中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (9): 208-216.DOI: 10.13304/j.nykjdb.2021.0234
• 生物制造 资源生态 • 上一篇
李志元1(), 江虹1, 马艳2, 姜秀梅1, 张力方1, 梁志国1, 王泽鹏1, 唐亮1, 梁肖1, 秦勇1(
)
收稿日期:
2021-03-20
接受日期:
2021-06-01
出版日期:
2022-09-15
发布日期:
2022-10-11
通讯作者:
秦勇
作者简介:
李志元 E-mail:lizhiyuan544587329@126.com;
基金资助:
Zhiyuan LI1(), Hong JIANG1, Yan MA2, Xiumei JIANG1, Lifang ZHANG1, Zhiguo LIANG1, Zepeng WANG1, Liang TANG1, Xiao LIANG1, Yong QIN1(
)
Received:
2021-03-20
Accepted:
2021-06-01
Online:
2022-09-15
Published:
2022-10-11
Contact:
Yong QIN
摘要:
为探讨氮素水平对雪菊幼苗中黄酮类化合物和矿质营养累积的影响,以采自新疆皮山县克里阳乡的雪菊种子为供试材料,分别设置0(N1)、0.625(N2)、1.250(N3)、2.500(N4)、和5.000(N5)mmol·L-1Ca(NO3)2 共5个氮素水平处理雪菊幼苗,对雪菊的形态指标、矿质元素含量、黄酮类物质含量及关键酶活性进行测定分析。结果表明,随着氮素施用水平的增加,雪菊幼苗植株的碳/氮呈下降趋势,根、茎、叶中矿质元素含量发生显著变化。黄酮类化合物在较低氮素水平(N1、N2和N3处理)时含量较高,与苯丙氨酸解氨酶、肉桂酸4-羟化酶、4-香豆酸辅酶A连接酶、查尔酮合成酶活性密切相关。相关分析表明,雪菊植株内部矿质营养平衡对黄酮类化合物的积累有显著影响,特别是植株体内钾、钙、铜和铁元素的含量。综上所述,氮素的有效性及植株内部矿质营养的平衡可显著影响雪菊黄酮类物质的积累,为改善雪菊黄酮类化合物的积累及建立雪菊最佳种植策略提供了理论依据。
中图分类号:
李志元, 江虹, 马艳, 姜秀梅, 张力方, 梁志国, 王泽鹏, 唐亮, 梁肖, 秦勇. 氮水平对雪菊幼苗中黄酮类化合物和矿质营养累积的影响[J]. 中国农业科技导报, 2022, 24(9): 208-216.
Zhiyuan LI, Hong JIANG, Yan MA, Xiumei JIANG, Lifang ZHANG, Zhiguo LIANG, Zepeng WANG, Liang TANG, Xiao LIANG, Yong QIN. Effects of Nitrogen Levels on Flavonoids and Mineral Nutrient Accumulation in Coreopsis tinctoriaNutt.[J]. Journal of Agricultural Science and Technology, 2022, 24(9): 208-216.
处理Treatment | 根 Root | 茎Stalk | 叶 Leaf | ||||||
---|---|---|---|---|---|---|---|---|---|
氮含量 N content/% | 碳含量 C content/% | 碳/氮 C/N | 氮含量 N content/% | 碳含量 C content/% | 碳/氮 C/N | 氮含量 N content/% | 碳含量 C content/% | 碳/氮 C/N | |
N1 | 0.96±0.13 d | 32.32±3.12 a | 33.67±1.76 a | 0.76±0.12 d | 30.54±2.54 a | 40.18±2.43 a | 1.56±0.15 d | 35.56±2.98 a | 22.79±2.43 a |
N2 | 1.11±0.11 c | 34.23±2.56 a | 30.96±2.41 b | 0.88±0.09 c | 31.04±3.23 a | 35.27±1.87 b | 1.87±0.18 c | 34.87±3.01 a | 18.65±2.14 b |
N3 | 1.19±0.10 bc | 34.98±2.68 a | 30.12±1.83 c | 1.04±0.18 bc | 30.67±3.43 a | 29.49±4.32 bc | 1.98±0.24 bc | 33.94±3.44 a | 17.14±2.34 b |
N4 | 1.62±0.14 b | 33.13±2.43 a | 20.45±3.54 cd | 1.23±0.13 b | 32.31±3.20 a | 26.27±2.03 c | 2.03±0.16 b | 34.01±3.55 a | 16.75±1.89 b |
N5 | 1.88±0.09 a | 32.97±3.03 a | 17.54±1.31 d | 1.54±0.16 a | 31.32±2.78 a | 20.34±1.39 d | 2.57±0.17 a | 32.54±2.53 b | 12.66±1.79 c |
表1 不同氮素水平下雪菊幼苗根、茎和叶片中碳、氮含量及碳/氮比
Table 1 Concents of carbon, nitrogen and carbon/nitrogen in root, stalk and leaf of Coreopsis tinctoria under different treatment
处理Treatment | 根 Root | 茎Stalk | 叶 Leaf | ||||||
