鱼 | 14.22 | 虾 squilla | 11.08 | 河蟹 Cancrorum | 11.10 | |
捕捞 Fishing | 鱼类 Fish | 14.00 | 甲壳类 Crustacean | 11.00 | 贝类 Shellfish | 10.00 |
表 4 淡水水产品碳汇系数 [24]
Table 4 Carbon sink coefficient of freshwater aquatic products[24]
方式 Mode | 品类 Category | 碳汇系数 Carbon sink coefficient/% | 品类 Category | 碳汇系数 Carbon sink coefficient/% | 品类 Category | 碳汇系数 Carbon sink coefficient/% |
---|---|---|---|---|---|---|
养殖 Aquaculture | 鲢鱼 | 16.19 | 鲤鱼 | 11.36 | 河蚌 | 8.90 |
鳙鱼 | 13.40 | 团头鲂 Megalobrama amblycephala | 16.87 | 螺 Cochlea | 7.93 | |
草鱼 Ctenopharyngodon idella | 12.81 | 鳜鱼 Siniperca chuatsi | 12.73 | 蚬 Clam | 11.06 | |
鲫鱼 | 14.22 | 虾 squilla | 11.08 | 河蟹 Cancrorum | 11.10 | |
捕捞 Fishing | 鱼类 Fish | 14.00 | 甲壳类 Crustacean | 11.00 | 贝类 Shellfish | 10.00 |
参数 Parameter | 扇贝 | 蛤 | 牡蛎 | 贻贝 | 其他 Others | |
---|---|---|---|---|---|---|
湿、干重转换系数 Wet/dry weight conversion factor | 63.89 | 52.55 | 65.10 | 75.28 | 64.21 | |
质量比重 Mass proportion/% | 软组织 Soft tissue | 14.35 | 1.98 | 6.14 | 8.47 | 11.41 |
壳 Shell | 85.65 | 98.02 | 93.86 | 91.53 | 88.59 | |
碳含量 Carbon content/% | 软组织 Soft tissue | 42.84 | 44.90 | 45.98 | 44.40 | 43.87 |
壳 Shell | 11.40 | 11.52 | 12.68 | 11.76 | 11.44 | |
碳汇系数 Carbon sink coefficient/% | 10.17 | 6.40 | 9.59 | 10.93 | 9.72 |
表 5 海水贝类碳汇系数测算参数[22]
Table 5 Calculating parameter of seawater shellfish carbon sink coefficient[22]
参数 Parameter | 扇贝 | 蛤 | 牡蛎 | 贻贝 | 其他 Others | |
---|---|---|---|---|---|---|
湿、干重转换系数 Wet/dry weight conversion factor | 63.89 | 52.55 | 65.10 | 75.28 | 64.21 | |
质量比重 Mass proportion/% | 软组织 Soft tissue | 14.35 | 1.98 | 6.14 | 8.47 | 11.41 |
壳 Shell | 85.65 | 98.02 | 93.86 | 91.53 | 88.59 | |
碳含量 Carbon content/% | 软组织 Soft tissue | 42.84 | 44.90 | 45.98 | 44.40 | 43.87 |
壳 Shell | 11.40 | 11.52 | 12.68 | 11.76 | 11.44 | |
碳汇系数 Carbon sink coefficient/% | 10.17 | 6.40 | 9.59 | 10.93 | 9.72 |
品类Category | 碳汇系数 Carbon sink coefficient/% | 品类Category | 碳汇系数 Carbon sink coefficient/% |
---|---|---|---|
海带 | 32.61 | 石花菜 | 26.37 |
裙带菜Undaria pinnatifida Suringar | 28.81 | 羊栖菜 | 23.00 |
紫菜Pyropia | 32.64 | 苔菜 | 32.60 |
江蓠Gracilaria | 29.42 | 其他Others | 28.71 |
麒麟菜Eucheuma muricatum | 24.25 |
表 6 主要藻类的碳汇系数[22]
Table 6 Carbon sink coefficient of main algae species[22]
品类Category | 碳汇系数 Carbon sink coefficient/% | 品类Category | 碳汇系数 Carbon sink coefficient/% |
---|---|---|---|
海带 | 32.61 | 石花菜 | 26.37 |
裙带菜Undaria pinnatifida Suringar | 28.81 | 羊栖菜 | 23.00 |
紫菜Pyropia | 32.64 | 苔菜 | 32.60 |
江蓠Gracilaria | 29.42 | 其他Others | 28.71 |
麒麟菜Eucheuma muricatum | 24.25 |
用电环节Mechanical electricity | 年份 Year | ||||
---|---|---|---|---|---|
2024 | 2027 | 2030 | 2033 | 2035 | |
单位产量用电强度 Electricity intensity per unit output/(kWh·kg-1) | 0.288 8 | 0.299 9 | 0.311 5 | 0.323 5 | 0.331 7 |
