中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (1): 96-106.DOI: 10.13304/j.nykjdb.2023.0379
邢卓冉1(), 丁松爽2, 张凯2, 马明3, 郭文龙4, 刘旭东5, 时向东1(
)
收稿日期:
2023-05-16
接受日期:
2023-08-01
出版日期:
2025-01-15
发布日期:
2025-01-21
通讯作者:
时向东
作者简介:
邢卓冉E-mail:1024540693@qq.com;
基金资助:
Zhuoran XING1(), Songshuang DING2, Kai ZHANG2, Ming MA3, Wenlong GUO4, Xudong LIU5, Xiangdong SHI1(
)
Received:
2023-05-16
Accepted:
2023-08-01
Online:
2025-01-15
Published:
2025-01-21
Contact:
Xiangdong SHI
摘要:
计算机视觉与深度学习技术在众多场景(如物体识别,图像分类)取得了显著进展,近年来这项技术在烟叶生产中展现出广泛的应用空间与发展潜力。综述了计算机视觉与深度学习技术在烟叶生产上的应用现状,重点讨论了其在解决烟叶病害识别、烟叶采收调制、烟叶分级等问题方面的方法。通过分析不同的算法及其在烟叶生产关键阶段的运用,并考虑这项技术在烟叶生产领域所面临的挑战与发展方向,为智能化烟叶生产提供理论支持和参考。
中图分类号:
邢卓冉, 丁松爽, 张凯, 马明, 郭文龙, 刘旭东, 时向东. 计算机视觉与深度学习技术在烟叶生产上的研究进展[J]. 中国农业科技导报, 2025, 27(1): 96-106.
Zhuoran XING, Songshuang DING, Kai ZHANG, Ming MA, Wenlong GUO, Xudong LIU, Xiangdong SHI. Research Progress of Deep Learning and Computer Vision in Tobacco Leaf Production[J]. Journal of Agricultural Science and Technology, 2025, 27(1): 96-106.
1 | 杨振东. SAR图像舰船目标检测方法研究[D]. 西安:西安电子科技大学,2021. |
YANG Z D. Research on ship target detection in SAR images [D]. Xi’an: Xidian University, 2021. | |
2 | 刘文婷,卢新明. 基于计算机视觉的Transformer研究进展[J]. 计算机工程与应用,2022,58(6):1-16. |
LIU W T, LU X M. Research progress of Transformer based on computer vision [J].Comput. Eng. Appl., 2022,58 (6):1-16. | |
3 | 仇成群,李沛润,杨锋,等. 基于卷积神经网络的前方车辆检测系统研究[J]. 重庆交通大学学报(自然科学版),2022,41(11):58-63. |
QIU C Q, LI P R, YANG F, et al.. Front vehicle detection system based on convolution neural network [J]. J. Chongqing Jiaotong Univ. (Nat. Sci.), 2022,41 (11):58-63. | |
4 | 徐涛,田崇阳,刘才华. 基于深度学习的人群异常行为检测综述[J]. 计算机科学,2021,48(9):125-134. |
XU T, TIAN C Y, LIU C H. Deep learning for abnormal crowd behavior detection: a review [J]. J. Comput. Sci., 2021,48(9):125-134. | |
5 | 彭璟,罗浩宇,赵淦森,等. 深度学习下的医学影像分割算法综述[J]. 计算机工程与应用,2021,57(3):44-57. |
PENG J, LUO H Y, ZHAO G S, et al.. Survey of medical image segmentation algorithm in deep learning [J]. Comput. Eng. Appl.,2021, 57 (3):44-57. | |
6 | 刘卫国,李秀妮,向帅,等. 一种大豆全生育期生物量无损测量方法: CN114324336B[P].2022-09-13. |
7 | 涂智潇. 基于计算机视觉的农作物病虫害检测系统[D]. 武汉:中南财经政法大学,2020. |
TU Z X. Pests diseases of crop detection system based on computer vision [D]. Wuhan:Zhongnan University of Economics and Law, 2020. | |
8 | 刘朝营,许自成,闫铁军. 机器视觉技术在烟草行业的应用状况[J]. 中国农业科技导报,2011,13(4):79-84. |
LIU C Y, XU Z C, YAN T J. Application status of machine vision technology in tobacco industry [J]. J. Agric. Sci. Technol.,2011,13(4):79-84. | |