---|---|---|---|---|---|---|---|---|---|
氮含量 N content/% | 碳含量 C content/% | 碳/氮 C/N | 氮含量 N content/% | 碳含量 C content/% | 碳/氮 C/N | 氮含量 N content/% | 碳含量 C content/% | 碳/氮 C/N | |
N1 | 0.96±0.13 d | 32.32±3.12 a | 33.67±1.76 a | 0.76±0.12 d | 30.54±2.54 a | 40.18±2.43 a | 1.56±0.15 d | 35.56±2.98 a | 22.79±2.43 a |
N2 | 1.11±0.11 c | 34.23±2.56 a | 30.96±2.41 b | 0.88±0.09 c | 31.04±3.23 a | 35.27±1.87 b | 1.87±0.18 c | 34.87±3.01 a | 18.65±2.14 b |
N3 | 1.19±0.10 bc | 34.98±2.68 a | 30.12±1.83 c | 1.04±0.18 bc | 30.67±3.43 a | 29.49±4.32 bc | 1.98±0.24 bc | 33.94±3.44 a | 17.14±2.34 b |
N4 | 1.62±0.14 b | 33.13±2.43 a | 20.45±3.54 cd | 1.23±0.13 b | 32.31±3.20 a | 26.27±2.03 c | 2.03±0.16 b | 34.01±3.55 a | 16.75±1.89 b |
N5 | 1.88±0.09 a | 32.97±3.03 a | 17.54±1.31 d | 1.54±0.16 a | 31.32±2.78 a | 20.34±1.39 d | 2.57±0.17 a | 32.54±2.53 b | 12.66±1.79 c |
图1 不同氮素水平下雪菊各器官的P、K、Ca、Mg、Cu和Fe含量注:不同小写字母表示不同处理间差异在P<0.05水平显著。
Fig. 1 Contents of P, K, Ca, Mg, Cu and Fe in different organs of Coreopsis tinctoria under different treatmentsNote: Different lowercase letters indicate significant differences between treatments at P<0.05 level.
图2 不同氮素水平下雪菊的干质量和株高注:不同小写字母表示不同处理间差异在P<0.05水平显著。
Fig. 2 Dry weight and plant height of Coreopsis tinctoria under different treatmentsNote:Different lowercase letters indicate significant differences between treatments at P<0.05 level.
处理 Treat-ment | 木犀草素 Luteolin/(mg·g-1 DW) | 槲皮素 Quercetin/(mg·g-1 DW) | 芦丁 Rutin/(mg·g-1 DW) | 总黄酮 Total flavonoids/(mg·g-1 DW) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
根 Root | 茎 Stalk | 叶 Leaf | 根 Root | 茎 Stalk | 叶 Leaf | 根 Root | 茎 Stalk | 叶 Leaf | 根 Root | 茎 Stalk | 叶 Leaf | |
N1 | 0.05±0.01 a | 0.35±0.02 a | 0.39±0.04 a | 0.08±0.01 a | 0.06±0.01 a | 0.38±0.04 a | 0.33±0.03 a | 1.09±0.12 a | 2.76±0.21 a | 2.90±0.52 a | 5.84±1.31 a | 15.92±1.28 a |
N2 | 0.05±0.02 a | 0.32±0.03 a | 0.36±0.04 a | 0.08±0.01 a | 0.06±0.02 a | 0.39±0.04 a | 0.30±0.04 a | 1.07±0.13 a | 2.72±0.25 a | 2.85±0.63 a | 5.81±1.33 a | 15.91±1.25 a |
N3 | 0.05±0.02 a | 0.35±0.02 a | 0.37±0.04 a | 0.08±0.01 a | 0.05±0.03 a | 0.37±0.04 a | 0.26±0.04 b | 1.04±0.11 a | 2.70±0.24 a | 2.73±0.51 a | 5.73±0.81 a | 16.23±1.36 a |
N4 | 0.05±0.02 a | 0.31±0.03 a | 0.31±0.04 b | 0.07±0.02 a | 0.06±0.02 a | 0.30±0.03 b | 0.25±0.05 b | 1.04±0.13 a | 2.54±0.26 b | 2.72±0.35 a | 5.52±1.13 a | 13.34±1.36 b |
N5 | 0.04±0.01 a | 0.32±0.02 a | 0.29±0.03 b | 0.08±0.02 a | 0.05±0.01 a | 0.26±0.03 b | 0.30±0.05 a | 1.01±0.14 a | 2.41±0.26 c | 2.85±0.54 a | 5.71±1.32 a | 12.82±1.08 b |
