中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (3): 214-222.DOI: 10.13304/j.nykjdb.2022.0769
• 方法与技术创新 • 上一篇
纪蕾1,2(), 刘天红1,2, 王颖1,2(
), 李晓1,2, 李红艳1,2, 孙元芹1, 姜晓东1
收稿日期:
2022-09-13
接受日期:
2022-10-12
出版日期:
2024-03-15
发布日期:
2024-03-07
通讯作者:
王颖
作者简介:
纪蕾 E-mail: lrubbit@126.com;
基金资助:
Lei JI1,2(), Tianhong LIU1,2, Ying WANG1,2(
), Xiao LI1,2, Hongyan LI1,2, Yuanqin SUN1, Xiaodong JIANG1
Received:
2022-09-13
Accepted:
2022-10-12
Online:
2024-03-15
Published:
2024-03-07
Contact:
Ying WANG
摘要:
为制备一种高效抑菌剂,以壳聚糖(chitosan,CS)为原料,采用漆酶/2,2,6,6-四甲基哌啶-1-氧自由基(2,2,6,6-tetramethylpiperidine-1-oxyl,TEMPO)体系制备6-羧基壳聚糖(6-carboxyl chitosan,C-COS),然后与硝酸银反应制备载银氧化壳聚糖(silver-carried oxidized chitosan,C-COS-Ag),对其抑菌性能进行研究。结果表明,与CS相比,C-COS-Ag的抑菌效果明显提高,其对大肠杆菌和金黄色葡萄球菌的抑菌圈直径分别为(22.75±1.50)和(13.75±2.50) mm,最小抑菌质量浓度均为6.10 μg·mL-1。细菌生长曲线试验证实,C-COS-Ag能明显降低大肠杆菌和金黄色葡萄球菌的生长速率;细胞内容物渗透试验表明,C-COS-Ag能够破坏细菌的细胞膜和细胞壁形态,导致核酸、蛋白质等大分子物质渗出,碱性磷酸酶活性上升,β-半乳糖苷酶活性下降,半乳糖合成途径受阻,细菌正常代谢受到影响。以上研究结果为C-COS-Ag的应用提供了理论依据。
中图分类号:
纪蕾, 刘天红, 王颖, 李晓, 李红艳, 孙元芹, 姜晓东. 载银氧化壳聚糖的制备与抑菌性能研究[J]. 中国农业科技导报, 2024, 26(3): 214-222.
Lei JI, Tianhong LIU, Ying WANG, Xiao LI, Hongyan LI, Yuanqin SUN, Xiaodong JIANG. Research on Antibacterial Activity of Silver-Carried Oxidized Chitosan[J]. Journal of Agricultural Science and Technology, 2024, 26(3): 214-222.
样品 Sample | 大肠杆菌 Escherichia coli | 金黄色葡萄球菌 Staphylococcus aureus | ||||
---|---|---|---|---|---|---|
抑菌圈 Bacteriostatic circle/mm | 敏感性 Sensibility | 最小抑菌浓度MIC/(μg·mL-1) | 抑菌圈 Bacteriostatic circle/mm | 敏感性 Sensibility | 最小抑菌浓度MIC/(μg·mL-1) | |
CS | 10.75±2.06 | ++ | 97.66 | 8.00±0.82 | + | 97.66 |
C-COS-Ag | 22.75±1.50 | +++ | 6.10 | 13.75±2.50 | ++ | 6.10 |
表1 CS和C-COS-Ag的抑菌效果
Table 1 Antimicrobial effect of CS and C-COS-Ag
样品 Sample | 大肠杆菌 Escherichia coli | 金黄色葡萄球菌 Staphylococcus aureus | ||||
---|---|---|---|---|---|---|
抑菌圈 Bacteriostatic circle/mm | 敏感性 Sensibility | 最小抑菌浓度MIC/(μg·mL-1) | 抑菌圈 Bacteriostatic circle/mm | 敏感性 Sensibility | 最小抑菌浓度MIC/(μg·mL-1) | |
CS | 10.75±2.06 | ++ | 97.66 | 8.00±0.82 | + | 97.66 |
C-COS-Ag | 22.75±1.50 | +++ | 6.10 | 13.75±2.50 | ++ | 6.10 |
图6 施加C-COS-Ag后金黄色葡萄球菌胞内的小分子物质的泄漏(电导率)
Fig. 6 Leakage (conductivity) of small molecular substances in Staphylococcus aureuscells after application of C-COS-Ag
样品 Sample | 大肠杆菌Escherichia coli | 金黄色葡萄球菌Staphylococcus aureus | ||