9 | 王刚.我国烟草病虫害预测预报工作进展与展望[J]. 中国烟草科学,2004,25(1):44-46. |
WANG G. Advances and outlook for forecast work of tobacco diseases and insect pests in China [J]. Chin. Tob. Sci.,2004,25(1):44-46. | |
10 | 彭大鑫,甄彤,李智慧. 低光照图像增强研究方法综述[J]. 计算机工程与应用,2023,59(18):14-27. |
PENG D X, ZHEN T, LI Z H. A survey of research methods for low light image enhancement [J]. Comput. Eng. Appl.,2023,59(18):14-27. | |
11 | 张文静,孙秀朋,乔永亮, 等. 基于InceptionV3的烟草病害识别[J]. 中国烟草学报,2021,27(5): 61-70. |
ZHANG W J, SUN X P, QIAO Y L, et al.. Tobacco disease identification based on InceptionV3 [J]. Acta Tab. Sin., 2021,27(5): 61-70. | |
12 | 喻勇,张云伟,王静, 等. 基于计算机视觉的烟叶病害识别研究[J]. 计算机工程与应用,2015,51(20):167-171. |
YU Y, ZHANG Y W, WANG J, et al.. Research on recognition of tobacco leaf disease based on computer vision [J]. Comput. Eng. Appl.,2015,51(20):167-171. | |
13 | 张经纬,贡亮,黄亦翔,等. 基于随机森林算法的黄瓜种子腔图像分割方法[J]. 农机化研究,2017,39(10):163-168. |
ZHANG J W, GONG L, HUANG Y X, et al.. Image segmentation of cucumber seed cavity based on the random forest algorithm [J]. J. Agric. Mech. Res., 2017,39(10):163-168. | |
14 | 王拓. 基于内容的图像检索技术研究与应用[D]. 贵阳:贵州师范大学,2017. |
WANG T. Research and application of content based image retrieval technology [D]. Guiyang: Guizhou Normal University, 2017. | |
15 | 刘建新,曾嫱,徐可, 等. 基于形态学和小波变换的烟叶病斑分割[J]. 图学学报,2018,39(5):933-938. |
LIU J X, ZENG Q, XU K, et al.. Research on the method of tobacco leaf disease spot segmentation based on morphology and wavelet transform [J]. J. Graphics, 2018,39(5): 933-938. | |
16 | 张珂,冯晓晗,郭玉荣,等. 图像分类的深度卷积神经网络模型综述[J]. 中国图象图形学报,2021,26(10):2305-2325. |
ZHANG K, FENG X H, GUO Y R, et al.. Overview of deep convolutional neural networks for image classification [J]. J. Image Graphics, 2021,26(10):2305-2325. | |
17 | 姜丰辉,刘祥鹏,邵巍, 等. 影响因子操纵期刊识别与分类方法构建与应用[J]. 中国科技期刊研究,2023,34(2):136-143. |
JIANG F H, LIU X P, SHAO W,et al.. Identification and classification of journals of impact factor manipulation [J]. Chin. J. Sci. Technol., 2023,34(2):136-143. | |
18 | 滕娟. 赤星病烟叶图像分割研究[D]. 吉首:吉首大学,2017. |
TENG J. Image segmentation of tobacco brown spot [D]. Jishou: Jishou University,2017. | |
19 | 张红涛,朱洋,谭联, 等. 基于FA-SVM技术的烟草早期病害识别[J]. 河南农业科学,2020,49(8):156-161. |
ZHANG H T, ZHU Y, TAN L, et al.. The recognition of early tobacco disease based on FA-SVM technology [J]. J. Henan Agric. Sci., 2020,49(8):156-161. | |
20 | 张艳令. 烟草病害自动识别诊断系统的研究[D]. 泰安:山东农业大学,2015. |