表2 不同氮素水平下雪菊各器官类中黄酮物质含量
Table 2 Contents of flavonoids in different organs of Coreopsis tinctoria under different treatments
处理 Treat-ment | 木犀草素 Luteolin/(mg·g-1 DW) | 槲皮素 Quercetin/(mg·g-1 DW) | 芦丁 Rutin/(mg·g-1 DW) | 总黄酮 Total flavonoids/(mg·g-1 DW) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
根 Root | 茎 Stalk | 叶 Leaf | 根 Root | 茎 Stalk | 叶 Leaf | 根 Root | 茎 Stalk | 叶 Leaf | 根 Root | 茎 Stalk | 叶 Leaf | |
N1 | 0.05±0.01 a | 0.35±0.02 a | 0.39±0.04 a | 0.08±0.01 a | 0.06±0.01 a | 0.38±0.04 a | 0.33±0.03 a | 1.09±0.12 a | 2.76±0.21 a | 2.90±0.52 a | 5.84±1.31 a | 15.92±1.28 a |
N2 | 0.05±0.02 a | 0.32±0.03 a | 0.36±0.04 a | 0.08±0.01 a | 0.06±0.02 a | 0.39±0.04 a | 0.30±0.04 a | 1.07±0.13 a | 2.72±0.25 a | 2.85±0.63 a | 5.81±1.33 a | 15.91±1.25 a |
N3 | 0.05±0.02 a | 0.35±0.02 a | 0.37±0.04 a | 0.08±0.01 a | 0.05±0.03 a | 0.37±0.04 a | 0.26±0.04 b | 1.04±0.11 a | 2.70±0.24 a | 2.73±0.51 a | 5.73±0.81 a | 16.23±1.36 a |
N4 | 0.05±0.02 a | 0.31±0.03 a | 0.31±0.04 b | 0.07±0.02 a | 0.06±0.02 a | 0.30±0.03 b | 0.25±0.05 b | 1.04±0.13 a | 2.54±0.26 b | 2.72±0.35 a | 5.52±1.13 a | 13.34±1.36 b |
N5 | 0.04±0.01 a | 0.32±0.02 a | 0.29±0.03 b | 0.08±0.02 a | 0.05±0.01 a | 0.26±0.03 b | 0.30±0.05 a | 1.01±0.14 a | 2.41±0.26 c | 2.85±0.54 a | 5.71±1.32 a | 12.82±1.08 b |
性状Trait | 磷含量 P content | 钾含量 K content | 钙含量 Ca conten | 镁含量 Mg content | 铜含量 Cu content | 铁含量 Fe content |
---|---|---|---|---|---|---|
木犀草素 Luteolin | 0.59* | 0.71* | 0.88** | 0.64* | 0.70* | 0.83** |
槲皮素 Quercetin | 0.28 | 0.72* | 0.62* | 0.31 | 0.51* | 0.71* |
芦丁 Rutin | 0.38 | 0.59* | 0.76* | 0.35 | 0.72* | 0.83** |
总黄酮 Total flavonoids | 0.23 | 0.74* | 0.82** | 0.18 | 0.57* | 0.81** |
表3 黄酮类化合物含量与矿质元素的相关性分析
Table 3 Correlations between flavonoids content and mineral element
性状Trait | 磷含量 P content | 钾含量 K content | 钙含量 Ca conten | 镁含量 Mg content | 铜含量 Cu content | 铁含量 Fe content |
---|---|---|---|---|---|---|
木犀草素 Luteolin | 0.59* | 0.71* | 0.88** | 0.64* | 0.70* | 0.83** |
槲皮素 Quercetin | 0.28 | 0.72* | 0.62* | 0.31 | 0.51* | 0.71* |
芦丁 Rutin | 0.38 | 0.59* | 0.76* | 0.35 | 0.72* | 0.83** |
总黄酮 Total flavonoids | 0.23 | 0.74* | 0.82** | 0.18 | 0.57* | 0.81** |
图3 不同氮素水平下雪菊各器官中类黄酮关键酶的活性注:不同小写字母表示不同处理间差异在P<0.05水平显著。
Fig. 3 Activities of key enzymes on flavonoids in different organs of Coreopsis tinctoria under different treatmentsNote:Different lowercase letters indicate significant differences between treatments at P<0.05 level.