---|---|---|---|---|
碱性磷酸酶活性 AKP activity/(U·mg-1 pro) | β-半乳糖苷酶活性 β-GAL activity/(OD400) | 碱性磷酸酶活性 AKP activity/(U·mg-1 pro) | β-半乳糖苷酶活性 β-GAL activity/(OD400) | |
对照 Control | 0.070±0.015 | 0.033±0.001 | 0.076±0.035 | 0.028±0.001 |
CS 1×MIC | 0.081±0.035 | 0.031±0.002 | 0.078±0.041 | 0.024±0.002 |
C-COS-Ag 1×MIC | 0.130±0.071 | 0.030±0.001 | 0.087±0.084 | 0.023±0.001 |
C-COS-Ag 2×MIC | 0.170±0.068 | 0.027±0.002 | 0.180±0.095 | 0.022±0.002 |
表2 施加C-COS-Ag后大肠杆菌和金黄色葡萄球菌胞内酶的活性
Table 2 Intracellular enzyme activity of Escherichia coli and Staphylococcus aureus after C-COS-Ag application
样品 Sample | 大肠杆菌Escherichia coli | 金黄色葡萄球菌Staphylococcus aureus | ||
---|---|---|---|---|
碱性磷酸酶活性 AKP activity/(U·mg-1 pro) | β-半乳糖苷酶活性 β-GAL activity/(OD400) | 碱性磷酸酶活性 AKP activity/(U·mg-1 pro) | β-半乳糖苷酶活性 β-GAL activity/(OD400) | |
对照 Control | 0.070±0.015 | 0.033±0.001 | 0.076±0.035 | 0.028±0.001 |
CS 1×MIC | 0.081±0.035 | 0.031±0.002 | 0.078±0.041 | 0.024±0.002 |
C-COS-Ag 1×MIC | 0.130±0.071 | 0.030±0.001 | 0.087±0.084 | 0.023±0.001 |
C-COS-Ag 2×MIC | 0.170±0.068 | 0.027±0.002 | 0.180±0.095 | 0.022±0.002 |
1 | 姚剑松, 左华江, 徐然, 等. 壳聚糖的抗菌改性及应用[J]. 广东化工, 2019, 46(21): 70-71, 77. |
YAO J S, ZUO H J, XU R, et al.. Antibacterial modification and application of chitosan [J]. Guangdong Chem. Ind., 2019, 46(21): 70-71, 77. | |
2 | SHARIATINIA Z. Carboxymethyl chitosan: properties and biomedical applications [J]. Int. J. Biol. Macromol., 2018, 120(7): 1406 -1419. |
3 | 崔升, 袁美玉, 付俊杰, 等. 抗菌用壳聚糖及其金属粒子复合材料研究进展[J]. 精细化工, 2021, 38(9): 1757-1764. |
CUI S, YUAN M Y, FU J J, et al.. Research progress of chitosan and its metal particle composite materials for antibacterial application [J]. Fine Chem., 2021, 38(9): 1757-1764. | |
4 | RAGHAVENDRA G M, JUNG J, KIM D, et al.. Chitosan-mediated synthesis of flowery-CuO, and its antibacterial and catalytic properties [J]. Carbohyd. Polym., 2017, 172: 78-84. |
5 | 李晓芳, 冯小强, 杨声. 壳聚糖对革兰氏阴性菌抑菌机理的初步研究[J]. 食品科学, 2010, 31(13): 148-153. |
LI X F, FENG X Q, YANG S. A mechanism of antibacterial activity of chitosan against gram-negative bacteria [J]. Food Sci., 2010, 31(13): 148-153. | |
6 | 路振香, 路颖, 商常发, 等. 壳聚糖对5种细菌体外的抑制试验[J].动物医学进展, 2006,27(3): 62-64. |
LU Z X, LU Y, SHANG C F, et al.. The experiement of bacteriostases of chitosan in vitro [J]. Progress Veterin. Med., 2006, 27(3): 62-64. | |