ZHANG Y L. Reserch on automatic identification system of tobacco diseases [D]. Taian: Shandong Agriculture University,2015. | |
21 | AMARA J, BOUAZIZ B, ALGERGAWY A. A deep learning-based approach for banana leaf diseases classification [C]//Proceedings of Datenbanksysteme für Business, Technologie und Web (BTW). 2017:17. |
22 | 李敬. 基于卷积神经网络的烟草病害自动识别研究[D]. 泰安:山东农业大学,2016. |
LI J. Automatic identification research of tobacco diseases based on convolutional neural network [D]. Taian:Shandong Agriculture University, 2016. | |
23 | 刘延鑫,王俊峰,杜传印, 等. 基于YOLOv3的多类烟草叶部病害检测研究[J]. 中国烟草科学,2022,43(2):94-100. |
LIU Y X, WANG J F, DU C Y, et al.. Detection of various tobacco leaf diseases based on YOLOv3 [J]. Chin. Tob. Sci.,2022,43(2):94-100. | |
24 | 邵延华,张铎,楚红雨, 等. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报,2022,44(10):3697-3708. |
SHAO Y H, ZHANG D, CHU H Y,et al.. A review of YOLO object detection based on deep learning [J]. J. Electron. Inf. Technol., 2022,44(10):3697-3708. | |
25 | 熊涛. 烟叶烘烤过程中外观形态与内在质量关系研究[D]. 北京:中国农业科学院,2021. |
XIONG T. Study on the relationship between appearance and internal quality of tobacco leaves during curing [D]. Beijing:Chinese Academy of Agriculture Sciences,2021. | |
26 | 刘军令. 烟草智能烤房系统中电子鼻关键技术研究[D]. 重庆:重庆大学,2015. |
LIU J L. Study on the key technology of electronic nose in intelligent tobacco barn systems [D]. Chongqing:Chongqing University,2015. | |
27 | 蔡杰,朱国蕾,孙晓燕, 等. 基于不同部位烟叶外观特征与内在质量分析研究[J].农业与技术,2019,39(13):27-28. |
28 | 卢瑞琳. 四川德阳产区雪茄烟叶成熟特征与调制工艺研究[D]. 郑州:河南农业大学,2022. |
LU R L. Study on maturity characteristics and modulation technology of cigar leaves in Deyang of Sichuan [D]. Zhengzhou:Henan Agricultural University, 2022 | |
29 | 陈乾锦,池国胜,吴华建, 等. 采收成熟度对K326不同部位烟叶品质的影响[J]. 贵州农业科学,2020,48(9):43-46. |
CHEN Q J, CHI G S, WU H J, et al.. Effect of harvest maturity of different positions on quality of flue-cured tobacco cultivar K326 [J]. Guizhou Agric. Sci., 2020,48(9): 43-46. | |
30 | 杨尚明,李宜健,肖云峰, 等. 特殊外观特征烟叶部位的识别判定研究[J]. 安徽农业科学,2014,42(5):1534-1535, 1560. |
31 | 赵晨,王涛,郭伟雄, 等. 基于机器视觉的烤烟烟叶部位的智能识别[J]. 湖南农业大学学报(自然科学版),2023,49(4):405-411. |
ZHAO C, WANG T, GUO W X, et al.. Intelligent recognition of flue-cured tobacco position based on machine vision [J]. J. Hunan Agric. Univ. (Nat. Sci.), 2023,49(4):405-411. | |
32 | 张军刚,王永利,吕国新,等. 烤烟成熟过程中鲜烟颜色值与色素含量变化及相关分析[J]. 中国烟草科学,2014,35(1):54-60. |