用电量估测 Electricity consumption estimation/108 kWh | 162.29 | 178.04 | 195.30 | 214.25 | 227.89 |
电网排放因子 Grid emission factor(Y=3.04%) | 0.791 3 | 0.721 3 | 0.657 5 | 0.599 3 | 0.563 4 |
碳排放量估测 Carbon emissions estimation/104 t | 1 284.20 | 1 284.15 | 1 284.10 | 1 284.05 | 1 284.02 |
表 7 养殖设备用电环节碳达峰的情景预测
Table 7 Scenarios prediction for carbon peaking in mechanical electricity
用电环节Mechanical electricity | 年份 Year | ||||
---|---|---|---|---|---|
2024 | 2027 | 2030 | 2033 | 2035 | |
单位产量用电强度 Electricity intensity per unit output/(kWh·kg-1) | 0.288 8 | 0.299 9 | 0.311 5 | 0.323 5 | 0.331 7 |
用电量估测 Electricity consumption estimation/108 kWh | 162.29 | 178.04 | 195.30 | 214.25 | 227.89 |
电网排放因子 Grid emission factor(Y=3.04%) | 0.791 3 | 0.721 3 | 0.657 5 | 0.599 3 | 0.563 4 |
碳排放量估测 Carbon emissions estimation/104 t | 1 284.20 | 1 284.15 | 1 284.10 | 1 284.05 | 1 284.02 |
1 | 徐皓,刘晃,张建华,等.我国渔业能源消耗测算[J].中国水产, 2007(11):74-76, 78. |
2 | 唐启升. 碳汇渔业与海水养殖业——战略性新兴产业[N]. 中国渔业报,2010-11-29(007). |
3 | 徐皓,张祝利,张建华,等.我国渔业节能减排研究与发展建议[J].水产学报,2011,35(3):472-480. |
XU H, ZHANG Z L, ZHANG J H, et al.. The research and development proposals on fishery energy saving and emission reduction in China [J]. J. Fisheries China,2011,35(3):472-480. | |
4 | PARKER R, HARTMANN K, GREEN B S, et al.. Environmental and economic dimensions of fuel use in Australian fisheries [J]. J. Cleaner Production, 2015, 87:78-86. |
5 | 岳冬冬,王鲁民,王茜,等.我国海洋捕捞渔业温室气体排放量估算与效率分析[J].山西农业科学,2013,41(8):873-876. |
YUE D D, WANG L M, WANG Q, et al.. GHG emissions estimation and efficiency analysis of marine fisheries [J]. Shanxi J. Agric. Sci., 2013,41(8):873-876. | |
6 | 李晨,迟萍,邵桂兰.我国远洋渔业碳排放与行业经济增长的响应关系研究——基于脱钩理论与LMDI分解的实证分析[J].科技管理研究,2016,36(6):233-237, 244. |
LI C, CHI P, SHAO G L. Research on the responsive relationship between China’s deep-sea fishery carbon emissions and industry economic growth: an empirical analysis based on decoupling theory and LMDI Decomposition [J]. Sci. Technol. Manage. Res., 2016,36(6):233-237, 244. | |
7 | 金书秦,陈洁.我国水产养殖的直接能耗及碳排放研究[J].中国渔业经济, 2012,30(1):73-82. |
JIN S Q, CHEN J. A study on energy consumption and carbon emission of China’s aquaculture [J]. Chin. Fisheries Econ., 2012,30(1):73-82. | |
8 | 刘晃,车轩.中国水产养殖二氧化碳排放量估算的初步研究[J].南方水产, 2010,6(4):77-80. |
LIU H, CHE X. Elementary study on evaluation of CO2 emissions from aquaculture in China [J]. Southern Fisheries, 2010,6(4):77-80. | |
9 | 李晨,李昊玉,孔海峥,等.中国渔业生产系统隐含碳排放结构特征及驱动因素分解[J].资源科学, 2021, 43(6): 1166-1177. |
LI C, LI H Y, KONG H Z, et al.. Structural characteristics and driving factors of embodied carbon emissions from fishery production system in China [J]. Resour. Sci., 2021, 43(6): 1166-1177. | |
10 | IPCC. IPCC fourth assessment report-AR4-climate change 2007: the physical science basis [R]. Intergovernmental Panel on Climate Change, 2007. |