7 | 韩永萍, 李可意, 杨宏伟, 等. 壳聚糖的抗菌机理及其化学改性研究[J]. 化学世界, 2012, 53(4): 248-252. |
HAN Y P, LI K Y, YANG H W, et al.. Research on antibacterial mechanism of chitosan and its chemical modification [J]. Chem. World, 2012, 53(4): 248-252. | |
8 | TANG H, ZHANG P, KIEFT T L, et al.. Antibacterial action of a novel functionalized chitosan-arginine against Gram-negative bacteria [J]. Acta Biomater., 2010, 6(7): 2562-2571. |
9 | MELLEGRD H, STRAND S P, CHRISTENSEN B E, et al.. Antibacterial activity of chemically defined chitosans: influence of molecular weight, degree of acetylation and test organism [J]. Int. J. Food Microbiol., 2011, 148(1): 48-54. |
10 | FAZLI W, WANG H S, LU Y S, et al.. Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels [J]. Int. J. Biol. Macromol., 2017, 101(4): 690-695. |
11 | LUO P F, NIE M, WEN H G, et al.. Preparation and characterization of carboxymethyl chitosan sulfate/oxidized konjac glucomannan hydrogels [J]. Int. J. Biol. Macromol., 2018, 54(7): 1024-1031. |
12 | 开梓翔, 刘春, 刘宇翔, 等. 羧甲基壳聚糖复合纳米银、纳米氧化铜的制备及抑菌性研究[J]. 生物医学工程研究, 2021, 40(1): 38-42. |
KAI Z X, LIU C, LIU Y X, et al.. Preparation and bacteriostatic properties of carboxymethyl chitosan composite Ag nanoparticles or CuO nanoparticles [J]. J. Bio. Eng. Res., 2021, 40(1): 38-42. | |
13 | 吴慧清, 吴清平, 石立三, 等. 壳聚糖及其金属锌配位络合物的抑菌性能研究[J]. 食品科学, 2006,11(12): 75-78. |
WU H Q, WU Q P, SHI L S, et al.. Study on antimicrobial capability of chitosan-Zn complex and chitosan [J]. Food Sci., 2006, 11(12):75-78. | |
14 | 牛梅, 戴晋明, 侯文生, 等. 载银壳聚糖复合物的结构及其抗菌性能研究[J]. 材料导报, 2011, 25(10): 15-26. |
NIU M, DAI J M, HOU W S, et al.. Study on the structure and antibacterial activity of Ag-loading chitosan composites [J]. Mater. Rev., 2011, 25(10): 15-26. | |
15 | 卞能源, 潘玙璠, 张新莉, 等. 载银氧化壳聚糖复合物的制备及其抑菌性能的研究[J]. 功能材料, 2019, 50(12): 12118-12125. |
BIAN N Y, PAN Y F, ZHANG X L, et al.. Preparation of silver-loaded oxidized chitosan complex and study on its antibacterial properties [J]. J. Funct. Mater., 2019, 50(12): 12118-12125. | |
16 | 吴增华. 几种中草药对大肠杆菌抑菌抗病作用及对绵羔羊的增重免疫实验研究[D].北京:中国农业科学院,2013. |
WU Z H. A study on bacteriostatic effect of several kinds of chinese herbal medicine against Escherichia coli and lamps liveweight gain [D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. | |