ZHANG J G, WANG Y L, LYU G X, et al.. Changes of color parameters and pigment contents in flue-cured tobacco leaves during maturing process and their correlational relationship [J]. Chin. Tob. Sci.,2014,35(1):54-60. | |
33 | 汪强,席磊,任艳娜,等. 基于计算机视觉技术的烟叶成熟度判定方法[J]. 农业工程学报,2012,28(4):175-179. |
WANG Q, XI L, REN Y N, et al.. Determination of tobacco leaf maturity degree based on computer vision technology [J]. Trans. Chin. Soc. Agric. Eng., 2012,28(4):175-179. | |
34 | 谢滨瑶,祝诗平,黄华. 基于BPNN和SVM的烟叶成熟度鉴别模型[J]. 中国烟草学报,2019,25(1):45-50. |
XIE B Y, HU S P Z, HUANG H. Model for identification of tobacco leaf maturity based on BPNN and SVM [J]. Acta Tab. Sin., 2019,25 (1):45-50. | |
35 | 沈平,童德文,陈郑盟, 等. 基于叶色偏态分布模式的鲜烟叶成熟度判定[J]. 烟草科技,2021,54(8):26-35. |
SHEN P, TONG D W, CHEN Z M, et al.. Maturity discrimination on fresh tobacco leaves based on skewed leaf color distribution patterns [J]. Tob. Sci. Technol., 2021,54 (8):26-35. | |
36 | 汪睿琪,张炳辉,顾钢, 等. 基于YOLOv5的鲜烟叶成熟度识别模型研究[J]. 中国烟草学报,2023,29(2):46-55. |
WANG R Q, ZHANG B H, GU G, et al.. Recognition model of tobacco fresh leaf maturity based on YOLOv5 [J]. Acta Tab. Sin., 2023,29(2):46-55. | |
37 | 叶惠源,丁松爽,段旺军, 等. 雪茄烟叶晾制过程中形态与水分含量的协同变化研究[J]. 中国烟草学报,2023,29(1):97-105. |
YE H Y, DING S S, DUAN W J, et al.. Study on the synergistic changes of morphological parameters and moisture content during the drying process of cigar tobaccoleaves [J]. Acta Tab. Sin., 2023,29(1):97-105. | |
38 | 孙计平,李雪君,贾保顺, 等. 不同品种烤烟调制前后化学成分变化及与感官质量的关系[J]. 中国农学通报,2012,28(18):251-255. |
SUN J P, LI X J, JIA B S, et al.. Relationship between sensory quality and chemicalcharacteristics of different flue-cured tobacco varieties and its changes before and after flue-curing [J]. Chin. Agric. Sci. Bull., 2012,28(18):251-255. | |
39 | 张帆. 烤烟烘烤过程中主要酶活性变化规律及其与化学成分关系的研究[D]. 贵阳:贵州大学,2009. |
ZHANG F. Study on the tobacco of the changing regulation of the activity of primary enzyme during curing process [D]. Guiyang: Guizhou University,2009. | |
40 | 李艳,李峥,张永辉, 等. 基于CIE色度空间的烟叶烘烤过程中色素含量预测研究[J]. 昆明学院学报,2019,41(3):20-25. |
LI Y, LI Z, ZHANG Y H, et al.. Predictive study of pigment content during tobacco curing based on CIE chromaticity space [J]. J. Kunming Univ., 2019,41(3):20-25. | |
41 | 李生栋,谭方利,黎妍妍, 等. 不同素质烟叶烘烤过程中颜色值与色素含量的关系[J]. 南方农业学报,2016,47(9):1570-1575. |
LI S D, TAN F L, LI Y Y,et al.. Relationship between color parameters and pigment contents during flue-curing process of different-quality tobacco leaves [J]. J. South. Agric.,2016,47(9):1570-1575. | |
42 | 段史江. 图像处理技术在烤烟烘烤过程中的应用研究[D]. 郑州:河南农业大学,2012. |