1 | 王庆颖,张志锋,吕露阳,等.花类药食同源中药安全性评价的研究进展[J].中草药,2021,52(3):864-872. |
WANG Q Y, ZHANG Z F, LV L Y,et al.. Research progress on the safety evaluation of flower medicines and food homologous Chinese medicines [J]. Chin Trad. Herbal Drugs, 2021, 52(3):864-872. | |
2 | DENG Y, LAM S C, ZHAO J, et al.. Quantitative analysis of flavonoids and phenolic acid in Coreopsis tinctoria Nutt. by capillary zone electrophoresis [J]. Electrophoresis, 2017, 38(20):2654-2661. |
3 | YAO L H, JIANG Y M, SHI J, et al.. Flavonoids in food and their health benefits [J]. Plant Food Hum. Nutr., 2004, 59:113-122. |
4 | ANDRE C M, OUFIR M, HOFFMANN L, et al.. Influence of environment and genotype on polyphenol compounds and vitro antioxidant capacity of native Andean potatoes (Solanum tuberosum L.) [J]. J Food Compos. Anal., 2009, 22:517-524. |
5 | TALEON V, DYKES L, ROONEY W L, et al.. Effect of genotype and environment on flavonoid concentration and profile of black sorghum grains [J]. J. Cereal Sci., 2012, 2:470-475. |
6 | SPENCER J P, ABD-EL-MOHSEN M M, RICEL-EVANS C. Cellular uptake and metabolism of flavonoids and their metabolites: implications for their bioactivity [J]. Arch. Biochem. Biophys., 2004, 1:148-161. |
7 | SCPINELLO J, MULLER L G, SCHINDLER M S Z, et al.. Antinociceptive and anti-inflammatory activities of Philodendron bipinnatifidum Schott ex Endl (Araceae) [J]. J. Ethnopharmacol., 2019, 236:21-30. |
8 | YANG J X, GUO J, YUAN J F. In vitro antioxidant properties of rutin [J]. LWT Food Sci. Technol., 2008, 41(6):1060-1066. |
9 | LIU W, ZHU D W, LIU D H, et al.. Influence of nitrogen on the primary and secondary metabolism and synthesis of flavonoid in Chrysanthemum morifolium Ramat [J]. J. Plant Nutr., 2010, 33(2):240-254. |
10 | DENG B, LI Y Y, LEI G, et al.. Effects of nitrogen availability on mineral nutrient balance and flavonoid accumulation in Cyclocarya paliurus [J]. Plant Physiol. Bioch., 2018, 135:111-118. |
11 | LILLO C, LEA U S, RUOFF P. Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway [J/OL]. Plant Cell Environ., 2010,31(5): 1748 [2021-01-10]. . |
12 | 秦亚楠,杨增强,赵志信,等.硝态氮处理对雪菊幼苗生长及代谢的影响[J].新疆农业科学,2019, 56(9):1668-1676. |
QIN Y N, YANG Z Q, ZHAO Z X, et al.. Effects of nitrate nitrogen treatment on growth and metabolism of Chrysanthemum morifolium seedlings [J]. Xinjiang Agric. Sci., 2019, 56(9):1668-1676. | |
13 | FANG S Z, WANG J Y, WEI Z Y,et al.. Methods to break seed dormancy in Cyclocarya paliurus (Batal.) Iljinskaja [J]. Sci. Hortic., 2006, 110:305-309 . |
14 | 杨俊,徐洛,戴先蓉,等.药用菊花及野菊微量元素的研究[J].安徽中医学院学报,1998,17(4):52. |