11 | 唐启升,蒋增杰,毛玉泽.渔业碳汇与碳汇渔业定义及其相关问题的辨析[J].渔业科学进展,2022, 43(5): 1-7. |
TANG Q S, JIANG Z J, MAO Y Z. Clarification on the definitions and its relevant issues of fisheries carbon sink and carbon sink risheries [J]. Progress Fishery Sci., 2022, 43(5): 1-7. | |
12 | WILSON R W, MILLERO F J, TAYLOR R J, et al.. Contribution of fish to the marine inorganic carbon cycle [J]. Science, 2009, 323(5912): 359-363. |
13 | FODRIE F J, RODRIGUEZ A B, GITTMAN R K, et al.. Oyster reefs as carbon sources and sinks [J/OL]. Proc. Biol., 2017, 284(1859):20170891 [2022-07-21]. . |
14 | MARBÀN, ARIAS-ORTIZ A, MASQUÉP, et al.. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks [J]. J. Ecol., 2015,103: 296-302. |
15 | GE C, WANG H, KAN M, et al.. Carbon sequestration within silica bodies extracted from kelp cultured in the east china sea [J]. Silicon, 2015, 9:1-6. |
16 | 张继红,方建光,唐启升.中国浅海贝藻养殖对海洋碳循环的贡献[J].地球科学进展, 2005(3):359-365. |
ZHANG J H, FANG J G, TANG Q S. The contribution of shellfish and seaweed mariculture in China to the carbon cycle of coastal ecosystem [J]. Adv. Earth Sci., 2005(3):359-365. | |
17 | 岳冬冬,王鲁民.我国海水养殖贝类产量与其碳汇的关系[J].江苏农业科学, 2012, 40(11):246-248. |
YUE D D, WANG L M. The relationship between marine aquaculture shellfish production and its carbon sink in China [J]. Jiangsu J. Agric. Sci.,2012, 40(11):246-248. | |
18 | 岳冬冬,吕永辉,于航盛,等.基于营养级法的福建省淡水捕捞渔业碳汇量评估探析[J].中国渔业经济,2018,36(5):74-81. |
YUE D D, LYU Y H, YU H S, et al.. Research on the evaluation of the freshwater capture fisheries carbon sinks in Fujian province based on trophic level method [J]. Chin. Fishery Econ., 2018,36(5):74-81. | |
19 | PERSHING A J, CHRISTENSEN L B, RECORD N R, et al.. The impact of whaling on the ocean carbon cycle: why bigger was better [J/OL]. PLoS One, 2010, 5(8):e12444 [2022-07-21]. . |
20 | 张波,孙珊,唐启升.海洋捕捞业的碳汇功能[J].渔业科学进展,2013,34(1):70-74. |
ZHANG Bo SUN S, TANG Q S. Carbon sink by marine fishing industry [J]. Progress. Fishery Sci., 2013,34(1):70-74. | |
21 | 岳冬冬,王鲁民,方海,等.淡水捕捞渔业碳汇量评估探析——以浙江省的生产调查样本数据为例[J].中国农业科技导报,2017,19(11):117-124. |
YUE D D, WANG L M, FANG H, et al.. Evaluation of carbon sinks in freshwater fisheries—acase research on the sample production survey data of Zhejiang Province [J]. J. Agric. Sci. Technol., 2017,19(11):117-124. | |
22 | 岳冬冬,王鲁民,方海,等.基于碳平衡的中国海洋渔业产业发展对策探析[J].中国农业科技导报,2016,18(4):1-8. |
YUE D D, WANG L M, FANG H, et al.. Development strategy of marine fisheries in China based on the carbon balance [J]. J. Agric. Sci. Technol., 2016,18(4):1-8. | |
23 | 陈少莲.鱼类及其在水体的物质循环中的作用[M]// 刘建康.东湖生态学研究(一).北京:科学出版社,1993:292-378. |
24 | 解绶启,刘家寿,李钟杰.淡水水体渔业碳移出之估算[J].渔业科学进展, 2013,34(1):82-89. |
XIE S Q, LIU J S, LI Z J. Evaluation of the carbon removal by fisheries and aquaculture in fresh water bodies [J]. Progress Fishery Sci., 2013,34(1):82-89. | |