DUAN S J. Research on application of image processing technology during curing process of flue-cured tobacco [D]. Zhengzhou:Henan Agricultural University,2012. | |
43 | 杜海娜,孟令峰,王松峰, 等. 基于机器学习的密集烘烤过程烟叶失水率预测模型对比[J]. 烟草科技,2022,55(9):81-88. |
DU H N, MENG L F, WANG S F, et al.. Machine learning-based models for predicting dehydration rate of tobacco leaf during bulk curing and comparisons thereof [J]. Tob. Sci. Technol.,2022,55(9): 81-88. | |
44 | 何军,王奎武,朱列书, 等. 烤烟不同烘烤方法的研究进展[J]. 作物研究,2007,21(5):729-732. |
45 | 贺帆,王涛,武圣江,等. 密集烘烤烤烟不同品种烟叶质地和颜色变化[J]. 核农学报,2014,28(9):1647-1655. |
HE F, WANG T, WU S J, et al.. Study on the change of texture and color of different flue-cured tobacco varieties during the bulk-curing [J]. Acta Agric. Nucl. Sin., 2014,28(9):1647-1655. | |
46 | 李增盛,孟令峰,王松峰,等. 基于图像处理的烟叶烘烤阶段判别模型优选[J]. 中国烟草学报,2022,28(2):65-76. |
LI Z S, MENG L F, WANG S F, et al.. Selection of optimum discriminant model in tobacco curing stage based on image processing [J]. Acta Tab. Sin., 2022,28(2):65-76. | |
47 | 王暑. 烟叶烘烤智能控制系统研究[D]. 昆明:昆明理工大学,2008. |
WANG S. Research on intelligent control system for tobacco baking room [D]. Kunming:Kunming University of Science and Technology, 2008. | |
48 | 杨海清,刘永辉. 深度学习的烟叶烘干状态识别算法[J]. 浙江工业大学学报,2021,49(1):30-33, 87. |
YANG H Q, LIU Y H. Tobacco leaf drying state recognition algorithm based on deep learning [J]. J. Zhejiang Univ. Technol., 2021,49 (1):30-33, 87. | |
49 | 赵镭,刘文. 感官分析技术应用指南[M].北京:中国轻工业出版社,2011:1-199. |
50 | 王戈,丁冉,徐玮杰,等. 计算机视觉和智能识别技术在烤烟烟叶分级中的应用[J]. 计算机与应用化学,2019,36(,5):548-553. |
WANG G, DING R, XU W J, et al.. Application of computer vision and intelligent identification technology in grading of flue-cured tobacco [J]. Comput. Appl. Chem.,2019,36(5):548-553. | |
51 | 毛鹏军,贺智涛,杜东亮,等. 烤烟烟叶视觉检测分级系统的研究现状与发展趋势[J]. 农业机械,2006(16):43. |
52 | 梁锦秀. 低光照条件下的图像增强和识别关键技术研究[D]. 广州:华南理工大学,2021. |
LIANG J X. Research on key technologies of image enhancement and recognition in low-light conditions [D]. Guangzhou:South China University of Technology, 2021. | |
53 | 秦芝乾. 不同波段光源和光照强度对烟叶分级的影响研究[D]. 贵阳:贵州大学,2020. |
QIN Z Q. Study on the effects of different band light sources and light intensity on tobacco leaf grading [D]. Guiyang: Guizhou University, 2020. | |
54 | 刘新宇,郝同盟,张红涛,等. 基于改进YOLOv3网络的烟梗识别定位方法[J]. 食品与机械,2022,38(3):103-109. |
LIU X Y, HAO T M, ZHANG H T,et al.. Cigarette stem identification and location method based on improved YOLOv3 network [J]. Food Mach., 2022,38(3):103-109. | |