YANG J, XU L, DAI X R, et al.. Study on trace elements of medicinal chrysanthemum and wild chrysanthemum [J]. J. Anhui Univ. Chin. Medic., 1998, 17(4):52. | |
15 | GOUOT J C, SMITH J P, HOLZAPFEL B P, et al.. Grape berry flavonoid responses to high bunch temperatures post veraison: Effect of intensity and duration of exposure [J/OL]. Molecules, 2019, 24:4341 [2021-01-10]. |
16 | FANG H, QI X, LI Y, et al.. De novo transcriptomic analysis of light-induced flavonoid pathway, transcription factors in the flower buds of Lonicera japonica [J]. Trees (Berl West), 2020, 34:267-283. |
17 | SCHEIBLE W R, MORCUENDE R, CZECHOWSKI T, et al.. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes,and the regulatory infrastructure of Arabidopsis in response to nitrogen [J]. Plant Physiol., 2004, 136:2483-2499. |
18 | NGUYEN P M, NIEMEYER E D. Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.) [J]. J. Agric. Food Chem., 2008, 56:8685-8691. |
19 | DENG B, LI Y, XU D D, et al.. Nitrogen availability alters flavonoid accumulation in Cyclocarya paliurus via the effects on the internal carbon/nitrogen balance [J]. Sci. Rep., 2019, 9(1):1-9. |
20 | GROENBAEK M, JENSEN S, NEUGART S, et al.. Nitrogen split dose fertilization,plant age and frost effects on phytochemical content and sensory properties of curly kale (Brassica oleracea Lvarsabellica) [J]. Food Chem., 2016, 197:530-538. |
21 | PAUL M J, DRISCOLL S P. Sugar repression of photosynthesis: The role of carbohydrates in signalling nitrogen deficiency through source: sink imbalance [J]. Plant Cell Environ., 1997, 20(1):110-116. |
22 | CORUZZI G, BUSH D R. Nitrogen and carbon nutrient and metabolite signaling in plants [J]. Plant Physiol., 2001, 125:61-64. |
23 | STAMP N. Can the growth-differentiation balance hypothesis be tested rigorously? [J] Oikos, 2004, 107:439-448. |
24 | JENLINS G I, LONG J C, WADE H K, et al.. UV and blue light signalling: pathways regulating chalcone synthase gene expression in Arabidopsis [J]. New Phytol., 2001, 151:121-131. |
25 | BUER C S, MUDAY G K, DJORDJEVIC M A. Flavonoids are differentially taken up and transported long distances in Arabidopsis [J]. Plant Physiol., 2007, 145:478-490. |
26 | ZHANG L, YANG M, GAO J, et al.. Seasonal variation and gender pattern of phenolic and flavonoid contents in Pistacia chinensis Bunge inflorescences and leaves [J]. J. Plant Physiol., 2016, 191:36-44. |
27 | ZHENG Y J, TIAN L, LIU H T, et al.. Sugars induce anthocyanin accumulation and flavanone 3-hydroxylase expression in grape berries [J]. Plant Growth Regul., 2009, 58:251-260. |
28 | ZHOU W, LIANG X, ZHANG Y, et al.. Role of sucrose in modulating the low‐nitrogen‐induced accumulation of phenolic compounds in lettuce (Lactuca sativa L.) [J]. J. Sci. Food Agric., 2020, 100(15):5412-5421. |