17 | 梅佳林, 李婷婷, 张星晖, 等. 芳樟醇对三文鱼源莓实假单胞菌的抑菌机理[J]. 食品科学, 2022, 43(9): 199-206. |
MEI J L, LI T T, ZHANG X H, et al.. Antibacterial mechanism of linalool against Pseudomonas fragi from salmon [J]. Food Sci., 2022, 43(9): 199-206. | |
18 | CUI H, ZHANG C, LI C, et al.. Antibacterial mechanism of oregano essential oil [J]. Ind. Crops Prod., 2019, 139(8):111-125. |
19 | 何柳, 王云鹏, 谢卫红, 等. 艾叶水提物和酸提物的抗氧化及抗菌活性比较[J]. 现代食品科技,2021,37(10): 205-213. |
HE L, WANG Y P, XIE W H, et al.. Comparetive of antioxidat and antibacterial activities of aqueous and acid extracts from artemisia argyi [J]. Mod. Food Sci. Technol., 2021, 37(10): 205-213. | |
20 | National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically [S]. USA:Clinical and Laboratory Standards Institute, 2000. |
21 | OU P, SUN M, HE X, et al.. Sclareol protects Staphylococcus aureus-induced lung cell injuryvia inhibiting alpha-hemolysin expression [J]. J. Microbiol. Biotechnol., 2016, 27(1): 19-25. |
22 | 张赟彬, 刘笑宇, 姜萍萍, 等. 肉桂醛对大肠杆菌和金黄色葡萄球菌的抑菌作用及抑菌机理研究[J]. 现代食品科技, 2015, 31(5): 31-35. |
ZHANG Y B, LIU X Y, JIANG P P, et al.. Mechanism and antibacterial activity of cinnamaldehyde against Escherichia coli and Staphylococcus aureus [J]. Mod. Food Sci. Technol., 2015, 31(5): 31-35. | |
23 | 卫梦绮. 枯茗醛对黄曲霉生长的抑制作用及机理初探[D]. 西安: 陕西科技大学, 2019. |
WEI M Q. The inhibitory activity and preliminary mechanism of cuminaldehyde on the growth of Aspergillus flavus [D]. Xi’an: Shaanxi University of Science & Technology, 2019. | |
24 | 蓝蔚青, 车旭, 谢晶, 等. 复合生物保鲜剂对荧光假单胞菌的抑菌活性及作用机理[J]. 中国食品学报, 2016, 16(8): 159-165. |
LAN W Q, CHE X, XIE J, et al.. Antibacterial activity and mechanism of composite biological preservatives against Pseudomonas fluorescens [J]. J. Chin. Inst. Food Sci. Technol., 2016, 16(8): 159-165. | |
25 | 赵莉. 痰细胞细菌培养的临床意义[J]. 黑龙江医药科学, 2013, 36(5):9-10. |
ZHAO L. The clinical value of bacterial culture of sputum cells [J]. Heilongjiang Med. Pharm., 2013, 36(5):9-10. | |
26 | GERT E V, TORGASHOV V I, ZUBETS O V, et al.. Preparation and properties of enterosorbents based on carboxylated microcrystalline cellulose [J]. Cellulose, 2005, 12(5): 517-526. |
27 | SAITO T, ISOGAI A. Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation [J]. Colloids Surf. A, 2006, 289(1-3): 219-225. |