55 | 张声超. 基于特征融合的肺结节检测关键技术研究[D]. 广州:华南理工大学,2018. |
ZHANG S C. Research on key techniques of pulmonary nodule detection based on feature fusion [D]. Guangzhou:South China University of Technology, 2018. | |
56 | 何艳,王海军,庄珍珍, 等. 基于机器视觉技术的烟叶分级特征提取[J]. 南方农机,2020,51(15):29-30. |
57 | 庄珍珍,祝诗平,孙雪剑, 等. 基于机器视觉的烟叶自动分组方法[J]. 西南师范大学学报(自然科学版),2016,41(4):122-129. |
ZHUANG Z Z, ZHU S P, SUN X J, et al.. On method of tobacco automatic groping based on machine vision [J]. J. Southwest China Norm. Univ. (Nat. Sci.), 2016,41(4):122-129. | |
58 | HARJOKO A, PRAHARA A, SUPARDI T W, et al.. Image processing approach for grading tobacco leaf based on color and quality [J]. Int. J. Smart Sens. Intell. Syst., 2019, 12(1):1-10. |
59 | 郭强. 基于图像处理与神经网络的烟叶分级研究[D]. 长沙:中南大学,2013. |
GUO Q. The research of tobacco grading based on image processing and neural network [D]. Changsha:Central South University, 2013. | |
60 | 杨述斌,董春林,王锋, 等. 基于PCA-SSA-BP神经网络的烟叶分级方法[J]. 自动化与仪表,2023,38(2):70-75. |
YANG S B, DONG C L, WANG F, et al.. Tobacco leaf grading method based on PCA-SSA-BP neural network [J]. Autom. Instrument., 2023,38(2):70-75. | |
61 | 张恒,徐文韬,张子颖, 等. 不同生态区影响烤烟上部烟叶感官品质的关键外观指标[J]. 烟草科技,2023,56(1):24-32. |
ZHANG H, XU W T, ZHANG Z Y, et al.. Key appearance indexes affecting sensory quality of upper flue-cured tobacco leaves from different ecological regions [J]. Tob. Sci. Technol.,2023,56(1): 24-32. | |
62 | 郝贤伟,李奇,毕一鸣, 等. 不同颜色上部烤烟主要品质指标的差异分析[J]. 河南农业科学,2023,52(3):173-180. |
HAO X W, LI Q, BI Y M, et al.. Difference analysis of main quality indicators of upper leaves of flue-cured tobacco with different colors [J]. Henan Agric. Sci., 2023,52(3):173-180. | |
63 | 李悦,符云鹏,甄焕菊, 等. 烤后烟叶表面颜色特征参数及其与外观质量指标的关系[J]. 河南农业大学学报,2017,51(1):1-7. |
LI Y, FU Y P, ZHEN H J, et al.. The relationship between the characteristic parameters of surface color and the index of appearance quality of flue-cured tobacco [J]. J. Henan Univ. Agric., 2017,51(1):1-7. | |
64 | 陈文兵,车文刚. 内外特征结合的烟叶自动分级方法[J]. 陕西理工大学学报(自然科学版),2022,38(6):28-37. |
CHEN W B, CHE W G. Automatic grading method of tobacco leaves based on combination of internal and external features [J]. J. Shaanxi Technol. Univ. (Nat. Sci.), 2022,38(6):28-37. | |
65 | 王士鑫. 基于卷积神经网络(CNN)的烤烟烟叶质量分级研究[D]. 昆明:云南师范大学,2020. |
WANG S X. Quality classification of flue-cured tobacco leaf based on convolutional neural network (CNN) [D]. Kunming:Yunnan Normal University, 2020. | |