29 | 王枫,王玉凤,许晓萱,等.低磷胁迫下玉米幼苗生理响应及相关基因表达研究[J].玉米科学,2021, 29(1):77-84. |
WANG F, WANG Y F, XU X X, et al.. Physiological response and related gene expression of maize seedlings under low phosphorus stress [J]. J. Maize Sci., 2021, 29(1):77-84. | |
30 | LIU W, ZHU D W, LIU D H, et al.. Influence of potassium deficiency on flavonoid yield and flavonoid metabolism in leaves of Chrysanthemum morifolium Ramat [J]. J. Plant Nutr., 2011, 34:1905-1918. |
31 | CALDWELL C R. Effect of elevated copper on phenolic compounds of spinach leaf tissues [J]. J. Plant Nutr., 2002, 25(6):1225-1237. |
32 | LILLO C, LEA U S, RUOFF P. Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway [J]. Plant Cell Environ., 2008, 31:587-601. |
33 | JIA H, WANG J, YANG Y, et al.. Changes in flavonol content and transcript levels of genes in the flavonoid pathway in tobacco under phosphorus deficiency [J]. Plant Growth Regul., 2015, 76(2):225-231. |
34 | STAMP N. Out of the quagmire of plant defense hypotheses [J]. Qu. Rev. Biol., 2003, 78:23-55. |
[1] | 向开宏, 吕旭, 舒川海, 伍杂日曲, 张金悦, 朱岳梅, 杨志远, 孙永健, 马均. 有机无机肥配施对精量穴直播水稻产量及氮素利用的影响[J]. 中国农业科技导报, 2022, 24(9): 149-165. |
[2] | 刘洋, 张启昌, 张璐, 李玉灵. 水肥耦合对蓝靛果忍冬幼苗细根生长及根抗氧化酶的影响[J]. 中国农业科技导报, 2022, 24(9): 197-207. |
[3] | 郝变青, 马利平, 赵永胜, 石文鑫, 王建雄, 景玉川. BC98-Ⅰ和B96-Ⅱ发酵液对马铃薯的防病促生作用及对土壤酶活性的影响[J]. 中国农业科技导报, 2022, 24(8): 116-123. |
[4] | 彭增莹, 申莹莹, 段松江, 吴一帆, 李宗润, 郭仁松, 张巨松. 化学调控对不同施氮量棉花冠层结构及产量的影响[J]. 中国农业科技导报, 2022, 24(7): 177-186. |
[5] | 闫宁, 战宇, 苗馨月, 王二刚, 陈长宝, 李琼. 强还原土壤灭菌处理对人参连作土壤细菌群落结构及土壤酶活的影响[J]. 中国农业科技导报, 2022, 24(6): 133-144. |
[6] | 党翼, 张建军, 赵刚, 樊廷录, 王磊, 李尚中, 周刚. 控释尿素和普通尿素配施对旱地玉米产量和水氮利用效率的影响[J]. 中国农业科技导报, 2022, 24(6): 156-165. |
[7] | 张丽娟, 秦宇坤, 程慧煌, 李永旗, 罗海华. 鄱阳湖区赣北棉田地表径流氮磷流失特征研究[J]. 中国农业科技导报, 2022, 24(6): 166-175. |
[8] | 高桐梅, 李丰, 苏小雨, 王东勇, 田媛, 张鹏钰, 李同科, 杨自豪, 卫双玲. 减施氮肥对芝麻农艺性状、光合特性及产量的影响[J]. 中国农业科技导报, 2022, 24(6): 176-188. |
[9] | 何振嘉, 史仝乐, 傅渝亮, 费良军. 灌水器间距对涌泉根灌双点源交汇入渗水氮运移特性影响研究[J]. 中国农业科技导报, 2022, 24(5): 157-169. |
[10] | 王鑫, 张玉霞, 陈卫东, 林聪颖, 候文慧, 斯日古楞, 丛百明. 追施氮肥对不同饲用燕麦品种产量及光合荧光特性的影响[J]. 中国农业科技导报, 2022, 24(5): 170-179. |
[11] | 刘辉, 江解增, 张昊, 张永仙, 钱佳宇, 李东昇, 吕艳, 吴桓锐. 浅水土表覆盖秸秆对缓解土壤盐渍化及水生蔬菜生长的影响[J]. 中国农业科技导报, 2022, 24(5): 202-208. |
[12] | 谷月, 吴景贵. 有机物料还田土壤碳、氮及微生物量动态影响研究[J]. 中国农业科技导报, 2022, 24(4): 126-133. |
[13] | 孙沉沉, 马兰, 吴永红, 俞元春. 吲哚乙酸对周丛生物去除水体中氮磷的影响及机理[J]. 中国农业科技导报, 2022, 24(3): 204-209. |
[14] | 马兴东, 郭晔红, 李梅英, 于霞霞, 徐英杰, 朱文娟, 冯洁. 不同施氮量下黑果枸杞对干旱胁迫的响应[J]. 中国农业科技导报, 2022, 24(2): 193-200. |
[15] | 邢馨竹, 杨占武, 孔佑宾, 李文龙, 杜汇, 李喜焕, 张彩英. 大豆类胡萝卜素裂解双加氧酶GmCCD8固氮功能解析[J]. 中国农业科技导报, 2022, 24(1): 46-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||