25 | 吴斌,王海华,习宏斌.中国淡水渔业碳汇强度估算[J].生物安全学报,2016,25(04):308-312. |
WU B, WANG H H, XI H B. The carbon sink capacity of the Chinese freshwater aquaculture [J]. J. Biosafety, 2016,25 (4): 308-312. | |
26 | 邵桂兰,褚蕊,李晨.基于碳排放和碳汇核算的海洋渔业碳平衡研究——以山东省为例[J].中国渔业经济,2018,36(4):4-13. |
SHAO G L, CHU R, LI C. Research on carbon balance of marine fishery in Shandong province using the calculation results of carbon emission and carbon sink [J]. Chin. Fishery Econ., 2018,36(4):4-13. | |
27 | USSR. The Great Soviet Encyclopedia [M]. Soviet Encyclopedia Press,1979. |
28 | BENEDICT F G, OSTERBERG E. The elementary composition and heat of combustion of human fat [J]. Am. J. Physiol., 1900, 4(2): 69-76. |
29 | 赵明军,孙慧武,王宇光,等.基于居民营养需求的中长期水产品供给与消费研究[J].中国渔业经济,2019,37(6):1-14. |
ZHAO M J, SUN H W, WANG Y G, et al.. Study of the supplu and consumption of aquatic products in the medium and long term based on the national nutrition demand [J]. Chin. Fisheries Econ., 2019, 37(6):1-14. | |
30 | 王宇光,赵明军,赵蕾.居民膳食平衡目标下我国水产品消费研究[J].中国水产,2021(10):48-50. |
WANG Y G, ZHAO M J, ZHAO L. Research on aquatic product consumption in China under the goal of dietary balance of residents. [J]. Chin. Fisheries, 2021(10):48-50. | |
31 | 刘子飞,李飞,夏佳佳.大水面生态渔业发展的现状、困境与对策[J].生态经济,2022,38(3):142-148. |
LIU Z F, LI F, XIA J J. Research on development status, issues and countermeasures for ecological fishery of large-scale water [J]. Ecol. Econ., 2022, 38(3):142-148. |
[1] | 徐博1,2,张衡1,2,3,4*,张瑛瑛1,2,冯春雷1,2*. 《南印度洋渔业协定》管理措施的新进展及我国的应对策略[J]. 中国农业科技导报, 2020, 22(4): 10-23. |
[2] | 刘子飞1,孙慧武1,岳冬冬2,耿瑞1,赵蕾1*,潘澎1,曹坤1. 中国新时代近海捕捞渔业资源养护政策研究[J]. 中国农业科技导报, 2018, 20(12): 1-8. |
[3] | 岳冬冬1,王鲁民1*,朱雪梅2,耿瑞2,方海1,熊敏思1,王茜1,周雨思1,肖黎1. 中国海洋捕捞渔业供给侧存在的问题与改革对策[J]. 中国农业科技导报, 2017, 19(7): 17-26. |
[4] | 岳冬冬,王鲁民*,方海,王茜,肖黎,熊敏思,郑亮. 淡水捕捞渔业碳汇量评估探析 ——以浙江省的生产调查样本数据为例[J]. 中国农业科技导报, 2017, 19(11): 117-124. |
[5] | 郭月峰1,祁伟1,2,姚云峰1*,张美丽1,温健1,韩兆敏1,刘龙1,尉迟文思1. 内蒙古农牧交错带油松人工林碳汇效应研究[J]. 中国农业科技导报, 2016, 18(5): 141-147. |
[6] | 岳冬冬1,王鲁民1*,方海1,耿瑞2,赵鹏飞2,熊敏思1,. 基于碳平衡的中国海洋渔业产业发展对策探析[J]. 中国农业科技导报, 2016, 18(4): 1-8. |
[7] | 王兴,薛建福,王钰乔,李可嘉,赵鑫,张海林*. 我国西部地区种植业碳收支分析[J]. 中国农业科技导报, 2016, 18(3): 104-111. |
[8] | 岳冬冬,王鲁民*,黄洪亮,郑汉丰,冯春雷,熊敏思. 我国远洋渔业发展对策研究[J]. 中国农业科技导报, 2016, 18(2): 156-164. |
[9] | 李博1,2,陈瑞1. 基于熵权TOPSIS方法的中国渔业发展水平综合评价研究[J]. 中国农业科技导报, 2016, 18(2): 165-175. |
[10] | 岳冬冬,王鲁民*,张勋,郑汉丰,张寒野. 东海伏季休渔管理实施状况及思考[J]. , 2015, 17(4): 122-128. |
[11] | 岳冬冬,王鲁民*,樊伟,张勋,郑汉丰,唐峰华,张胜茂,戴媛媛. 阿根廷滑柔鱼渔业资源管理及对我国的启示[J]. , 2014, 16(6): 124-131. |
[12] | 岳冬冬1,王鲁民1*,张勋1,郑汉丰1,冯春雷1, 张衡1,王永进1,2,戴媛媛1. 印度洋金枪鱼渔业碳汇量评估初探——以中国为例[J]. , 2014, 16(5): 132-138. |
[13] | 张勋|张禹|周爱忠|徐国栋|郁岳峰. 我国远洋渔业渔具发展概况[J]. , 2013, 15(6): 16-19. |
[14] | 岳冬冬,王鲁民*. 我国渔业发展战略研究现状分析与初步思考[J]. , 2013, 15(4): 168-175. |
[15] | 胡婧,杨宁生,欧阳海鹰*,孙英泽,陈柏松. 数据挖掘技术在渔业生产中的应用进展[J]. , 2013, 15(4): 176-182. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||