66 | 焦方圆,申金媛,郝同盟. 一种基于卷积神经网络的烟叶等级识别方法[J]. 食品与机械,2022,38(2):222-227. |
JIAO F Y, SHEN J Y, HAO T M. A method of tobacco leaf grade recognition based on convolution neural network [J]. Food Mach., 2022,38(2):222-227. | |
67 | 陈人杰. 基于机器视觉的烤烟自动分级方法研究[D]. 成都:电子科技大学,2022. |
CHEN R J. Research on automatic classification method of flue-cured tobacco based on machine vision [D]. Chengdu:University of Electronic Science and Technology, 2022. | |
68 | 鲁梦瑶,周强,姜舒文,等. 基于深度学习与多尺度特征融合的烤烟烟叶分级方法[J]. 中国农机化学报,2022,43(1):158-166. |
LU M Y, ZHOU Q, JIANG S W, et al.. Flue-cured tobacco leaf grading method based on deep learning and multi-scale feature fusion [J]. J. Chin. Agric. Mach., 2022,43(1):158-166. | |
69 | 庄福振,罗平,何清, 等. 迁移学习研究进展[J]. 软件学报,2015,26(1):26-39. |
ZHUANG F Z, LUO P, HE Q, et al.. Survey on transfer learning research [J]. J. Softw., 2015,26(1):26-39. | |
70 | BARRE P, STOVER B C, MULLER K F, et al.. LeafNet: a computer vision system for automatic plant species identification [J]. Ecol. Inform., 2017,40: 50-56. |
71 | WU S G, BAO F S, XU E Y, et al.. A leaf recognition algorithm for plant classification using probabilistic neural network [C]//Proceddings of IEEE International Symposium on Signal Processing and Information Technology. 2007:11-16. |
72 | HUGHES D P, SALATHE M. An open access repository of images on plant health to enable the development of mobile disease diagnostics [J/OL]. Comput. Sci.,2015, 11: 8060 [2023-04-16]. . |
73 | VASWANI A, SHAZEER N, PARMAR N,et al.. Attention is all you need [C]//Advances in neural information processing systems.2017:5998-6008. |
74 | 吴书陪. 基于视觉Transformer的番茄病害程度识别研究[D]. 合肥:中国科学技术大学,2022. |
WU S P. Recognition of tomato disease degree based on visual transformer [D]. Hefei: University of Science and Technology of China, 2022. | |
75 | 安小松,宋竹平,梁千月, 等. 基于CNN-Transformer的视觉缺陷柑橘分选方法[J]. 华中农业大学学报,2022,41(4):158-169. |
AN X S, SONG Z P, LIANG Q Y, et al.. A CNN-transformer-based method for sorting citrus with visual defects [J]. J. Huazhong Agric. Univ., 2022,41(4):158-169. | |
76 | CHEN L C, PAPANDREOU G, SCHROFF F, et al.. Rethinking atrous convolution for semantic image segmentation [J/OL]. Comput. Sci., 2017,6: 5587 [2023-04-16] .. |
77 | 毛万菁,阮炬全,刘朔. 基于注意力机制的改进UNet草莓病害语义分割[J]. 计算机系统应用,2023,32(6):251-259. |
MAO W J, RUAN J Q, LIU S. Improved UNet based on attention mechanism in semantic segmentation of strawberry diseases [J]. Comput. Syst. Appl., 2023,32(6):251-259. | |