28 | ARACRI E, VIDAL T. Enhancing the effectiveness of a laccase-TEMPO treatment has a biorefining effect on sisal cellulose fibres [J]. Cellulose, 2012, 19(3): 867-877. |
29 | ARACRI E, VIDAL T, RAGAUSKAS A J. Wet strength devel-opment in sisal cellulose fibers by effect of a laccase-TEMPO treatment [J]. Carbohydr. Polym., 2011, 84(4): 1384-1390. |
30 | 王祖华, 刘萍, 杨瑞先, 等. 绿色合成载银壳聚糖及其等温线、动力学及抑菌性[J].人工晶体学报, 2021, 50(12): 2307-2315. |
WANG Z H, LIU P, YANG R X, et al.. Synthesis of Ag-chitosan by green route and its isotherms, kinetic and antimicrobial activity [J]. J. Synth. Cryst., 2021, 50(12): 2307-2315. | |
31 | 赵儒男, 李艳. 丁香酚-壳聚糖乳液的制备及其抑菌性评价[C]//中国食品科学技术学会第十六届年会暨第十届中美食品业高层论坛. 武汉,中国食品科学技术学会, 2019: 426-427. |
32 | 朱丽. 壳聚糖基抑菌剂的制备、性能及在草莓和鲜银耳抑菌保鲜中的应用研究[D].长春: 吉林大学,2019. |
ZHU L. Preparation and properties of chitosan-bacteriostatic agents and their application in strawberry and fresh tremella fuciformis bacteriostatic preservation [D]. Changchun:Jilin University, 2019. |
[1] | 马蓝, 彭晴, 徐小轻, 杨硕, 张宇微, 田丹丹, 施琳波, 石波, 乔宇. 大肠杆菌O157∶H7生物被膜状态下基因表达分析[J]. 中国农业科技导报, 2023, 25(6): 71-88. |
[2] | 周宇, 李佳玉, 王乐, 贾晓爽, 高思琦, 王潇, 焦健. 金黄色葡萄球菌小菌落突变体诱导筛选及特性研究[J]. 中国农业科技导报, 2023, 25(5): 147-157. |
[3] | 滕泽, 张玉霞, 陈卫东, 丛百明, 田永雷, 张庆昕, 张永亮, 王东儒. 壳聚糖对苜蓿抗寒性及抗寒保护物质含量的影响[J]. 中国农业科技导报, 2023, 25(2): 192-198. |
[4] | 李宏博, 陈月月, 杨玉洁, 徐琦琦, 秦蕾, 蔡鑫, 夏利宁. 新疆伊犁昭苏健康鸡源大肠杆菌耐药性及耐药基因分析[J]. 中国农业科技导报, 2023, 25(11): 123-131. |
[5] | 江萍§,程伟华§,林亚军,夏绪进,夏利宁*. 春秋两季不同地区猪源耐药大肠杆菌β-内酰胺酶及16S rRNA甲基化酶基因检测及分析[J]. 中国农业科技导报, 2017, 19(5): 35-41. |
[6] | 马艳芝. 茉莉酸甲酯和壳聚糖混合液对北柴胡种子萌发的影响[J]. 中国农业科技导报, 2017, 19(4): 38-44. |
[7] | 程伟华,夏利宁*,夏绪进,王营彬. 新疆塔城地区不同来源大肠杆菌的耐药性调查[J]. , 2015, 17(3): 152-158. |
[8] | 高娟,夏利宁*,夏绪进,程伟华. 新疆克拉玛依市猪源大肠杆菌耐药性调查[J]. , 2014, 16(6): 103-108. |
[9] | 孙乔乔1,谭笑2,吕依2,黄火清2,张会图1*,路福平1. 嗜热真菌Neosartorya fischeri P1脂肪酶基因的克隆、表达及酶学性质分析[J]. , 2014, 16(5): 53-59. |
[10] | 梁瑞1,梁盈1,祁克宗1,王爱荣2,彭开松1*. 检测禽β-防御素6夹心ELISA法的建立及应用[J]. , 2014, 16(4): 176-180. |
[11] | 洪军,胡建业,王福梅,陈兰英*,王者. 鲎源抗菌肽对大肠杆菌基因组DNA和RNA作用的分子机制[J]. , 2013, 15(1): 71-75. |
[12] | 姜珊1,2,刘梅1,王宝杰1,蒋克勇1,王雷1. 大肠杆菌表达抗脂多糖因子的发酵条件优化[J]. , 2011, 13(4): 128-134. |
[13] | 孙秀秀,马中苏. 大豆分离蛋白/壳聚糖可食膜的制备及其性能的研究[J]. , 2009, 11(6): 80-85. |
[14] | 洪浩舟,马瑞强,张颖,陆伟,张维,陈明. 产乙醇重组大肠杆菌的研究进展[J]. , 2009, 11(4): 29-33. |
[15] | 周培 邹竹荣 曹丽娟 苏裕. 蜘蛛丝蛋白基因的合成及其串联体在大肠杆菌中的表达[J]. , 2007, 9(6): 71-77. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||