78 | 陈鹏,马子涵,章军,等. 融合注意力机制的小麦赤霉病语义分割网络[J]. 中国农机化学报,2023,44(4):145-152. |
CHEN P, MA Z H, ZHANG J, et al.. Semantic segmentation network based on attention mechanism wheat FHB [J]. J. Chin. Agric. Mechan., 2023,44(4):145-152. | |
79 | AKALYA D C, DHANARAJ K R, KIRUBA R. Affective model based speech emotion recognition using deep learning techniques [J/OL]. Indian J. Comput. Sci., 2020,5(4-5):154783[2023-04-16]. . |
80 | 刘建伟,王园方,罗雄麟. 深度记忆网络研究进展[J]. 计算机学报,2021,44(8):1549-1589. |
LIU J W, WANG Y F, LUO X L. Research and development on deep memory network [J]. J. Chin. Comput., 2021,44(8):1549-1589. | |
81 | BHIMAVARPU U, BATTINENI G, CHINTALAPUDI N. Improved optimization algorithm in LSTM to predict crop yield [J/OL]. Computers, 2023, 12(1): 10 [2023-04-16]. . |
82 | DUPUIS A, DADOUCHI C, AGARD B. Methodology for multi-temporal prediction of crop rotations using recurrent neural networks [J/OL]. Smar. Agric. Technol., 2023,4:100152 [2023-04-16]. . |
[1] | 胡国玉, 董娅兰, 古丽巴哈尔·托乎提, 刘广, 周建平. 基于机器视觉的葡萄藤结构分割方法研究[J]. 中国农业科技导报, 2024, 26(9): 105-111. |
[2] | 熊晓菲, 王秀琴, 庄翠珍, 郭家贤, 谢新锐, 吴建伟, 李奇峰. 基于ROI融合特征的柑橘炭疽病诊断方法[J]. 中国农业科技导报, 2024, 26(9): 83-92. |
[3] | 金慧萍, 牟海雯, 刘腾, 于佳琳, 金小俊. 基于深度卷积神经网络的青菜和杂草识别[J]. 中国农业科技导报, 2024, 26(8): 122-130. |
[4] | 周喜新, 袁世林, 杨柳, 夏滔, 张毅, 范伟. 连作烟草根系分泌物鉴定及潜在化感物质的筛选研究[J]. 中国农业科技导报, 2024, 26(7): 136-146. |
[5] | 熊晓菲, 吴文茜, 霍洪彦, 张馨, 于艳, 安冬, 张同, 吴建伟. 基于传感器的农业温室数据直报系统与智能调控研究[J]. 中国农业科技导报, 2024, 26(7): 93-102. |
[6] | 赵娅红, 胡骞予, 夏融, 王志江, 谢永辉, 叶贤文, 余磊, 齐颖, 羊绍武, 薛至勤, 吴治兴, 黄飞燕, 韩天华. 生物炭肥对易感根结线虫病烤烟根际菌群和理化性质的影响[J]. 中国农业科技导报, 2024, 26(4): 206-214. |
[7] | 徐杭, 宋浩, 樊高成, 黄淑坚, 罗玉子, 仇华吉. 单克隆抗体制备技术的研究现状[J]. 中国农业科技导报, 2024, 26(11): 210-224. |
[8] | 陈永孜, 王化, 王维轩. 空间转录组学的发展及其应用进展[J]. 中国农业科技导报, 2024, 26(11): 23-31. |
[9] | 刘化冰, 党伟, 李奇, 张晓兵, 徐志强, 钟永健, 任志广, 张勇刚, 袁凯龙, 杨浩, 王辉, 孙聚涛. 烟草品种间氮素吸收和同化差异研究[J]. 中国农业科技导报, 2024, 26(11): 66-78. |
[10] | 常峻嘉, 盖佳鑫, 陶刚, 莫转龙海. 哈茨木霉菌对烟草的促生及其黑胫病的诱导抗性评价[J]. 中国农业科技导报, 2024, 26(10): 168-176. |
[11] | 朱芷芫, 王海峰, 李斌, 赵文文, 朱君, 贾楠, 赵宇亮. 深度学习在畜禽典型行为识别中的研究进展[J]. 中国农业科技导报, 2024, 26(10): 110-124. |
[12] | 唐天君, 陈洋, 胡军, 江浩田. 基于无人机影像数据的烟草精准识别方法研究[J]. 中国农业科技导报, 2024, 26(10): 145-157. |
[13] | 郑果, 姜玉松. 基于多任务学习农作物叶片病害诊断方法[J]. 中国农业科技导报, 2024, 26(1): 89-98. |
[14] | 钱政, 杨孙哲, 张国卿, 郭紫微, 张林朋, 万家兴, 杨红云. 基于卷积神经网络的水稻氮素营养诊断[J]. 中国农业科技导报, 2023, 25(9): 113-121. |
[15] | 赵宁, 李星, 江勇, 王志秀, 毕瑜林, 陈国宏, 白皓, 常国斌. 图像识别技术在鸡养殖领域的应用[J]. 中国农业科技导报, 2023, 25(9): 13-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||